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Abstract: In the reconstruction of sparse signals in compressed sensing, the reconstruction algorithm
is required to reconstruct the sparsest form of signal. In order to minimize the objective function,
minimal norm algorithm and greedy pursuit algorithm are most commonly used. The minimum
L1 norm algorithm has very high reconstruction accuracy, but this convex optimization algorithm
cannot get the sparsest signal like the minimum L0 norm algorithm. However, because the L0 norm
method is a non-convex problem, it is difficult to get the global optimal solution and the amount of
calculation required is huge. In this paper, a new algorithm is proposed to approximate the smooth L0

norm from the approximate L2 norm. First we set up an approximation function model of the sparse
term, then the minimum value of the objective function is solved by the gradient projection, and the
weight of the function model of the sparse term in the objective function is adjusted adaptively by
the reconstruction error value to reconstruct the sparse signal more accurately. Compared with the
pseudo inverse of L2 norm and the L1 norm algorithm, this new algorithm has a lower reconstruction
error in one-dimensional sparse signal reconstruction. In simulation experiments of two-dimensional
image signal reconstruction, the new algorithm has shorter image reconstruction time and higher
image reconstruction accuracy compared with the usually used greedy algorithm and the minimum
norm algorithm.

Keywords: compressed sensing; convex optimization; L0 norm; gradient projection; sparse reconstruction

1. Introduction

Compressed sensing theory was put forward in 2006 by Donoho and Candès et al. The main
concept is that the sampling and compression process of the signal are completed by one measurement
process with a lesser number of measurements than Nyquist sampling, and then the original
signal is recovered directly from the measured signal by a corresponding reconstruction algorithm.
The transmission and storage costs of signals are saved, and the computational complexity is
reduced [1]. The greatest advantage of compressed sensing is that the amount of data obtained by
signal measuring is much smaller than that obtained by conventional sampling methods, which breaks
through the limitation of sampling frequency in the Nyquist sampling theorem and makes it possible
for one to compress and reconstruct high resolution signals. These advantages of compressed sensing
enable compressed sensing to be applied in many fields, for example, medical imaging, intelligent
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monitoring, infrared imaging, object recognition and a lot of military technology fields related to
signal sampling.

From the underdetermined sampling, compressed sensing (CS) can recover the sparse discrete
signal, which enables compressed sensing to have a wide range of applications [2]. A measured signal
y, y ∈ Cm, is obtained by the m× n measurement matrix Φ [1,3–5], from the original signal, x ∈ Cn,
m < n. The basic model is as follows:

y = Φx + e, (1)

where e is white Gaussian noise of variance δ2.
CS mainly includes three parts: the sparsity of the signal, the design of the measurement matrix and

the recovery algorithm [6]. This paper mainly discusses the recovery algorithm. Specially, for compressed
sensing signal reconstruction, there are some excellent algorithms based CS mentioned in [7,8] about
recovery of images and wireless image sensor networks.

The signal reconstruction algorithm of compressed sensing is equivalent to the inverse process of
signal measurement, that is, the reconstruction of the original signal x through the measurement vector
y. And in the process, because the number of equations is far less than the dimension of the original
signal, an underdetermined equation must be solved, it is very difficult for direct solving. Therefore,
the original signal must be sparse or can be expressed sparsely [4,6,9,10]. Sparse representation is
usually represented by the minimum L0 norm, which is as the regular expression term in Equation (1).
So new expression is obtained as follows:

x̂ = argmin
x
‖x‖0 s.t. Φx = y, (2)

where x̂ is an estimate of x.
‖x‖0 represents the L0 norm of x, which represents the total number of non-zero elements in x.

The non-convex optimization algorithm by the minimum L0 norm method can reconstruct the sparsest
expression of the signal, which requires less measurement times. However, it is usually very difficult to
solve the minimum L0 norm, which is a NP hard problem. For example, if there are K non-zero values
in the sparse signal with a length of N, and there are CK

N forms of permutation, which makes easy
for the algorithm to fall into a local optimum. To find the optimal permutation closest to the original
signal, the computational complexity is very high and it is very high time-consuming. However,
with the convex optimization algorithm of L1 or L2 norm is easy to get the global optimal value and
can be guaranteed theoretically, but it does not ensured to be the sparsest of reconstructed signals,
which is described in detail later in Figure 1. Moreover, the amount of computation is still large,
which is only suitable for small scale signals. For efficient sparse signal reconstruction, the L0 norm
problem is often circumvented. For example, the sub-optimal algorithm represented by the minimum
L1 norm method [11,12] and the greedy algorithm represented by the orthogonal matching pursuit
algorithm [13] are usually chosen to solve the problem, but the convergence and stability of the two
algorithms need further theoretical guarantees.

