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Abstract: Predicting system lifetime is important to ensure safe and reliable operation of products,
which requires integrated modeling based on multi-level, multi-sensor information. However,
lifetime characteristics of equipment in a system are different and failure mechanisms are
inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime
measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that
combine multi-level sensor information is proposed. The method considers the correlation between
accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime
prediction under complex logic correlations. This method is applied in the lifetime prediction of a
multi-level solar-powered unmanned system, and the predicted results can provide guidance for the
improvement of system reliability and for the maintenance and protection of the system.

Keywords: multi-level system; lifetime prediction; Bayesian Networks; multi-sensor information
integration; complex logical correlation

1. Introduction

Life expectancy is of great significance to ensure safe and reliable operation of products,
and demands for superior product performance are increasing. Devices and components with multiple
lifetime characteristics are associated by complex logic to form a multi-level, complex system whose
state features are difficult to quantify and predict directly. Therefore, the integration of multi-sensor
information is a necessary path to achieving lifetime prediction for such systems. In fact, research
on the integration of multi-sensor information is one of the trends in comprehensive utilization of
data and monitoring technology innovation in the international research community. Through signal
processing from multiple sensors, combined with optimization theory [1], pattern recognition [2],
filtering technique [3,4], neural networks [5], artificial intelligence [6], etc., the goal is to achieve the
correlation and combination of information, and provide more accurate monitoring and evaluation
of products.

In order to effectively integrate equipment information provided by sensors in a complex,
multi-level system to achieve evaluation and prediction of the lifetime of a system, the following
requirements must be met: first, sensor data are required to carry out evaluation at the equipment level
for designing prediction models. Second, the prediction framework that can integrate these low-level
prediction models must be provided. A variety of prediction methods have been developed at the
equipment level, including statistical methods that are based on Wiener diffusion [7], the gamma
process [8], and the Markov process [9], as well as artificial intelligence methods such as data-driven
neural networks [10,11] and filtering techniques [12,13], and other methods based on physical

Sensors 2017, 17, 2123; doi:10.3390/s17092123 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5607-0935
http://dx.doi.org/10.3390/s17092123
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2123 2 of 19

failure [14]. For instance, Nguyen considered the predictive reliability, dependencies of components
and the hierarchy configuration to study the multi-level system [15]. Zheng combined unscented
Kalman Filter and Relevance Vector Regression to predict the remaining useful life of lithium-ion
batteries [16]. Hamed compared the stochastic simulation and the inverse First Order Reliability
Method in remaining useful life prediction under different forms of uncertainty [17]. Actually,
owing to evolving sensor technology, studies on prediction models for lower level objects and
simple products are prevalent, and data-based lifetime prediction technology is relatively mature.
However, the construction of the system prediction framework should take into account the uniform
quantification of lifetime indicators and the expression of complex logic. Coolen extended the sensor
status information obtained by a sensor to the probability level, and carried out the uncertainty
prediction research for many types of components [18]. Jackson and Mosleh also studied the predictive
modeling of uncertainty for multilayer overlapping data in complex systems [19]. The above studies
affirm the advantage of a probabilistic description of complex system states and logical association
uncertainties. On the other hand, George [20] and Meineri [21] adopted directed graphs in their
research on complex system topology modeling and multi-factor complex correlation, which inspired
the idea of modeling logical relationships of multi-level system interactions.

The Bayesian network (BN), proposed by Pearl [22], is a reasoning model based on Bayesian
theory and graph theory that integrates probability and graphitization. It can be applied to make up
the deficiency of traditional reliability analysis method. For an example, with the Fault Tree Analysis
(FTA) method it is difficult to model systems with polymorphism problems, random uncertainties and
dependent events, and some calculations are impossible to achieve due to the computation complexity
under the disjointed algorithm scenario, while BN is able to describe the multi-state, uncertainties and
correlations to conduct two-way inference due to probability basis, conditional independent principle
and information integration skills, as well as generate results conveniently according to the available
FT and simplify modeling problems. Therefore BN has a great advantage in complex system modeling
applications such as disease diagnosis, financial risk analysis, and wireless sensor network and system
reliability analysis, and provides the application basis for integration of multi-level information [23],
which can be used to carry out the construction of lifetime prediction models based on state probability.
A BN qualitative network topology and quantitative conditional probability description are endowed
with strong ability to express large complex systems that have a large number of subsystems [24],
which is applicable for the modeling of complex relationships such as system reliability diagrams and
fault trees that are difficult to describe using traditional models [25,26]. At present, BN is widely used
in the field of reliability, for system fault diagnosis [27,28], safety analysis [29], and optimization of
maintenance strategy [30]. For instance, Cai et al. proposed a BN-based data-driven fault detection
and diagnosis methodology which is equipped with a good toleration for sensor noise and bias of
PMSM drive system [31]. Petek conducted an evaluation of failure conditional probability with a
multi-level system by BN method [32]. Hu et al. developed an integrated safety prognosis model with
BN to study the propagation mechanisms of faults in complex system [33]. However, there are few
reports on the prediction method for a complex, multi-level system [34]. Kabir et al. investigated the
failure prediction method of water mains with BN by considering the uncertainties from multi-source
data and human interpretations with different credibility [35]. Therefore, system lifetime prediction
based on BN to achieve the integration of equipment information from multiple sensors has substantial
research value and exploration significance.

In order to solve the problem of lifetime prediction of multi-level systems under complex logic
relationships and guide the design, improvement, and maintenance of systems, this paper studies the
BN lifetime prediction method based on the integration of multi-level information. The system life
expectancy is estimated by considering different failure mechanisms and the logical association of its
mutual coupling, and the integration of equipment information with different lifetime characteristics.
This paper is organized as follows: in Section 2, we present an overview of the basic concept,
construction, and estimation algorithm of the BN model. In Section 3, we describe the modeling
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process of BN lifetime prediction and its solution method based on the prediction model at equipment
level. In Section 4, we present the verification of the prediction model and in Section 5 a case study of
a solar unmanned system. Finally, a summary and outlook are given in Section 6.

