An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer
Abstract
:1. Introduction
2. Experimental Details
2.1. Material
2.2. Instrumentation
2.3. Synthesis of CdTe/CdSe/ZnSe QDs
2.4. Fabrication of GCE/PPI/QDs/ChOx Biosensor
3. Results and Discussions
3.1. Characterization of CdTe/CdSe/ZnSe Quantum Dots
3.2. Electrochemical Impedance Spectroscopy (EIS) Analysis
3.3. Cyclic Voltammetric Behaviour of the GCE/PPI/QDs/ChOx Biosensor
3.4. Optimization Studies of the Designed Biosensor
3.5. Selectivity, Stability and Reproducibility of Cholesterol Biosensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rahman, M.M.; Asiri, A.M. One-step electrochemical detection of cholesterol in the presence of suitable K3Fe(CN)6/phosphate buffer mediator by an electrochemical approach. Talanta 2015, 140, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Ahmad, R.; Hwang, S.; Kim, S.; Al-Hajry, A.; Hahn, Y. Development of highly sensitive and selective cholesterol biosensor based on cholesterol oxidase co-immobilized with α-Fe2O3 micro-pine shaped hierarchical structures. Electrochim. Acta 2014, 135, 396–403. [Google Scholar] [CrossRef]
- Batra, N.; Tomar, M.; Gupta, V. ZnO-CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosens. Bioelectron. 2015, 67, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.B.; Khodadadian, M. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens. Bioelectron. 2014, 53, 472–478. [Google Scholar] [CrossRef] [PubMed]
- De Ferranti, S.D.; Rodday, A.M.; Parsons, S.K.; Cull, W.L.; O’connor, K.G.; Daniels, S.R.; Leslie, L.K. Cholesterol screening and treatment practices and preferences: A survey of United States pediatricians. J. Pediatr. 2017, 185, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Tığ, G.A.; Zeybek, D.K. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode. Chem. Papers 2016, 70, 695–705. [Google Scholar] [CrossRef]
- Sharma, D.; Lee, J.; Seo, J.; Shin, H. Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles. Sensors 2017, 17, 2128–2144. [Google Scholar] [CrossRef] [PubMed]
- Jesch, E.D.; Carr, T.P. Food ingredients that inhibit cholesterol absorption. Prev. Nutr. Food Sci. 2017, 22, 67–80. [Google Scholar] [PubMed]
- Norman, R.; Bradshaw, D.; Schneider, M.; Joubert, J.; Groenewald, P.; Lewin, S.; Steyn, K.; Vos, T.; Laubscher, R.; Nannan, N. A comparative risk assessment for South Africa in 2000: Towards promoting health and preventing disease. S. Afr. Med. J. 2007, 97, 637–641. [Google Scholar] [PubMed]
- Expert Panel on Detection. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2490. [Google Scholar] [CrossRef]
- Rosiek, A.; Leksowski, K. The risk factors and prevention of cardiovascular disease: The importance of electrocardiogram in the diagnosis and treatment of acute coronary syndrome. Ther. Clin. Risk Manag. 2016, 12, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, G.J.; Han, L.N.; Bai, Y.Y.; He, M.; Liu, H.B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar] [PubMed]
- Pabbi, M.; Mittal, S.K. An electrochemical algal biosensor based on silica coated ZnO quantum dots for selective determination of acephate. Anal. Methods 2017, 9, 1672–1680. [Google Scholar] [CrossRef]
- Qureshi, R.N.; Kaal, E.; Janssen, H.-G.; Schoenmakers, P.J.; Kok, W.T. Determination of cholesterol and triglycerides in serum lipoproteins using flow field-flow fractionation coupled to gas chromatography–mass spectrometry. Anal. Chim. Acta 2011, 706, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.B.; Talaz, O.; Kamaci, M.; Caliskan, A.; Caliskan, S. Novel photoelectrochemical biosensors for cholesterol biosensing by photonic “wiring” of cholesterol oxidase. J. Macromol. Sci. A 2013, 50, 1182–1193. [Google Scholar] [CrossRef] [Green Version]
- John, J.; Reghuwanshi, A.; Aravind, U.K.; Aravindakumar, C. Development and validation of a high-performance thin layer chromatography method for the determination of cholesterol concentration. J. Food. Drug. Anal. 2015, 23, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Mao, H.; Wang, C.; Xia, L.; Zhang, Y.; Ge, H.; Song, X.M. Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid—Graphene nanocomposite. RSC Adv. 2016, 6, 59487–59496. [Google Scholar] [CrossRef]