Instead of minimizing the L0 norm in Equation (2), adopting the L1 norm and Equation (2)
becomes:

x̂ = argmin
x
‖x‖1 s.t. Φx = y. (3)

The presence of the L1 term encourages small components of x to shrink to zero and promotes
sparse solutions [12,14]. Theoretically, Equations (2) and (3) are approximately equivalent, but Equation
(2) can obtain a sparser solution. Equation (3) is a convex optimal problem which can be solved by
linear programming. Actually, there is a certain error between the reconstructed signal and the original
signal. The residual value between them can be used to assess the approximation and accuracy of
reconstructed signal, so Equation (3) can usually be expressed as:

min
x
‖x‖1 s.t. ‖Φx− y‖2

2 ≤ ε, (4)
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and:
min

x
‖Φx− y‖2

2 s.t. ‖x‖1 ≤ t, (5)

where ε and t are real parameters with nonnegative values.
Equation (4) is a quadratically constrained linear program (QCLP) problem, whereas Equation (5)

is a quadratic program (QP) [15]. Both Equations (4) and (5) are convex optimization problem,
they easily reach the global optimal value, but they cannot guarantee the signal to be the sparsest.
In addition, because L1 norm cannot be differentiated at zero, the L1 norm is non-analytic at zero and
usually has a large amount of computation. For non-convex L0 norm optimization, the theoretical
guarantee of the uniqueness of the global optimal solution is very weak, but the L0 norm non-convex
reconstruction performs better than the L1 norm reconstruction at low sampling rates [16]. In order to
utilize the advantages of the L0 norm and L1 norm reconstruction model, simultaneously reducing
the number of measurements and the complexity of computation, the compromising minimum LP

(0 < P < 1) norm algorithm is proposed in [17]. That is:

min
x
‖Φx− y‖2

2 s.t. ‖x‖P ≤ t. (6)
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There are notably different properties of LP norms for different values of P. To illustrate this,
in Figure 1 the unit sphere, i.e., {x : ‖x‖P = 1}, is induced by each of these norms in R2. We use a LP

norm to measure the approximation error and our task is to find x̂ ∈ A that minimizes ‖x− x̂‖P [18].
As shown in Figure 1, to find the closest point in A to x by LP norm, we grow the LP sphere centered
on x until it intersects with A. There will be the point x̂ ∈ A that is closest to x for the corresponding LP

norms. Through observation, we can know that a larger P tends to spread out the error more evenly
among the two coefficients of two coordinate axes, while a smaller P leads to an error that is more
unevenly distributed and tends to be sparser [18].

The above analysis is also applicable to higher dimensional situations, which plays an important
role in CS theory. Reference [17] theoretically analyzes the feasibility of using LP norm instead of
L0 norm. When the Restricted Isometric Property (RIP) condition [4,19] of the measurement matrix
is weakened, the number of measurements needed for accurate reconstruction of the minimum LP

norm method is greatly reduced compared with the minimum L1 norm method. Reference [20] further
illustrates the necessary conditions of the parameter P and the constraint isometric constant (RIC) for
the accurate reconstruction.

The Iterative Reweighted algorithm is proposed in [21,22] to solve the minimum LP norm
problem. Some researchers use the method of dynamically shrinking parameter P (P asymptotically
approximating to zero) to solve the minimum LP norm problem in the iterative process of the algorithm,
which is described in detail in [23]. Other researchers fixed P to a value of 0 to 1, for example, in the
L1/2 regularization algorithm [24]. Based on this idea of approximate L0 norm minimization, this paper
proposes a new algorithm from L2 norm to approximate L0 norm by the method of gradient projection.
The non-analytic problem of the L1 norm at zero is avoided, and the advantages of the convex
optimization and non-convex optimization are also synthesized.
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The remainder of this paper is organized as follows: in Section 2, we present a theoretical analysis
of the new algorithm and introduce the basic algorithm framework. In Section 3, we introduce the
specific algorithm process of L2 norm to approximate L0 norm using the method of gradient projection.
In Section 4, simulation experiments are carried out to compare the new proposed algorithm with the
traditional classic algorithms for the reconstruction of one-dimensional and two-dimensional signals.
Finally, conclusions are drawn in Section 5.

2. Formulation from L2 Norm to Approximate L0 Norm

Our novel proposed algorithm approximates L0 norm from L2 norm based on our insight of the
relationship between the L2 norm and L0 norm. In the algorithm, we do not set specific parameter
P in LP norm. To approximate L0 norm, we first define an approximation function model. In the
iterative process of new algorithm, the L0 norm is gradually approximated by changing the value of a
modulation parameter in the function model. Thus, we can approximate the global optimal solution
and the sparsest solution with greater probability and efficiency.