2. Overview of BN Model

A BN is a graphical network model based on the probabilistic reasoning of Bayesian theory.
It consists of a Directed Acyclic Graph (DAG) and a Conditional Probability Table (CPT). The former is
a graphical structure composed of directed edges that connect the node variable X = {X1, X2, · · · , Xn}
based on causality. The latter is the quantitative expression of the logical relationship of variables.
The directed edge in a DAG always has the parent node pointing to the child node, while the variable
with no parent node is the root node and the variable with no child node is the leaf node, and the rest
are the intermediate nodes.

The probability calculation of a BN is based on the conditional independence assumption, i.e.,
that the probability of the child node depends only on the parent node and is independent from
the other child nodes of the parent node, as shown in Equation (1). Therefore, when solving the
probability of a multi-node joint, a BN only needs to consider the correlation of variables, thus reduces
the solving complexity:

P
(
Xi|Xpi, Xpai

)
= P

(
Xi|Xpi

)
(1)

where Xpi is the parent node of node Xi and Xpai the child node of Xpi other than Xi. Applying
conditional independence to chain rules enables computation of the joint probability, as follows:

P(X1, X2, · · · , Xn) =
n

∏
i=1

P
(
Xi|Xpi

)
(2)

The following three elements must be completed for a BN construction:

1. Determine node variables and their interpretation.
2. Create a DAG with a directed edge connecting node variables.
3. Create a CPT for non-root nodes.

The CPT of node G is established for the seven-node DAG of Figure 1 according to the series logic,
as shown in Table 1.
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In the precision reasoning and approximate reasoning algorithm, the joint tree (JT) algorithm
based on clique tree propagation is widely used because of its unique advantages of high search
efficiency, capability of returning logarithmic results, and dual-channel transmission. The solution
is shown in Figure 2. The JT is obtained by the steps of the transformation and triangulation of
the DAG. After initialization, the nodes can absorb the information and update the distribution
function φC of the partition nodes to achieve information transmission. When the single-transfer
process of the JT information satisfies the globally consistent steady state, the distribution of V can be
obtained according to P(V) = ∑C{V} φC for any desired variable V. When new evidence e is added,
the conditional probability distribution of the variable V is solved as follows:

P(V|e) = P(V, e)
P(e)

=
P(V, e)

∑
V

P(V, e)
. (3)
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3. Lifetime Prediction Method of Multi-level System Based on BN

3.1. Prediction Model at Equipment Level

From the prediction tools and means, the prediction model at the equipment and component
levels can be divided into three categories: stochastic process based, data based, and physical failure
based. The optimal prediction method is chosen to establish the lifetime prediction model for root
nodes of the BN, and the lifetime prediction of intermediate nodes and leaf nodes can then be deduced.
Therefore, the soundness and accuracy of the model and parameters of the equipment can affect the
prediction of higher-level nodes.

The system of a complex product often involves performance degradation and accidental failure.
Here, the equipment whose performance degradation obeys the Wiener process is taken as an example
to devise a prediction model. Assuming that the performance parameter W is a key indicator of
product lifetime and is sensitive to stress S, the parameter then follows the Wiener degradation process
as follows:

W(t) = µ(s) · t + σ · B(t) + W0 (4)

where W(t) is the product performance at time t, and µ(s) is the drifting coefficient reflecting the
performance degradation rate, which is a function of stress and time. In an accelerated model,
µ(s) = exp[β0 + βϕ(s)]. Constant σ is the diffusion coefficient that is irrelevant with respect to
environment and time. B(t) ∼ N(0, t) is the standard Brownian motion and W0 is the initial value of
the parameter.
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The degradation amount within the time ∆t from the properties of the Wiener process is
∆W ∼ N

(
µ(s)∆t, σ2∆t

)
. L is defined as the failure threshold of performance W, and then the time t′

that the performance parameter value first passed through L satisfies the inverse Gaussian distribution.
The distribution function is the unreliability function of the product, and the corresponding probability
density function is given by:

f (t; W0, L) =
L−W0√
2πσ2t3

exp

{
− [(L−W0)− µ(s)t]2

2σ2t

}
(5)

The corresponding reliability function is the prediction model of equipment lifetime, as follows:

R(t) = Φ
(L−W0)− µ(s)t

σ
√

t
− exp

{
2µ(s)L

2σ2

}
Φ
(L−W0) + µ(s)t

σ
√

t
, (6)

where Φ (∗) is the cumulative distribution function of the standard normal distribution.
Other prediction methods and models based on the data and physical failure can also

provide the corresponding prediction information of product lifetime under the timescale satisfying
prediction accuracy.

3.2. BN Prediction Modeling and Inference at System Level

Differences exist in the lifetime characteristics of different products. Therefore, the state probability
of the unified lifetime based on quantitative indicators is used in this paper. For example, for the
case of accidental hardware failure, reliability and cumulative probability of failure can describe the
probability in the “normal” and “fault” states. However, for a degradation mechanism in which the
lifetime characteristics cannot be directly described by the reliability, the complete state set must be
customized before modeling to describe the “intact degree” and “failure degree” as two opposing
events, to ensure that the sum of the state probability is 1. For ease of expression, in this work we use
R to characterize the “intact” state of all nodes, with corresponding probability R, and represent the
corresponding “failure” state with F , with a probability of F.

The lifetime prediction sequence of state probability reflecting lifetime information given by each
equipment prediction model is taken as the prior probability of the corresponding root node in the
system BN, and the probability of unknown nodes is deduced to achieve the integration and prediction
of the lifetime information from the multi-sensor (process shown in Figure 3). The specific model
construction proceeds via the following steps:

1. Obtain expert knowledge and structure and function information of similar products. Analyze
the failure mode and mechanism through the system function-level method. Fault tree analysis is
used for key faults to determine the equipment and mechanisms that affect system lifetime.

2. Deploy sensors for key performance parameters of each device. Collect and process data.
3. Based on the analysis of sensor data, the prediction model is established for each piece of

equipment, and the prediction value of lifetime-related state probability is given.
4. Combined with the system failure mechanism, the prediction value of state probability for the

equipment involved is used as the prior probability for the root node.
5. Combine system logic to form a DAG, and establish a non-root node CPT.
6. The JT estimation algorithm is used to solve the joint probability of relevant nodes, to update the

conditional probability values of each node, and to achieve the deduction of state probability of
system nodes to complete the system prediction.