- Kim, K.-E.; Kim, T.G.; Sung, Y.-M. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J. Nanopart. Res. 2012, 14, 1–9. [Google Scholar] [CrossRef]
- Lian, K.; Zhang, P.; Wang, W.; Dai, T.; Li, L. Determination of total cholesterol in serum by gas chromatography-mass spectrometry. Asian J. Chem. 2014, 26, 2646–2648. [Google Scholar]
- Šabović, I.; De Toni, L.; Tescari, S.; De Filippis, V.; Menegazzo, M. Detection of cholesterol and its oxidized derivatives in human sperm membranes through a fast and reliable LC-MS method. J. Clin. Lab. Med. 2017, 2, 1–7. [Google Scholar]
- Zhang, X.; Wei, M.; Lv, B.; Liu, Y.; Liu, X.; Wei, W. Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core—Shell nanoparticles. RSC Adv. 2016, 6, 35001–35007. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Voeroes, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- John, S.V.; Rotherham, L.S.; Khati, M.; Mamba, B.B.; Arotiba, O.A. Towards HIV detection: Novel poly (propylene imine) dendrimer-streptavidin platform for electrochemical DNA and gp120 aptamer biosensors. Int. J. Electrochem. Sci. 2014, 9, 5425–5437. [Google Scholar]
- Shukla, S.K.; Mishra, A.K.; Mamba, B.B.; Arotiba, O.A. Zirconia-poly (propylene imine) dendrimer nanocomposite based electrochemical urea biosensor. Enzyme. Microb. Technol. 2014, 66, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Soda, N.; Arotiba, O. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development. Bioelectrochemistry 2017, 118, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Lata, K.; Dhull, V.; Hooda, V. Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in serum. Biochem. Res. Int. 2016, 2016, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xie, C.; Wang, J.; Meng, A.; Zhang, F. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sens. Actuat. B-Chem. 2015, 208, 505–511. [Google Scholar] [CrossRef]
- Dey, R.S.; Raj, C.R. Development of an amperometric cholesterol biosensor based on graphene—Pt nanoparticle hybrid material. J. Phys. Chem. C 2010, 114, 21427–21433. [Google Scholar] [CrossRef]
- Halder, A.; Zhang, M.; Chi, Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens. Bioelectron. 2017, 87, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.; Chandra, S.; Bahadur, D. Dendrimers based electrochemical biosensors. J. Biomed. Res. 2015, 2, 21–36. [Google Scholar]
- Arotiba, O.; Owino, J.; Songa, E.; Hendricks, N.; Waryo, T.; Jahed, N.; Baker, P.; Iwuoha, E. An electrochemical DNA biosensor developed on a nanocomposite platform of gold and poly (propyleneimine) dendrimer. Sensors 2008, 8, 6791–6809. [Google Scholar] [CrossRef] [PubMed]
- Arotiba, O.A.; Baker, P.G.; Mamba, B.B.; Iwuoha, E.I. The application of electrodeposited poly (propylene imine) dendrimer as an immobilisation layer in a simple electrochemical DNA biosensor. Int. J. Electrochem. Sci. 2011, 6, 673–683. [Google Scholar]
- Castillo, G.; Spinella, K.; Poturnayová, A.; Šnejdárková, M.; Mosiello, L.; Hianik, T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 2015, 52, 9–18. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; Soleymani, J.; Jafari, F.; de la Guardia, M. Dendrimer-encapsulated and cored metal nanoparticles for electrochemical nanobiosensing. TrAC Trends Anal. Chem. 2014, 53, 137–149. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Şenel, M. Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sens. Actuators B-Chem. 2018, 254, 93–101. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. A dendrimer supported electrochemical immunosensor for the detection of alpha-feto protein—A cancer biomarker. Electroanalysis 2018, 30, 31–37. [Google Scholar] [CrossRef]
- Tshikalaha, P.; Arotiba, O.A. Dendrimer supported electrochemical immunosensor for the detection of cholera toxin in water. Int. J. Electrochem. Sci. 2015, 10, 10083–10092. [Google Scholar]
