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Abstract: A high-precision angular accelerometer based on molecular–electronic transfer (MET)
technology with a high dynamic range and a low level of self-noise has been developed. Its difference
from the analogues is in the use of liquid (electrolyte) as the inertial mass and the use of negative
feedback based on the magnetohydrodynamic effect. This article reports on the development of the
angular molecular–electronic accelerometer with a magnetohydrodynamic cell for the creation of
negative feedback, and the optimization of electronics for the creation of a feedback signal. The main
characteristics of the angular accelerometer, such as amplitude–frequency characteristics, self-noise
and Allan variance were experimentally measured. The obtained output parameters were compared
to its analogues and it showed perspectives for further development in this field.

Keywords: angular accelerometer; rotational sensor; mechanical sensors; molecular–electronic
technology; negative feedback; magnetohydrodynamic effect

1. Introduction

At present, studies in the field of mass transfer and charge transfer phenomena in liquid–solid
microsystems [1–3] have made it possible to develop highly sensitive linear and angular transducers,
known also as a MET transducers. Based on these transducers, instruments have been developed
that are successfully used in seismology and seismic surveying, as well as in monitoring various
engineering structures in seismically hazardous areas (dams, high-rise buildings, etc.) and security
systems [4–7]. Numerous experimental data and the results of the theoretical modeling of the
molecular–electronic transfer processes [8,9] show the possibility of promising sensor development.
Potentially, the technology is applicable in inertial navigation, which imposes the highest demands on
the response accuracy and parameter stability.

Figure 1 shows the MET principle. When a potential difference is applied between the electrodes
(one electrode (anode) is held at the potential of ~300 mV higher than the second electrode (cathode)
in the same pair), electrochemical reactions begin to occur on them and an electric current begins to
flow through the electrodes, due to the diffusion of ions between the electrodes. Since the reaction
rate on the electrodes is quite large in comparison to the rate of volumetric ion transport, the current
through the electrodes is determined by the diffusion of ions between the electrodes. When an external
mechanical signal is applied, the electrolyte flows through the electrode cell, creating an additional ion
flux and, as a result, changes the electric current through the electrodes. Variations of the electrical
current are the output of the transducer. The input stage of the signal conditioning electronics converts
the difference between the two cathodic currents into voltage.
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Figure 1. Molecular electronic transducer. 1: dielectric pipe; 2: electrolyte; 3: porous ceramic spacers; 
4: anodes; 5: cathodes; a: external mechanical acceleration; vout: output signal. 

The design of the angular motion sensor based on MET technology is shown in Figure 2. The 
molecular electronic transducer is placed into a toroidal dielectric channel completely filled with 
electrolyte, which provides the sensor sensitivity to rotational movements in the toroid plane. 
Assuming that the electrolyte is incompressible and homogeneous, this sensor can detect only 
rotational motions. To compensate temperature-related volume changes [10], the sensors have 
expansive volume. 

 
Figure 2. Molecular–electronic angular motion sensor design: A: anodes; K: cathodes of the sensor 
electrode transducer. 

The use of negative feedback is known to improve and stabilize the output parameters of the 
sensor, such as an increase in frequency and dynamic ranges, as well as a decrease in temperature 
dependence and non-linear distortion [11]. As it is known, the gain of a circuit with negative feedback 
with the transmission coefficient b is equal to 

Kf = K/(1 + Kb), (1) 

where K is the feedforward signal converting factor. 

Figure 1. Molecular electronic transducer. 1: dielectric pipe; 2: electrolyte; 3: porous ceramic spacers;
4: anodes; 5: cathodes; a: external mechanical acceleration; vout: output signal.

The design of the angular motion sensor based on MET technology is shown in Figure 2.
The molecular electronic transducer is placed into a toroidal dielectric channel completely filled
with electrolyte, which provides the sensor sensitivity to rotational movements in the toroid plane.
Assuming that the electrolyte is incompressible and homogeneous, this sensor can detect only rotational
motions. To compensate temperature-related volume changes [10], the sensors have expansive volume.
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The use of negative feedback is known to improve and stabilize the output parameters of the
sensor, such as an increase in frequency and dynamic ranges, as well as a decrease in temperature
dependence and non-linear distortion [11]. As it is known, the gain of a circuit with negative feedback
with the transmission coefficient b is equal to

Kf = K/(1 + Kb), (1)
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where K is the feedforward signal converting factor.
In the case of strong feedback Kb >> 1, Formula (1) turns into

Kf = 1/b (2)

That is, the properties of the amplifier (gain and frequency response) are determined solely by the
parameters of the feedback loop. Thus, the use of feedback stabilizes the response over temperature
changes and decreases nonlinear effects.