7. The BN prediction model is still applicable, along with the updating of sensor data and correction
of prediction model at equipment level. If the failure mechanism changes, the DAG and CPT
should be corrected for the updated logical relationship; proceed to Step 3.
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In the above BN model that interprets node variable with state probability, Sai
Xi
(t), S

bj
Yj
(t), and Sk

L(t)
are used to represent the ai, bj, k th state of root node Xi (i = 1, 2, · · · , p), the intermediate node
Yj (j = 1, 2, · · · , q), and the leaf node L at time t respectively, i.e., ai = bj = k = 1, 2.

For a number of p root nodes, the probability of the stateR is solved by the prediction model for
each respective piece of equipment and discretized according to the unsupervised equal-width interval
method with a time sequence to achieve the state prediction in the future T time; that is, the p×n-order
state probability prediction matrix:

Rp×n =

 R1,1 · · · R1,n
...

. . .
...

Rp,1 · · · Rp,n

,

with a certain time sequence T = (t + ζ, t + 2ζ, · · · , t + nζ). The elements Ri,τ =

R(Xi(τ)) (i = 1, 2, · · · , p; τ = 1, 2, · · · , n) represent the probability of the device Xi to be in the state
R. If ζ is taken as the unit time, the probability set R(t) =

(
R1,t, R2,t, · · · , Rp,t

)T corresponds to the
probability of p nodes to be in set X at stateR. Correspondingly, the probability of occurrence of state
F is given by F(t) = 1−R(t).

When the abovementioned multi-sensor information is used to deduce the lifetime prediction
based on the BN, the probability of the root node is firstly assigned according to the probability
prediction matrix. The probability of the root node Xi at time t is P

(
SXi (t)

)
= R(Xi(t)), i = 1, 2, · · · , p.

For the solution of the state probability of intermediate nodes, it is assumed that the parent-node set
X = {X1, X2, · · · , Xi} exists for the node Yj. According to the assumption of independent conditions,
the probability prediction of the intermediate nodes at time t can be solved based on:

P
(
Yj(t)

)
= ∑

X
P
(

SYj(t), SX(t)
)

= ∑
X

P
(

S2
Yj
(t)|SX(t)

)
P
(
SX1(t)

)
· · · P

(
SX1(t)

)
,

(7)

The complexity of logical associations of the BN will increase with the number of nodes contained.
Based on the advantages of conditional independence, the complex topological equivalence can be
divided into simple structures, and the construction and inference of three kinds of basic structural
prediction models are taken as examples as follows:
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(1) The parent node set X = {X1, X2, X3} of node Yj contains only the root node (Figure 4).Sensors 2017, 17, 2123  7 of 19 
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Each state of the parent node is independent of each other at any time, and then the predicted
probability of Yj in stateR at time t is as follows:

R
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P
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P
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(
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Yj
(t)|S2

X1
(t), S2
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(t), S2

X3
(t)
)

P
(

S2
X1
(t)
)

P
(

S2
X2
(t)
)

P
(
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X3
(t)
)

.

(8)

(2) The parent node set X = {Xa, Y1} of node Yj contains both the root node and the intermediate
node (Figure 5).

Sensors 2017, 17, 2123  7 of 19 

 

X1 X2 X3

Yj

 

Figure 4. Logical structure in which the parent node is the root node. 

Each state of the parent node is independent of each other at any time, and then the predicted 

probability of 𝑌𝑗 in state ℛ at time 𝑡 is as follows: 

           

             

                 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

, ,

2

, ,

2 2 2 2 2 2 2

, , ,

|

| , ,  .

j

j

j

j Y X X X
X X X

Y X X X
X X X

Y X X X X X X

R Y t P S t S t S t S t

P S t S t P S t P S t P S t

P S t S t S t S t P S t P S t P S t









 X

 

(8) 

(2) The parent node set 𝑿 = {𝑋𝑎, 𝑌1} of node 𝑌𝑗 contains both the root node and the intermediate 

node (Figure 5). 

X1 X2

Y1

Xa

Yj

 

Figure 5. Logical structure in which the parent node contains both the intermediate and root nodes 

The predicted probability of node 𝑌𝑗 at time 𝑡 can be solved according to: 

                         

                      
                         

1 1 1 2 1 2

1 1 2

1 1 1 2 1 2

1 1 2 1 2 1 1 2 1 2

2 2 2 2 2

, ,

2 2 2 2 2 2 2 2 2

2 1 2 1 2 2 2 1 2 1

| , | ,

   = | , | ,

+ | , + | ,

[

] .

j a a

a

j a a

j Y Y X X Y X X X X
Y X X X

Y Y X X Y X X X X

Y X X X X Y X X X X

R Y t P S t S t S t P S t P S t S t S t P S t P S t

P S t S t S t P S t P S t S t S t P S t P S t

P S t S t S t P S t P S t P S t S t S t P S t P S t

  

 

(9) 

(3) There is a case in which the same parent node points to multiple child nodes (see Figure 6). 

X1 X2

Y1

Yj

 

Figure 6. Logical structure in which the same parent node points to multiple subnodes. 

The system model that has interconnected logical correlation mostly has network structure. The 

same parent node pointing to multiple sub-nodes is the basis for the composition of the network 

structure. This situation can be predicted according to: 

Figure 5. Logical structure in which the parent node contains both the intermediate and root nodes.

The predicted probability of node Yj at time t can be solved according to:
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(
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)
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(t)
)

P
(
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X1
(t)
)

P
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(t)
)
+ P

(
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(t)|S2
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(t), S1
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(t)
)

P
(

S2
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(t)
)

P
(
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(t)
)
] .