- Zhiguo, G.; Shuping, Y.; Zaijun, L.; Xiulan, S.; Guangli, W.; Yinjun, F.; Junkang, L. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core—Shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochim. Acta 2011, 56, 9162–9167. [Google Scholar] [CrossRef]
- Butwong, N.; Zhou, L.; Moore, E.; Srijaranai, S.; Luong, J.H.; Glennon, J.D. A highly sensitive hydrogen peroxide biosensor based on hemoglobin immobilized on cadmium sulfide quantum dots/chitosan composite modified glassy carbon electrode. Electroanalysis 2014, 26, 2465–2473. [Google Scholar] [CrossRef]
- Zhang, C.; Lou, J.; Tu, W.; Bao, J.; Dai, Z. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. Analyst 2015, 140, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds. Anal. Biochem. 2015, 486, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Yerga, D.M.; García, M.B.; García, A.C. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Algar, W.R. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal. Chem. 2014, 86, 3195–3202. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Lisdat, F.; Parak, W.J.; Hickey, S.G.; Tu, L.; Sabir, N.; Bigall, N.C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 2013, 5, 2800–2814. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Zhao, G.-C. A novel photoelectrochemical biosensor for tyrosinase and thrombin detection. Sensors 2016, 16, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bao, L.; Lei, J.; Tu, W.; Ju, H. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots. Anal. Chim. Acta 2012, 744, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Cui, Y.; Li, X.; Liu, S.; Tang, Z. Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites. J. Electroanal. Chem. 2011, 656, 167–173. [Google Scholar] [CrossRef]
- Ncapayi, V.; Parani, S.; Songca, S.P.; Kodama, T.; Oluwafemi, O.S. Simple green synthesis of amino acid functionalised CdTe/CdSe/ZnSe core-multi shell with improved cell viability for cellular imaging. Mater. Lett. 2017, 189, 168–171. [Google Scholar] [CrossRef]
- Yu, W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of Cd nanocrystal. Chem. Mater. 2003, 125, 2854–2860. [Google Scholar] [CrossRef]
- Mohan, S.; Oluwafemi, O.S.; Songca, S.P.; Osibote, O.A.; George, S.C.; Kalarikkal, N.; Thomas, S. Facile synthesis of transparent and fluorescent epoxy-CdSe-CdS-ZnS core-multi shell polymer nanocomposite. New J. Chem. 2014, 38, 155–162. [Google Scholar] [CrossRef]
- Hai, L.; Nghia, N.; Nga, P.; Chinh, V.; Trang, N.; Hanh, V. Preparation and spectroscopic investigation of colloidal CdSe/CdS/ZnS core/multishell nanostructure. J. Exp. Nanosci. 2009, 4, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Talapin, D.V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Ma, X.; Hu, Y.; Hu, X.; Li, X.; Fan, J. Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism. Appl. Surf. Sci. 2014, 316, 54–61. [Google Scholar] [CrossRef]
- Jothi, N.N.; Joshi, A.G.; Vijay, R.J.; Muthuvinayagam, A.; Sagayaraj, P. Investigation on one-pot hydrothermal synthesis, structural and optical properties of ZnS quantum dots. Mater. Chem. Phys. 2013, 138, 186–191. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe) ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Xu, B.; Cai, B.; Liu, M.; Fan, H. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core–shell–shell quantum dots with high fluorescence strength and biocompatibility. Nanotechnology 2013, 24, 205601–205613. [Google Scholar] [CrossRef] [PubMed]
- Trindade, T.; O’Brien, P.; Pickett, N.L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater. 2001, 13, 3843–3858. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T.; Kagan, C. Colloidal synthesis of nanocrystals and nanocrystal supperlattice. IBM J. Res. Dev. 2001, 45, 47–56. [Google Scholar] [CrossRef]
