Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer’s Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Screen-Printed Carbon Electrodes (SPCEs)
2.3. Electrochemical Measurments
2.4. Preparation and Characterization of Antibody Fragments
Preparation of F(ab’)2 Fragments
2.5. Surface Modification of SPCE Electrode
3. Results and Discussion
3.1. Characterization Using Non-Reducing Electrophoresis (SDS-PAGE)
Characterization of F(ab’)2 Fragments
3.2. Electrochemical Characterization of the Modified Electrode
3.3. Scan Rate Dependence of Peak Current
3.4. Quantitative Detection of CLU Using Electrochemical Measurement
3.5. Selectivity and Validity of the Sensor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ahuja, H.S.; Tenniswood, M.; Lockshin, R.; Zakeri, Z.F. Expression of clusterin in cell differentiation and cell death. Biochem. Cell Biol. 1994, 72, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Poon, S.; Easterbrook-Smith, S.B.; Rybchyn, M.S.; Carver, J.A.; Wilson, M.R. Clusterin is an ATP−independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 2000, 39, 15953–15960. [Google Scholar] [CrossRef] [PubMed]
- Garden, G.A.; Bothwell, M.; Rubel, E.W. Lack of correspondence between mrna expression for a putative cell death molecule (SGP-2) and neuronal cell death in the central nervous system. Dev. Neurobiol. 1991, 22, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Mackness, B.; Hunt, R.; Durrington, P.N.; Mackness, M.I. Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein ai in the human artery wall with the progression of atherosclerosis. Atertioscler. Thromb. Vasc. Biol. 1997, 17, 1233–1238. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Poulakou, M.; Stathatos, M.; Chalikia, A.; Melidonis, A.; Gonos, E.S. Serum levels of the senescence biomarker clusterin/apolipoprotein j increase significantly in diabetes type ii and during development of coronary heart disease or at myocardial infarction. Exp. Gerontol. 2002, 37, 1175–1187. [Google Scholar] [CrossRef]
- Antonelou, M.H.; Kriebardis, A.G.; Stamoulis, K.E.; Trougakos, I.P.; Papassideri, I.S. Apolipoprotein j/clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence. PLoS ONE 2011, 6, e26032. [Google Scholar] [CrossRef] [PubMed]
- Thambisetty, M.; Simmons, A.; Velayudhan, L.; Hye, A.; Campbell, J.; Zhang, Y.; Wahlund, L.-O.; Westman, E.; Kinsey, A.; Güntert, A. Association of plasma clusterin concentration with severity, pathology, and progression in alzheimer disease. Arch. Gen. Psychiatry 2010, 67, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thambisetty, M.; An, Y.; Kinsey, A.; Koka, D.; Saleem, M.; Gϋntert, A.; Kraut, M.; Ferrucci, L.; Davatzikos, C.; Lovestone, S. Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment. Neuroimage 2012, 59, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Charnay, Y.; Imhof, A.; Vallet, P.G.; Kovari, E.; Bouras, C.; Giannakopoulos, P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res. Bull. 2012, 88, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Vanmechelen, E.; Hampel, H. Csf total tau, aβ42 and phosphorylated tau protein as biomarkers for alzheimer’s disease. Mol. Neurobiol. 2001, 24, 87. [Google Scholar] [CrossRef]
- Herukka, S.-K.; Hallikainen, M.; Soininen, H.; Pirttilä, T. Csf aβ42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology 2005, 64, 1294–1297. [Google Scholar] [CrossRef] [PubMed]
- Wallin, Å.; Blennow, K.; Andreasen, N.; Minthon, L. Csf biomarkers for alzheimer’s disease: Levels of β-amyloid, tau, phosphorylated tau relate to clinical symptoms and survival. Dement. Geriatr. Cogn. Disord. 2006, 21, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, M.; Lovati, C.; Bertora, P.; Mailland, E.; Galimberti, D.; Scarpini, E.; Quadri, P.; Forloni, G.; Mariani, C. Plasma levels of beta-amyloid (1–42) in alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2006, 27, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.H.; Raju, S.; Hyman, B.T.; Frosch, M.P.; Irizarry, M.C. Plasma aβ levels do not reflect brain aβ levels. J. Neuropathol. Exp. Neurol. 2007, 66, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in alzheimer disease. Nat. Rev. Neurol. 