(9)

(3) There is a case in which the same parent node points to multiple child nodes (see Figure 6).
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The system model that has interconnected logical correlation mostly has network structure.
The same parent node pointing to multiple sub-nodes is the basis for the composition of the network
structure. This situation can be predicted according to:

R
(
Yj(t)

)
= ∑

X2,Y1

P
(

S2
Yj
(t)|SX2(t), SY1(t)

)
∑

X1,X2

P
(
SY1(t)|SX1(t), SX2(t)

)
· P
(
SX1(t)

)
P
(
SX2(t)

)
= P

(
S2

Yj
(t)|S2

X2
(t), S2

Y1
(t)
)
· [P
(

S2
Y1
(t)|S2

X1
(t), S2

X2
(t)
)

P
(

S2
X1
(t)
)

P
(

S2
X2
(t)
)

+P
(

S2
Y1
(t)|S1

X1
(t), S2

X2
(t)
)

P
(

S1
X1
(t)
)

P
(

S2
X2
(t)
)
] .

(10)

Based on the probability of the root node and intermediate node, the predicted probability of the
leaf node in state R can be further solved according to:

RL(t) = ∑ P
(

SX1(t), SX2(t), · · · , SXp(t), SY1(t), SY2(t), · · · , SYq(t), S2
L(t)

)
= ∑

Pa(L)
P
(

S2
L(t)|SPa(L)(t)

)
· ∑

Pa(Y1)
P
(

SY1(t)|SPa(Y1)
(t)
)
· · ·

∑
Pa(Yq)

P
(

SYq(t)|SPa(Yq)(t)
)
· · · P

(
SX1(t)

)
· · · P

(
SXp(t)

)
,

(11)

where Pa(∗) is the parent node of the node “(∗)”.
According to the above formula, the JT estimation algorithm traverses the DAG, and the state

and lifetime of the system node L can be predicted. By the probability prediction matrix Rp×n =

(R(t), R(t + ζ), R(t + 2ζ), · · · , R(t + 2ζ)) of the root node, the corresponding prediction sequence of
probability at system level will be obtained to achieve continuous prediction of the lifetime.

4. Modeling, Simulation, and Verification of System-Level BN Prediction

The seven-node DAG shown in Figure 1 contains the three basic structures described above,
and the BN prediction method is simulated and verified as an example. The three-tier system G
consists of parallel subsystems C and F, comprising four devices A, B, D, and E. In the subsystem
C(F), A (D) and B (E) conduct different functions, respectively, which are in series logic. In addition,
according to the early collection of product information, the logic that “if the state of subsystem C
is abnormal, there is a 60% probability of failure for subsystem F” exists between the subsystems.
The key performance parameters of each piece of equipment were determined, monitoring devices
were arranged, and the sensor signals were extracted, processed, and analyzed. The lifetime prediction
model of each piece of equipment was then obtained.

(1) The lifetime characteristics of equipment A and B meet the accidental failure, while D and E meet
the degradation failure, and the corresponding prediction models are shown in Table 2.

Table 2. Prediction model (1) of four pieces of equipment.

Node Description of Prediction Model Lifetime Prediction Model

A Exponential distribution RA(t) = exp(−t/3000)

B Weibull distribution RB(t) = exp[−(t/2300)]1.5

D
Wiener degradation process;

Drift parameters are selected as
the Arrhenius model

RD(t) = − exp
[

2d(s)(L−Y0)
σ2

]
Φ
(
− L−Y0+d(s)t

σ
√

t

)
+ Φ

(
L−Y0−d(s)t

σ
√

t

)
(
EaD = 0.473, AD = 4.7× 105; Y0−D = 5, LD = 10, σD = 0.01

)
E Degradation under cyclic stress RE(t) = Φ

((
−0.0001(t/10)3 + 200− 80

)
/
√

5
)
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Based on the prediction model above, the BN model with both accidental failure and degeneration
failure is established to predict the system lifetime of the next 2000 h. The state probability of system G
can be solved by:

RG(t) = ∑ P
(
SA(t), SB(t), SC(t), SD(t), SE(t), SF(t), S2

G(t)
)

= ∑
C,F

P
(
S2

G(t)|SC(t), SF(t)
)
· ∑

A,B
P(SC(t)|SA(t), SB(t))

∑
C,D,E

P(SF(t)|SD(t), SE(t), SC(t))P(SA(t))P(SB(t))P(SD(t))P(SE(t)).
(12)

Due to the efficient two-way accurate-inference ability, “engine = jtree _ inf _ engine (bnet)” of
the Bayes Net Toolbox (BNT) for MATLAB developed by Murphy [36] is used to conduct inference,
and the probability of each group of parent and child nodes in state R is shown in Figure 7.
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The results show that in the first 1000 h the subsystem F shows better performance than C,
and the state probability of system G is the same as that of the former. After 1030 h, however, with the
performance degradation, the failure probability of F suddenly increases, and the probability of
system G being in state R decreases. After 1090 h, subsystem F completely failed, and the system state
was completely determined by subsystem C. Therefore, the prediction curve trends of C and G after
this point are basically the same. The lifetime prediction of the system is estimated and evaluated:
the median life of the system t0.5 = 1098 h; if the system in good condition has a probability threshold
of 0.45, the remaining life is approximately 1226 h.

In addition, the performance degradation simulation curve of E (as shown in Figure 8) shows that
from 1010 to 1090 h the performance parameters of all 15 samples degenerated below the threshold
of 80, and that the 15 samples of device D did not exceed the performance parameter threshold
in the first 1200 h (a simulated degradation curve is shown in Figure 9). Through the analysis of
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the subsystem F, we can see that the main reason for the sudden deterioration of the system is the
performance degradation of device E under cyclic stress, which caused it to exceed the performance
threshold with considerable probability.Sensors 2017, 17, 2123  10 of 19 

 

 

Figure 8. Simulation curve of performance degradation of device ܧ. 

 
Figure 9. Simulation curve of performance degradation of device ܦ. 

The dotted lines parallel to the horizontal axis of Figures 8 and 9 represent the device 
performance threshold. 

(2) For all equipment that is in degradation failure mode, the corresponding prediction model and 
parameters are shown in Table 3. 

Table 3. Prediction model (2) of four pieces of equipment 1. 