- Smith, A.M.; Mohs, A.M.; Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Tang, F.; Li, L.; Li, H.; Huang, X.; Chen, D.; Meng, X.; Ren, J. Synthesis of aqueous CdTe/CdS/ZnS core/shell/shell quantum dots by a chemical aerosol flow method. Nanoscale Res. Lett. 2010, 5, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; An, X. Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission. RSC Adv. 2013, 3, 20959–20969. [Google Scholar] [CrossRef]
- Ndangili, P.M.; Arotiba, O.A.; Baker, P.G.; Iwuoha, E.I. A potential masking approach in the detection of dopamine on 3-mercaptopropionic acid capped ZnSe quantum dots modified gold electrode in the presence of interferences. J. Electroanal. Chem. 2010, 643, 77–81. [Google Scholar] [CrossRef]
- Arotiba, O.A.; Owino, J.H.; Baker, P.G.; Iwuoha, E.I. Electrochemical impedimetry of electrodeposited poly (propylene imine) dendrimer monolayer. J. Electroanal. Chem. 2010, 638, 287–292. [Google Scholar] [CrossRef]
- Volontè, F.; Pollegioni, L.; Molla, G.; Frattini, L.; Marinelli, F.; Piubelli, L. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli. BMC Biotechnol. 2010, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Ruecha, N.; Siangproh, W.; Chailapakul, O. A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system. Talanta 2011, 84, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, N.; Ahmad, R.; Kim, E.Y.; Khang, G.; Hahn, Y.B. Cholesterol biosensing based on highly immobilized ChOx on ZnO hollow nanospheres. RSC Adv. 2014, 4, 46049–46053. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Kim, S.H.; Umar, A.; Al-Hajry, A.; Hahn, Y.B. High performance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes. Electrochem. Commun. 2014, 38, 4–7. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.K.; Charan, C.; Saha, A.; Shahi, V.K.; Panda, A.B. An amperometric cholesterol biosensor with excellent sensitivity and limit of detection based on an enzyme-immobilized microtubular ZnO@ZnS heterostructure. J. Mater. Chem. A 2014, 2, 16997–17004. [Google Scholar] [CrossRef]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.; Vagin, M.Y. Cholesterol self-powered biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Li, X.-B.; Kim, J.; Lim, B.O.; Ahammad, A.S.; Lee, J.-J. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly (thionine) film. Sens. Actuators B 2014, 202, 536–542. [Google Scholar] [CrossRef]
Electrode Material | R1 (Ω) | R2 (Ω) | CPE (nF) | Ws (Ω) |
---|---|---|---|---|
Bare GCE | 124 | 450 | 136 | 326 |
GCE/QDs | 110 | 658 | 140 | 333 |
GCE/PPI | 101 | 61 | 43 | 314 |
GCE/PPI/QDs | 98 | 42 | 49 | 283 |
GCE/PPI/QDs/ChOx | 103 | 256 | 112 | 321 |
Electrode Material | Linear Range | Detection Limit | Sensitivity | Ref. |
---|---|---|---|---|
Nafion/ChOx/α-Fe2O3/Ag | 0.1–8.0 mM | 0.018 mM | 78.56 μA μM−1 cm−2 | [2] |
ChOx-SCCPPy-g-C3NH4+/GCE | 0.02–5.0 mM | 8.0 μM | 645.7 μA mM−1 cm−2 | [66] |
ZnO/ChOx | 0.2–15.6 mM | 0.4 mM | 99.8 μA mM−1 cm−2 | [67] |
Si/Ag/ZNT/ChOx | 1.0 μM–13.0 mM | 0.5 nM | 79.40 μA mM−1 cm−2 | [68] |
ChOx/PANI/PVP/Graphene | 50 μM–10 mM | 1.0 μM | 34.77 μA μM−1 cm−2 | [69] |
ChOx/Chit./ZnO@ZnS/GCE | 0.4–4.0 mM | 0.02 mM | 52.67 mA M−1 cm−2 | [70] |
ChOx-PB-modified SPE | 0.05–0.30 mM | 3.7 μM | 26.0 mA M−1 cm−2 | [71] |
GCE/PTH/ChOx/HRP | 0.025–0.125 mM | 6.3 μM | 0.18 μA μM−1 cm−2 | [72] |
GCE/PPI/QDs/ChOx | 0.1–10 mM | 0.075 mM | 111.16 μA mM−1 cm−2 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokwebo, K.V.; Oluwafemi, O.S.; Arotiba, O.A. An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer. Sensors 2018, 18, 3368. https://doi.org/10.3390/s18103368
Mokwebo KV, Oluwafemi OS, Arotiba OA. An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer. Sensors. 2018; 18(10):3368. https://doi.org/10.3390/s18103368
Chicago/Turabian StyleMokwebo, Kefilwe Vanessa, Oluwatobi Samuel Oluwafemi, and Omotayo Ademola Arotiba. 2018. "An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer" Sensors 18, no. 10: 3368. https://doi.org/10.3390/s18103368
APA StyleMokwebo, K. V., Oluwafemi, O. S., & Arotiba, O. A. (2018). An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots—Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer. Sensors, 18(10), 3368. https://doi.org/10.3390/s18103368