2010, 6, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Le Couteur, D.G.; Hunter, S.; Brayne, C. Solanezumab and the amyloid hypothesis for alzheimer’s disease. Br. Med. J. 2016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, T.; Lu, H.; Yin, W.; Lin, B.; Fan, W.; Zhang, X.; Fernandez-Funez, P. Lessons from anti-amyloid-β immunotherapies in alzheimer disease: Aiming at a moving target. Neurodegener. Dis. 2017, 17, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Santoso, M.R.; Rezaee, F.; Aghaverdi, H.; Mahmoudi, M.; Perry, G. Advances in alzheimer’s diagnosis and therapy: The implications of nanotechnology. Trends Biotechnol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.K.; Alkon, D.L. Alzheimer’s disease cerebrospinal fluid and neuroimaging biomarkers: Diagnostic accuracy and relationship to drug efficacy. J. Alzheimer’s Dis. 2015, 46, 817–836. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s, A. 2015 alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2015, 11, 332. [Google Scholar]
- Schneider, P.; Hampel, H.; Buerger, K. Biological marker candidates of alzheimer’s disease in blood, plasma, and serum. CNS Neurosci. Ther. 2009, 15, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Bertram, L.; McQueen, M.B.; Mullin, K.; Blacker, D.; Tanzi, R.E. Systematic meta-analyses of alzheimer disease genetic association studies: The alzgene database. Nat. Genet. 2007, 39, 17. [Google Scholar] [CrossRef] [PubMed]
- Aulitzky, W.K.; Schlegel, P.N.; Wu, D.; Cheng, C.Y.; Chen, C.-L.C.; Li, P.S.; Goldstein, M.; Reidenberg, M.; Bardin, C.W. Measurement of urinary clusterin as an index of nephrotoxicity. Proc. Soc. Exp. Biol. Med. 1992, 199, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.; Villar, E.; Torres-Munoz, J.; Tellez, T.; Morell, M.; Petito, C.K. Overexpression of clusterin in human breast carcinoma. Am. J. Pathol. 2000, 157, 393–399. [Google Scholar] [CrossRef]
- Wellmann, A.; Thieblemont, C.; Pittaluga, S.; Sakai, A.; Jaffe, E.S.; Siebert, P.; Raffeld, M. Detection of differentially expressed genes in lymphomas using cdna arrays: Identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood 2000, 96, 398–404. [Google Scholar] [PubMed]
- Lau, S.; Sham, J.; Xie, D.; Tzang, C.; Tang, D.; Ma, N.; Hu, L.; Wang, Y.; Wen, J.; Xiao, G. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene 2006, 25, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Sakai, Y.; Nakamura, A. Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol. Pathol. 2007, 35, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, F.; Perentes, E.; Cordier, A.; Roth, D.R.; Verdes, P.; Grenet, O.; Pantano, S.; Moulin, P.; Wahl, D.; Mahl, A. Urinary clusterin, cystatin c,[beta] 2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 2010, 28, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Pellegrini, K.L.; Chung, J.; Wanigasuriya, K.; Jayawardene, I.; Lee, K.; Lee, H.; Vaidya, V.S.; Weissleder, R. Nanoparticle detection of urinary markers for point-of-care diagnosis of kidney injury. PLoS ONE 2015, 10, e0133417. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.P.; Lee, B.Y.; Hong, S.; Sim, S.J. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 2008, 381, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Buijs, J.A. Immunoglobulins and Their Fragments on Solid Surfaces. Ph.D. Thesis, Landbouwuniversiteit Wageningen, Wageningen, The Netherlands, 1995. [Google Scholar]
- Wąsowicz, M.; Milner, M.; Radecka, D.; Grzelak, K.; Radecka, H. Immunosensor incorporating anti-his (c-term) igg f (ab’) fragments attached to gold nanorods for detection of his-tagged proteins in culture medium. Sensors 2010, 10, 5409–5424. [Google Scholar] [CrossRef] [PubMed]
- Wąsowicz, M.; Viswanathan, S.; Dvornyk, A.; Grzelak, K.; Kłudkiewicz, B.; Radecka, H. Comparison of electrochemical immunosensors based on gold nano materials and immunoblot techniques for detection of histidine-tagged proteins in culture medium. Biosens. Bioelectron. 2008, 24, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Radecki, J.; Radecka, H. An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors 2014, 14, 15714–15728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarocka, U.; Wąsowicz, M.; Radecka, H.; Malinowski, T.; Michalczuk, L.; Radecki, J. Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis 2011, 23, 2197–2204. [Google Scholar] [CrossRef]
- Galik, M.; O'Mahony, A.M.; Wang, J. Cyclic and square-wave voltammetric signatures of nitro-containing explosives. Electroanalysis 2011, 23, 1193–1204. [Google Scholar] [CrossRef]