Node Description of  
Prediction Model Lifetime Prediction Model 

  ;ᇱ Gamma processܣ
Scale parameters are selected as 

the Arrhenius model 

( ) ( )( ) ( )( ) Γ , / / ΓAR t v s t L u v s t′ =  

( )' ' ' ' '
5

0
 0.453, 3.9 10 ; 0, 12, 2.3

A A A A A
Ea A Y L u

−
= = × = = = ) ᇱ Wiener processܤ  )' ' ' ' '

5
0

0.473, 6.7 10 ; 6, 12, 0.032
B B B B B

Ea A Y L σ
−

= = × = = =  

1 Prediction models of ܦ and ܧ are the same as in Table 3. 

The state probability prediction curve of each (sub-) system is obtained and shown in Figure 10. 

0 200 400 600 800 1000 1200
0

50

100

150

200

Time

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n 

of
 N

od
e 

E

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4

5

6

7

8

9

10

11

Time

Pe
rf

or
m

an
ce

 D
eg

ra
da

tio
n 

of
 N

od
e 

D

 

 

Figure 8. Simulation curve of performance degradation of device E.
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Figure 9. Simulation curve of performance degradation of device D.

The dotted lines parallel to the horizontal axis of Figures 8 and 9 represent the device
performance threshold.

(2) For all equipment that is in degradation failure mode, the corresponding prediction model and
parameters are shown in Table 3.

Table 3. Prediction model (2) of four pieces of equipment 1.

Node Description of
Prediction Model Lifetime Prediction Model

A′
Gamma process;

Scale parameters are selected
as the Arrhenius model

RA′ (t) = Γ(v(s)t, L/u)/Γ(v(s)t)(
EaA′ = 0.453, AA′ = 3.9× 105; Y0−A′ = 0, LA′ = 12, uA′ = 2.3

)
B′ Wiener process

(
EaB′ = 0.473, AB′ = 6.7× 105; Y0−B′ = 6, LB′ = 12, σB′ = 0.032

)
1 Prediction models of D and E are the same as in Table 3.
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The state probability prediction curve of each (sub-) system is obtained and shown in Figure 10.Sensors 2017, 17, 2123  11 of 19 
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performance parameter of device ܣ  follows the Gamma degradation process (Figure 11). The 
probability of device ܣ to be at state 2 is reduced to 0.5224 at 1000 h, making the system state 
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Figure 10. Probability distribution (2) of parent and child nodes at state R for G system group.

Compared to the predicted result above, a system whose devices are all in degradation failure
mode has a low probability of staying intact at 1030 h, specifically, only 0.622. However, the state
probability predicted above at 1030 h is 0.712, and the working state was maintained with a probability
of 0.46 until 1200 h. With a probability threshold of 0.45, the remaining life of the system will be less
than 1064 h. The main reason for the change of system state is subsystem C, in which the performance
parameter of device A follows the Gamma degradation process (Figure 11). The probability of device A
to be at state 2 is reduced to 0.5224 at 1000 h, making the system state significantly degraded; after this
prediction point, the performance degradation of device E in subsystem F is deteriorated, and the
system fails at a faster rate. On one hand, subsystem C has direct effect on the state of system G. On the
other hand, the state of G is indirectly affected through the correlation with subsystem F. Therefore,
the degradation rate of a system state after integration is faster.

It can be verified through the above simulation that a BN can achieve the integration of lifetime
information from multiple sensors in a multi-level system when the equipment grade product
experiences accidental failure or (and) degradation failure, which reasonably predicts system lifetime
from the perspective of state probability, and shows good compatibility and integration for a variety of
low-level prediction models.
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Figure 11. Simulation curve of performance degradation of equipment A′.

5. Application Case

5.1. BN Lifetime Prediction of an Unmanned Solar-Powered System

An unmanned system is a typical multi-level system with complex structure and function logic.
With the air-ground collaborative work requirements, the system achieves its functional requirements
and sharing of information resources layer by layer. At the same time, under environmental influences
such as temperature, humidity, vibration, and interference the unit with the degradation property
and that with the accidental failure together affect the system state and lifetime. In this paper,
a solar-powered unmanned aerial vehicle (UAV) system was chosen as an example to carry out lifetime
prediction based on a BN.

After the system is simplified, the hardware is mainly composed of an airborne system, a data link,
and a ground system. The energy system inside the airborne system must provide power support for
the normal operation of the navigation system, flight control system, power system, communication
system, etc., and it is subject to the state of the battery management system and the solar panel.
Any abnormality can cause the energy system to degrade or even fail to function properly.

The navigation system contains the master and lead. A flight control computer subsystem for
integrated task management, a flight control computer subsystem, and a servo action system are
necessary. In addition to the airborne terminal, the airborne communication system must go through
the data link to achieve the transmission and exchange of information with ground communication
equipment. In the ground subsystem, the power supply system is the energy supply system for
flight operation, the console, communication equipment, and other equipment. For the console,
the requirement is to simultaneously display and control functions. This BN model fully accounts for
the relevance of intermediate nodes. In these subsystems, degradation failure exists in the solar cell
and UAV body material, which is modeled with Wiener process and Gamma process, respectively,
to establish the performance degradation for lifetime prediction. Specifically, the system DAG is shown
in Figure 12, and the 61 nodes contain 37 device-level nodes.
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At the same time, considering the characteristics of photovoltaic energy, a special flight profile 
is used: To ensure the full storage of the solar panels, before every sunrise the aircraft must climb 
from an altitude of approximately 1000 m to a cruising altitude to 8500 m. In order to reduce energy 
consumption, a fully charged UAV descends to a low-altitude region in the evening to take advantage 
of lower air resistance and will continue to fly. The ideal charge-discharge process under the flight 
height profile is shown in Figure 13. 
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During the process, the ambient temperature will change cyclically with flight height, and the 
structure with the temperature degradation characteristic will experience significant state change. A 
simplified temperature stress profile is given in Figure 14. 

Figure 12. DAG of a solar-powered unmanned system.

At the same time, considering the characteristics of photovoltaic energy, a special flight profile
is used: To ensure the full storage of the solar panels, before every sunrise the aircraft must climb
from an altitude of approximately 1000 m to a cruising altitude to 8500 m. In order to reduce energy
consumption, a fully charged UAV descends to a low-altitude region in the evening to take advantage
of lower air resistance and will continue to fly. The ideal charge-discharge process under the flight
height profile is shown in Figure 13.
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consumption, a fully charged UAV descends to a low-altitude region in the evening to take advantage 
of lower air resistance and will continue to fly. The ideal charge-discharge process under the flight 
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Figure 13. Correspondence between flight height profile of UAV and charge-discharge cycle.