2. Method of Forming Feedback

Since the channel of the angular accelerometer is closed, the creation of the electromechanical
feedback usually used in the linear MET sensors [12] is impossible. Therefore, we decided to use a
feedback based on the magnetohydrodynamic (MHD) effect. Also, this method makes it possible to
form a negative feedback in electrochemical accelerometers in the frequency range from 0 Hz.

A similar method of feedback formation was used for the angular seismic sensor R-2 [13].
The R-2 sensor produces an angular velocity proportional output in the 0.033–50 Hz frequency range.
The purpose of the described development is to design a Direct Current (DC) angular accelerometer.
Its main field of application is inertial navigation and object orientation.

The industrial design of the electrochemical angular accelerometer is shown in Figure 3.
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transducer electrode cell; 4: flat MHD electrodes; 5: permanent magnets.

To create a feedback loop in the toroidal channel (1); two MHD electrode cells (2) have been
formed symmetrically with respect to the transducer cell (3); Each of them consists of two flat electrodes
(4) placed on the opposite walls and two permanent magnets (5) placed on the upper and lower walls.
With this arrangement, the directions of the electrical and magnetic fields in the cell are meant to create
a fluid flow in the direction of channel. To increase the magnetic field, the height of the channel was
narrowed. In addition, the MHD electrodes are connected in such a way that the flux formed in the
MHD cells is directed in the opposite direction to the flow created by the mechanical signal.

Figure 4 shows the electronic circuit for forming the voltage between the electrodes (B) and the
electronic circuit for forming output signal (A). To avoid leakage of the electric current from the MHD
cell to the transducer cell, a special feedback circuit shown in Figure 5 has been created. It consists of
two voltage-controlled sources of current connected to the electrodes of the MHD cell and running
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in opposite phases. At the moment when the first source pushes the current into the first electrode
of the MHD cell, the second source pulls the same current out of the second electrode of the MHD
cell. As a result, there is no current leakage into the signal converting MET cell. The input of the
current sources is fed by the output signal from the electronic cascade used to convert sensor signal
current into voltage [8]. With this method of feedback generation, the feedback transfer coefficient b is
considered to be frequency independent.

The entire electronic circuitry is powered by 8–12 V and the power consumption is 12 mA.
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3. Experimental Output Characteristics

To study the characteristics of the angular accelerometer with negative MHD feedback,
an experimental sample was manufactured (Figure 6). Its external diameter was 50 mm, the sectional
dimensions of the toroidal channel were 3 × 6 mm and 1 × 6 mm in the MHD cells. It was filled with
aqueous solution of LiI electrolyte with the addition of I2 in the concentration of 0.1 mol/L.
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Figure 6. Photo of the molecular–electronic angular accelerometer with negative MHD feedback
(without electronic plate).

The magnets were made of NdFeB (neodymium-iron-boron). They were made in the form of
sectors repeating the shape of the channel between them to form the maximum magnetic field in the
MHD cell.

To calculate the current source circuit parameters, the volt-ampere (I-V) characteristics of the
MHD cells were measured (Figure 7). Proceeding from the fact that the working voltage between
the electrodes was 300 mV, then by extrapolating the curves it could be obtained that the saturation
current was ~20 mA. Based on the obtained current–voltage characteristics, resistors of I-Vthe current
generators of the circuit were R = 47 kΩ and r = 220 Ω. Thus, at a supply voltage of 8 V (maximum
possible with the power scheme used) to the input of the current generator, the current generated per
each MHD cell was ~18 mA. In this circuitry, the voltage between MHD electrodes did not exceed
300 mV. As a result, even at the highest feedback current the cell operated at voltages well below the
water hydrolyze threshold, avoiding damage to the MHD cell.
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The produced experimental sample was calibrated in an open loop regime using two different
methods. First, the output voltage of the voltage to current converter (Figure 1) was measured relative
to the input angular acceleration produced by an angular shake table. Second, the same output was
measured relative to the input of the feedback circuitry. The results are presented in Figure 8 and
proved equivalence with accuracy to coefficient of the inputs produced by actual angular acceleration
and by the current passing through the MHD cell.
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The lowest frequency is limited by the capability of the calibration stand. However, the frequency
response of the molecular–electronic transducer in the low-frequency region (up to 0 Hz) is known to
be flat [14]. Normally, the electronic circuit comprises several cascades of amplification and filtering
for the predetermined frequency band and some thermal compensation chains [15]. Amplification
cascades of electronics and the feedback loop were set up in such a way that the amplitude response
was flat in the range of 0–10 Hz. Also, when tuning the electronics, it was taken into account that the
hodograph should be stable. Thus, the system must have the ability to return to a state of equilibrium
after the extinction of the external forces that brought it out of this state. This is 8 V/rad/s2 in this
range, while the non-uniformity characteristic is ±5% (Figure 9).
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Figure 9. The amplitude frequency response for molecular–electronic angular accelerometer with
negative MHD feedback.