- Hermanson, G.T. Preparation of liposome conjugates and derivatives. In Bioconjugate Techniques, 2nd ed.; Academic Press: San Diego, CA, USA, 1996; pp. 858–899. [Google Scholar]
- Vijayendran, R.A.; Leckband, D.E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 2001, 73, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Babacan, S.; Pivarnik, P.; Letcher, S.; Rand, A. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron. 2000, 15, 615–621. [Google Scholar] [CrossRef]
- Lu, B.; Xie, J.; Lu, C.; Wu, C.; Wei, Y. Oriented immobilization of fab'fragments on silica surfaces. Anal. Chem. 1995, 67, 83–87. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, J.; Zhang, X.; Sun, C.; Wang, Y.; Shen, J. Chemically modified electrode via layer-by-layer deposition of glucose oxidase (god) and polycation-bearing os complex. Thin Solid Films 1998, 327, 730–733. [Google Scholar] [CrossRef]
- Bonroy, K.; Frederix, F.; Reekmans, G.; Dewolf, E.; De Palma, R.; Borghs, G.; Declerck, P.; Goddeeris, B. Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J. Immunol. Methods 2006, 312, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Lin, C.-W.; Wei, K.-C.; Huang, C.-Y.; Hsu, P.-H.; Liu, H.-L.; Lu, Y.-J.; Lin, S.-C.; Yang, H.-W.; Ma, C.-C.M. Non-invasive screening for early alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci. Rep. 2016, 6, 25155. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Roychoudhury, A.; Srivastava, M.; Solanki, P.R.; Lee, D.W.; Lee, S.H.; Malhotra, B. A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. J. Mater. Chem. B 2013, 1, 4493–4503. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Yadav, P.; Ghosh, S.; Basu, T.; Mahapatro, A.K. Biosensing test-bed using electrochemically deposited reduced graphene oxide. ACS Appl. Mater. Interfaces 2016, 8, 24350–24360. [Google Scholar] [CrossRef] [PubMed]
- Suhail, A.; Pan, G.; Islam, K.; Jenkins, D.; Milne, A. Effective chemical treatment for high efficiency graphene/si schottky junction solar cells with a graphene back-contact structure. Adv. Mater. Lett. 2017, 8, 977–982. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49. [Google Scholar] [PubMed]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in quality in the analytical laboratory. Ii. Analytical method validation and quality assurance. TrAC Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Multiplexed electrochemical immunosensors for clinical biomarkers. Sensors 2017, 17, 965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, X. A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis c virus antibodies in serum. Biomicrofluidics 2016, 10, 024119. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Jha, S.K.; Chand, R.; Han, D.; Kim, Y.-S. Fast detection of triazine herbicides on a microfluidic chip using capillary electrophoresis pulse amperometric detection. Microelectron. Eng. 2012, 97, 391–395. [Google Scholar] [CrossRef]
- Rohani, A.; Sanghavi, B.J.; Salahi, A.; Liao, K.-T.; Chou, C.-F.; Swami, N.S. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale 2017, 9, 12124–12131. [Google Scholar] [CrossRef] [PubMed]
Detection Method | Organ | Disease | Reference |
---|---|---|---|
Radioimmunoassay | Kidney, urine | Nephrotoxicity | [23] |
IHC, ISH | Breast | Cancer | [24] |
IHC, WB | LN | ALCL | [25] |
IHC, cDNA-MA, WB/NB | Liver | Cancer | [26] |
RT-PCR, WB, IHC, ISH | Kidney, urine | Nephrotoxicity | [27] |
IHC, ISH | Kidney, blood, urine | Nephrotoxicity | [28] |
Plasma Sample | CLU Spiked (pg mL−1) | CLU Found (pg mL−1) | Recovery (%) |
---|---|---|---|
S#1 | 10 | 8.07, 6.17, 4.54 | 62.60 |
S#2 | 100 | 86.70, 77.85, 68.55 | 77.70 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.; Damiati, S.; Sethi, J.; Suhail, A.; Pan, G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer’s Biomarker. Sensors 2018, 18, 308. https://doi.org/10.3390/s18010308
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer’s Biomarker. Sensors. 2018; 18(1):308. https://doi.org/10.3390/s18010308
Chicago/Turabian StyleIslam, Kamrul, Samar Damiati, Jagriti Sethi, Ahmed Suhail, and Genhua Pan. 2018. "Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer’s Biomarker" Sensors 18, no. 1: 308. https://doi.org/10.3390/s18010308
APA StyleIslam, K., Damiati, S., Sethi, J., Suhail, A., & Pan, G. (2018). Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer’s Biomarker. Sensors, 18(1), 308. https://doi.org/10.3390/s18010308