During the process, the ambient temperature will change cyclically with flight height, and the
structure with the temperature degradation characteristic will experience significant state change.
A simplified temperature stress profile is given in Figure 14.
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probabilistic predictive values for each time are divided into four healthy states, such as “healthy”, 
“minor fault”, “catastrophic fault”, and “close to failure” with the trapezoidal fuzzy number. The 

Figure 14. Simplified temperature profile of solar-powered UAV flight.

The lifetime prediction model considering the temperature stress is established by combining the
sensor information of the 37 devices, and the state of the cruise mission in the next 35 d is predicted
according to the above temperature profile. Figure 15 shows the state probability distribution of the
solar-powered unmanned system and its data link, ground subsystem, and airborne subsystem.
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Figure 15. Probability prediction curve of unmanned system state.

The continual decreasing trend reflects the degradation of operation state of the (sub-) system
with time and environmental conditions; the UAV system and airborne subsystem show cyclically
violent state changes after flying 100 h approximately. This is because the temperature degradation
characteristics of the airborne equipment are subject to periodic ambient temperature stress.

5.2. Analysis Based on the Prediction Results

(1) Task risk analysis

In order to make full use of the predicted information to identify the health of the UAV
system, a task risk analysis was carried out on the system based on health status. Based on fuzzy
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theory, the probabilistic predictive values for each time are divided into four healthy states, such as
“healthy”, “minor fault”, “catastrophic fault”, and “close to failure” with the trapezoidal fuzzy number.
The probability distribution curves of four states are shown as dotted lines in Figure 16. The risk of
each state can be weighted to achieve the risk assessment of system at all times (as shown in Figure 16).
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It can be seen from the figure that the probability that the lithium battery and the data link (nodes 
16, 20, 24, 28, and 37) can work normally is relatively low when the system state begins to appear 
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(2) Sensitivity analysis of nodes 

Sensitivity can be used to reflect the sensitivity of system output to the amount of input change 
so that the weak parts of the system can be identified. Due to the conditional independence 

Figure 16. Probability distribution and risk prediction of each state of unmanned system.

It can be seen from Figure 16 that the UAV system can work normally in the first 438 h, but frequent
abnormal jumps between “healthy” and “close to failure” occurred between 439 and 496h, and the
worst health state was maintained after 497 h, which leads to a continuous increase in systemic risk,
especially after 512 h when the task risk has exceeded 0.5. Continuing to perform the task poses a
considerable probability of failure and safety risks for personnel and equipment. Additionally, at the
time of 439 h when state mutation firstly occurs, the reliability of each device is predicted and shown
in Figure 17.
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It can be seen from the figure that the probability that the lithium battery and the data link
(nodes 16, 20, 24, 28, and 37) can work normally is relatively low when the system state begins to
appear abnormally, which may be the fundamental factor causing the deterioration of the system state.

(2) Sensitivity analysis of nodes

Sensitivity can be used to reflect the sensitivity of system output to the amount of input change so
that the weak parts of the system can be identified. Due to the conditional independence assumption
in BN, nodes at the same level are independent of each other, and thus the sensitivity of each node to
the system is defined as:

Θi,S =
∂Rs

∂RXi

=
∆Rs

∆RXi

(13)

In the BN model of the UAV system, the sensitivity of each subsystem is shown in Figure 18.
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According to the figure, the system is more sensitive to the state change of node 60 (airborne
subsystem). Further analysis of the airborne subsystem shows that the sensitivity of nodes 16, 20, 24,
and 28 can reach 14 orders of magnitude at a certain local time (the figures of which are not shown in
this paper). In addition, node 37 (data link) is both a subsystem and root node whose sensitivity is at a
high level. As a result, the airborne subsystem and data link subsystem will have a significant impact
on the system state.

(3) Recommendations for reliability design and maintenance

In reliability design, sensitivity analysis can be used to improve the inherent reliability of critical
equipment by design improvement. Meanwhile, close attention should be paid to redundancy design
within the allowable range of aircraft load. This will create significant improvements in the reliability,
availability, and longevity of UAV systems. From the point of view of maintenance and repair,
the maintenance strategy T(C, A∗, Prisk|t) related to maintenance cost C(t), instantaneous availability
A∗(s) and work risk Prisk(t) can be formulated according to the given lifetime index. Combined
with system mission risk and the average cost of preventive and post-maintenance, a maintenance
cost-time model can be established. Maintenance or replacement activities are carried out at higher
cost-efficiency-ratio point in accordance with the priority of the equipment status and sensitivity.
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6. Conclusions

In this paper we propose a modeling method for lifetime prediction of systems from integrated
multi-sensor information at device level based on a BN in order to conduct system-level lifetime
prediction for complex, multi-sensor systems. The simulation results show that the method can
effectively solve the complex logical association of data and the quantitative description of the
uncertainty in the multi-level system, and that it has good integration ability and compatibility
with various prediction models of devices. At the same time, the application research of a multi-level
solar-powered UAV system with multi-device information is carried out, and the task risk and node
sensitivity analysis are conducted according to the prediction results of system lifetime based on
the temperature profile. The research shows that the system prediction method from the integrated
multi-sensor lifetime based on a BN has the following advantages:

(1) By making full use of multi-sensor information, data association, and quantitative expression,
integration and lifetime prediction can be achieved on multi-level, complex, dynamic, multi-source
logic data.

(2) The diversified life expectancy information of the model output is based on different aspects and
complement each other, which provides comprehensive data support and theoretical guidance for
design improvements and maintenance from system view and in the entire lifecycle process that
considers a trade-off of economics, technology, risk, and effectiveness.

However, simulation and application studies show that the proposed method has a high
dependence on the prediction model at the device level. The more accurate lifetime prediction for a
complex multi-level system is based on accurate device-level prediction information, which imposes
higher requirements on information acquisition, processing, and analysis from multiple sensors.
Therefore, there might be limitations in practice by only considering data from sensors. Future work on
lifetime prediction methods based on a BN should focus on the study and understanding of prediction
accuracy, and appropriately take into account other sources and levels data like experimental data
and reasonable expert knowledge and so on to conduct integration. In addition, the prediction
dimension can be extended from two states to multiple states, and the intermediate process of various
mechanisms can be studied in depth by considering the intermediate state to obtain more abundant
lifetime prediction information.