The self-noise of the molecular–electronic angular accelerometer was measured as in [8]. To do
so, the accelerometer was placed in a low-noise room with the sensitivity axis positioned vertically.
The recording was conducted by a 24-bit analogue digital converter with a sampling rate of 40 Hz
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for ~10 h. The power spectral density of the signal in units of the applied acceleration is shown in
Figure 10. The self-noise was ~−105 dB from the level 1 rad/s2√Hz (3.6 × 10−5 rad/s2).Sensors 2018, 18, 245  7 of 10 
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Figure 10. Power spectral density of molecular electronic angular accelerometer with negative MHD
feedback in units of input angular acceleration in decibels relating to 1 rad/s2√Hz.

One of the important parameters of sensors for inertial navigation systems is zero bias instability,
which is characterized by a minimum of the Allan function [16]. To calculate the Allan function,
the signal recording is divided into a different number of parts characterized by the same averaging
time T. The variation for each particular averaging time is determined by the formula:

σ2(T) =
1

2(n− 1) ∑(Ωk+1(T)−Ωk(T)), (3)

σ(T) denotes the Allan function, Ω(T) denotes the averaged value of the recorded sensor signal on the
k-th part of the partition, n denotes the number of parts of the partition.

Also, the Allan variance based on the received recording has been constructed in Figure 11.
The minimum of the Allan function is at the averaging time of 150 s and equals 7 × 10−7 rad/s2.
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4. Conclusions

This paper presents measurements of the main characteristics of the industrial sample of a
molecular–electronic accelerometer with MHD feedback. Table 1 compares the obtained characteristics
with the world analogues [17,18].
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Table 1. Comparison of the obtained main characteristics with the analogues.

Characteristic MET Angular
Accelerometer

ASB, Jewell
Instruments

SR-100FR, Columbia
Research Laboratories

Scale Factor (V/rad/s2) 8 0.025 1–50
Self-noise (rad/s2) 3.6 × 10−5 5 × 10−3 2 × 10−3

Bias (rad/sec2) 7 × 10−7 - -
Bandwidth (−3db), Hz 10 (100 as optional) 70 10
Input Range, (rad/sec2) ±1 ±200 ±5

Input Current, (mA, Max.) 12 10 20

The analysis of the results and characteristics of the devices chosen for comparison shows that the
developed MET angular molecular–electronic accelerometers successfully compete with other angular
accelerometer types in self-noise, zero bias stability, bandwidth and power consumption. The above
data demonstrate that the developed accelerometer with MHD feedback based on molecular–electronic
technology can be used to achieve accuracy of navigation parameter estimation acceptable in a broad
range of applications. The analogues used for comparison [17,18] are used in particular in stabilization
systems for structures, platforms, antennas, ships and autopilot systems. From earlier theoretical and
practical work [14,19] it is known that the frequency range can be changed by changing the geometric
parameters of the transducer cell. In particular, to expand the frequency range, it is necessary to reduce
the distance between the electrodes. These methods are already used in the manufacture of MET linear
accelerometers and seismometers.

To check that assumption, tests were carried out on a special high-precision rotary table. Some of
the obtained results are presented in Appendix A.

Acknowledgments: The results presented in this paper were partly obtained under the projects supported by the
Russian Ministry of Education and Science—Project ID 3.3197.2017/Π
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Appendix

The sample of accelerometer tests were carried out on a high-precision rotary table Actidyn ST
1144c [20]. The accelerometer was placed on a platform rotating around the vertical axis, so that the
sensitivity axis was also directed vertically. A signal was recorded with four different parameters of
the platform rotation (Figure A1):

1. An increase in speed from 0 to 5 deg/s in a clockwise direction with an acceleration of 0.1 deg/s2,
rotation at a rate of 5 deg/s, subsequent deceleration with a negative acceleration of −0.1 deg/s2.

2. An increase in speed from 0 to 5 deg/s counterclockwise with an acceleration of 0.1 deg/s2,
rotation at a rate of 5 deg/s, subsequent deceleration with a negative acceleration of −0.1 deg/s2.

3. An increase in speed from 0 to 5 deg/s in a clockwise direction with an acceleration of 0.5 deg/s2,
rotation at a rate of 5 deg/s, followed by a deceleration with a negative acceleration of −0.5 deg/s2.

4. An increase in speed from 0 to 5 deg/s counterclockwise with an acceleration of 0.5 deg/s2,
rotation at a rate of 5 deg/s, subsequent deceleration with a negative acceleration of −0.5 deg/s2.
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