Acknowledgments: This work was supported by the Aero-Science Fund (Grant No. 2015ZD51044).

Author Contributions: Jingbin Wang and Lizhi Wang proposed the idea of the research, conceived and designed
the simulation experiments; Xiaohong Wang and Lizhi Wang conceived and provided the application case;
Jingbin Wang performed the experiments, analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ge, Q.; Wei, Z.; Cheng, T.; Chen, S.; Wang, X. Flexible Fusion Structure-Based Performance Optimization
Learning for Multisensor Target Tracking. Sensors 2017, 17, 1045. [CrossRef] [PubMed]

2. Xu, H.; Liu, J.; Hu, H.; Zhang, Y. Wearable Sensor-Based Human Activity Recognition Method with
Multi-Features Extracted from Hilbert-Huang Transform. Sensors 2016, 16, 2048. [CrossRef] [PubMed]

3. Li, Z.; Feng, L.; Yang, A. Fusion Based on Visible Light Positioning and Inertial Navigation Using Extended
Kalman Filters. Sensors 2017, 17, 1093.

4. Rodger, J.A. Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy
multi-sensor data fusion Kalman filter approach for IVHMS. Expert Syst. Appl. 2012, 39, 9821–9836. [CrossRef]

5. Jing, L.; Wang, T.; Zhao, M.; Wang, P. An Adaptive Multi-Sensor Data Fusion Method Based on Deep
Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors 2017, 17, 414. [CrossRef]
[PubMed]

http://dx.doi.org/10.3390/s17051045
http://www.ncbi.nlm.nih.gov/pubmed/28481243
http://dx.doi.org/10.3390/s16122048
http://www.ncbi.nlm.nih.gov/pubmed/27918414
http://dx.doi.org/10.1016/j.eswa.2012.02.171
http://dx.doi.org/10.3390/s17020414
http://www.ncbi.nlm.nih.gov/pubmed/28230767


Sensors 2017, 17, 2123 18 of 19

6. Hsu, Y.L.; Chou, P.H.; Chang, H.C.; Lin, S.L.; Yang, S.C.; Su, H.Y.; Chang, C.C.; Cheng, Y.S.; Kuo, Y.C. Design
and Implementation of a Smart Home System Using Multisensor Data Fusion Technology. Sensors 2017, 17,
1631. [CrossRef] [PubMed]

7. Whitmore, G.A.; Schenkelberg, F. Modelling accelerated degradation data using Wiener diffusion with a
time scale transformation. Lifetime Data Anal. 1997, 3, 27–45. [CrossRef] [PubMed]

8. Bagdonavicius, V.; Nikulin, M.S. Estimation in degradation models with explanatory variables. Lifetime
Data Anal. 2001, 7, 85–103. [CrossRef] [PubMed]

9. Wan, Y.; Huang, H.L.; Das, D.; Pecht, M. Thermal reliability prediction and analysis for high-density
electronic systems based on the Markov process. Microelectron. Reliab. 2016, 56, 182–188. [CrossRef]

10. Ali, J.B.; Chebel-Morello, B.; Saidi, L.; Malinowski, S.; Fnaiech, F. Accurate Bearing remaining useful life
prediction based on Weibull distribution and artificial neural network. Mech. Syst. Sig. Process. 2015, 56,
150–172.

11. Alghassi, A.; Perinpanayagam, S.; Samie, M. Stochastic RUL Calculation Enhanced With TDNN-Based IGBT
Failure Modeling. IEEE Trans. Reliab. 2016, 65, 558–573. [CrossRef]

12. Son, J.; Zhou, S.; Sankavaram, C.; Sankavaram, C.; Du, X.; Zhang, Y. Remaining useful life prediction based
on noisy condition monitoring signals using constrained Kalman filter. Reliab. Eng. Syst. Saf. 2016, 152,
38–50. [CrossRef]

13. Li, K.; Wu, J.; Zhang, Q.; Su, L.; Chen, P. New Particle Filter Based on GA for Equipment Remaining Useful
Life Prediction. Sensors 2017, 17, 696. [CrossRef] [PubMed]

14. Qian, Y.N.; Yan, R.Q.; Gao, R.X. A multi-time scale approach to remaining useful life prediction in rolling
bearing. Mech. Syst. Sig. Process. 2017, 83, 549–567. [CrossRef]

15. Nguyen, K.A.; Do, P.; Grall, A. Multi-level predictive maintenance for multi-component systems. Reliab. Eng.
Syst. Saf. 2015, 144, 83–94. [CrossRef]

16. Zheng, X.; Fang, H. An integrated unscented kalman filter and relevance vector regression approach for
lithium-ion battery remaining useful life and short-term capacity prediction. Reliab. Eng. Syst. Saf. 2015, 144,
74–82. [CrossRef]

17. Khorasgani, H.; Biswas, G.; Sankararaman, S. Methodologies for system-level remaining useful life prediction.
Reliab. Eng. Syst. Saf. 2016, 154, 8–18. [CrossRef]

18. Coolen, F.P.A.; Coolen-Maturi, T. The structure function for system reliability as predictive (imprecise)
probability. Reliab. Eng. Syst. Saf. 2016, 154, 180–187. [CrossRef]

19. Jackson, C.; Mosleh, A. Bayesian inference with overlapping data: Reliability estimation of multi-state
on-demand continuous life metric systems with uncertain evidence. Reliab. Eng. Syst. Saf. 2016, 145, 124–135.
[CrossRef]

20. George-Williams, H.; Patelli, E. A hybrid load flow and event driven simulation approach to multi-state
system reliability evaluation. Reliab. Eng. Syst. Saf. 2016, 152, 351–367. [CrossRef]

21. Meineri, E.; Dahlberg, C.J.; Hylander, K. Using Gaussian Bayesian Networks to disentangle direct and
indirect associations between landscape physiography, environmental variables and species distribution.
Ecol. Modell. 2015, 313, 127–136. [CrossRef]

22. Pearl, J. Fusion, propagation, and structuring in belief networks. Artif. Intell. 1986, 29, 241–288. [CrossRef]
23. Weber, P.; Medina-Oliva, G.; Simon, C.; Iung, B. Overview on Bayesian networks applications for

dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 2012, 25, 671–682. [CrossRef]
24. Tien, I.; Kiureghian, A.D. Algorithms for Bayesian network modeling and reliability assessment of

infrastructure systems. Reliab. Eng. Syst. Saf. 2016, 156, 134–147. [CrossRef]
25. Price, L.C.; Peiris, H.V.; Frazer, J.; Easther, R. Designing and testing inflationary models with Bayesian

networks. J. Cosmol. Astropart. Phys. 2016, 2016, 049. [CrossRef]
26. Garvey, M.D.; Carnovale, S.; Yeniyurt, S. An analytical framework for supply network risk propagation:

A Bayesian network approach. Eur. J. Oper. Res. 2015, 243, 618–627. [CrossRef]
27. Cai, B.; Liu, H.; Xie, M. A real-time fault diagnosis methodology of complex systems using object-oriented

Bayesian networks. Mech. Syst. Sig. Process. 2016, 80, 31–44. [CrossRef]
28. Cai, B.; Liu, Y.; Fan, Q.; Zhang, Y.; Liu, Z.; Yu, S.; Ji, R. Multi-source information fusion based fault diagnosis

of ground-source heat pump using Bayesian network. Appl. Energy 2014, 114, 1–9. [CrossRef]
29. Khakzad, N. Application of dynamic Bayesian network to risk analysis of domino effects in chemical

infrastructures. Reliab. Eng. Syst. Saf. 2015, 138, 263–272. [CrossRef]

http://dx.doi.org/10.3390/s17071631
http://www.ncbi.nlm.nih.gov/pubmed/28714884
http://dx.doi.org/10.1023/A:1009664101413
http://www.ncbi.nlm.nih.gov/pubmed/9384624
http://dx.doi.org/10.1023/A:1009629311100
http://www.ncbi.nlm.nih.gov/pubmed/11280850
http://dx.doi.org/10.1016/j.microrel.2015.10.006
http://dx.doi.org/10.1109/TR.2015.2499960
http://dx.doi.org/10.1016/j.ress.2016.02.006
http://dx.doi.org/10.3390/s17040696
http://www.ncbi.nlm.nih.gov/pubmed/28350341
http://dx.doi.org/10.1016/j.ymssp.2016.06.031
http://dx.doi.org/10.1016/j.ress.2015.07.017
http://dx.doi.org/10.1016/j.ress.2015.07.013
http://dx.doi.org/10.1016/j.ress.2016.05.006
http://dx.doi.org/10.1016/j.ress.2016.06.008
http://dx.doi.org/10.1016/j.ress.2015.09.006
http://dx.doi.org/10.1016/j.ress.2016.04.002
http://dx.doi.org/10.1016/j.ecolmodel.2015.06.028
http://dx.doi.org/10.1016/0004-3702(86)90072-X
http://dx.doi.org/10.1016/j.engappai.2010.06.002
http://dx.doi.org/10.1016/j.ress.2016.07.022
http://dx.doi.org/10.1088/1475-7516/2016/02/049
http://dx.doi.org/10.1016/j.ejor.2014.10.034
http://dx.doi.org/10.1016/j.ymssp.2016.04.019
http://dx.doi.org/10.1016/j.apenergy.2013.09.043
http://dx.doi.org/10.1016/j.ress.2015.02.007


Sensors 2017, 17, 2123 19 of 19

30. Tang, D.; Makis, V.; Jafari, L.; Yu, J. Optimal maintenance policy and residual life estimation for a slowly
degrading system subject to condition monitoring. Reliab. Eng. Syst. Saf. 2015, 134, 198–207. [CrossRef]

31. Cai, B.; Zhao, Y.; Liu, H.; Xie, M. A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for
PMSM Drive Systems. IEEE Trans. Power Electron. 2017, 32, 5590–5600. [CrossRef]

32. Yontay, P.; Pan, R. A computational Bayesian approach to dependency assessment in system reliability. Reliab.
Eng. Syst. Saf. 2016, 152, 104–114. [CrossRef]

33. Hu, J.; Zhang, L.; Ma, L.; Liang, W. An integrated safety prognosis model for complex system based on
dynamic Bayesian network and ant colony algorithm. Expert Syst. Appl. 2011, 38, 1431–1446. [CrossRef]

34. Li, N.; Feng, X.; Jimenez, R. Predicting rock burst hazard with incomplete data using Bayesian networks.
Tunn. Undergr. Space Technol. 2017, 61, 61–70. [CrossRef]

35. Kabir, G.; Demissie, G.; Sadiq, R.; Tesfamariam, S. Integrating failure prediction models for water mains:
Bayesian belief network based data fusion. Knowl.-Based Syst. 2015, 85, 159–169. [CrossRef]

36. Murphy, K. Bayesian Network Toolbox (BNT). Available online: http://www.cs.ubc.ca/murphyk/Software/
BNT/bnt.html (accessed on 11 August 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ress.2014.10.015
http://dx.doi.org/10.1109/TPEL.2016.2608842
http://dx.doi.org/10.1016/j.ress.2016.03.005
http://dx.doi.org/10.1016/j.eswa.2010.07.050
http://dx.doi.org/10.1016/j.tust.2016.09.010
http://dx.doi.org/10.1016/j.knosys.2015.05.002
http://www.cs.ubc.ca/murphyk/Software/BNT/bnt.html
http://www.cs.ubc.ca/murphyk/Software/BNT/bnt.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of BN Model 
	Lifetime Prediction Method of Multi-level System Based on BN 
	Prediction Model at Equipment Level 
	BN Prediction Modeling and Inference at System Level 

	Modeling, Simulation, and Verification of System-Level BN Prediction 
	Application Case 
	BN Lifetime Prediction of an Unmanned Solar-Powered System 
	Analysis Based on the Prediction Results 

	Conclusions 