In Equation (1), x is the original signal, but generally the original signal maybe is not necessarily
sparse. Therefore, the compressive sensing measurement and reconstruction of signal (Equations
(1)−(6)) cannot perform well, and the original signal x must be transformed into some sparse domain
i.e., x = Ψs, Ψ is a sparse transformation base, and s is a sparse representation signal. Thus y = Θs,
Θ = ΦΨ, Θ is called the sensing matrix.

To approximate L0 norm, an approximation function model is first defined as:

fσ(s) =
‖s‖2

2

‖s‖2
2 + σ

(
fσ(si) =

|si|2

|si|2 + σ

)
, (7)

where si is the ith element in the sparse signal s, and σ is the modulation parameter approximating the
L0 norm, fσ(si) is the function value of the element si in the sparse signal. The relation diagram of
function fσ(si) and si and σ is shown in Figure 2.
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As shown in Figure 2, when σ is large, fσ(si) is approximately the L2 norm of signal s when si

is close to zero, as shown in the black solid line. When the value of σ decreases gradually, the fσ(si)

gradually approaches the L0 norm of signal s, as shown in the middle curve of Figure 2a, that is:

fσ(si) ≈
{

1, |si| � σ

0, |si| � σ
. (8)

That is, when si is large, it is 1, and when si is small, it is 0. For the summation of fσ(si), we can get:

Fσ(s) =
n

∑
i=1

fσ(si), (9)

where n is the length of the sparse signal vector s. Obviously Equation (9) is equivalent to approximately
calculating the number of non-zero items of sparse vector s, which is equivalent to get the L0 norm
of sparse vector s when the σ sigma is very small, i.e., the optimization problem of the L0 norm can
be nearly as ‖s‖0 ≈ Fσ(s). As shown in Figure 2, since the functional curve approximating L0 norm
is smooth and derivable, it is also convenient to get the derivative of Fσ(s) and the gradient of the
objective function. Thus, minimizing the discontinuous function ‖s‖0 is transformed into minimizing
the continuous function Fσ(s). Thus, Equation (2) is transformed into:

x̂ = argmin
x

Fσ(s) s.t. Θs = y,

that is:
x̂ = argmin

x
Fσ(s) s.t. ‖Θs− y‖2

2 ≤ ε. (10)

For the inverse problem of signal reconstruction, the prior of sparse representation is as a
regularization term (the penalty function, Fσ(s)), so in order to obtain the optimal solution of
the signal reconstruction, the constrained optimization of the approximation signal item should
be considered. Based on the model Equation (10), Lagrangian method is applied to this constrained
optimization problem, we add the residual of the reconstructed signal, and the compressed sensing
signal reconstruction model with approximation L0 norm sparse representation is formed as:

argmin
s

{
J(s) = λFσ(s) +

1
2
‖Θs− y‖2

2

}
. (11)

In Equation (11) J(s) is the objective function we need to minimize. The goal of this algorithm
is to seek the estimated value of sparse vector s which minimizes the objective function, where λ
is the weight parameter used to adjust the weight of the sparse representation. Constant 1/2 of
the reconstructed signal residual term is convenient to calculate the derivation of objective function.
The sparse representation item in Equation (11) constrains the sparsity of signal s, and the reconstructed
signal residual term is the minimal difference between the reconstructed signal measurement value
and the actual measurement value, which can be considered as a global optimization for the whole
signal. In order to find the minimum value of the target function J(s), the parameter σ in Fσ(s) is
gradually reduced to make Fσ(s) approximate to the L0 norm, so it is necessary to reduce the value of
the parameter σ in the iterative process of the new proposed algorithm.

For general compress sensing signal reconstruction, the iterations of non-convex algorithm are
usually prone to trapping at suboptimal local minima, for the reason that there are always combinatorial
numbers of solutions for sparse signal. However, by applying Fσ(s) in Equation (11), the problem
of local minima can be implicitly avoided by solving it with a large initial σ beginning, such that the
penalty function Fσ(s) is initially nearly convex as |x|2 (see Figure 2). As the iterations proceed and the
details of the signal need to be reconstructed, the penalty function Fσ(s) becomes less convex when σ
has shrunk to the small, and is approximate to the L0 norm, but the risk of local minima and instability
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the solution falls into is ameliorated by the fact that the solution is already in the neighborhood of
a desirable attraction basin of the global optimum. Thus, the implicit noise level (or modeling error
between the reconstructed signal and the original signal) is now substantially less.

In this paper, the iterative gradient projection method is used to seek the minimum value of the
objective function J(s). The gradient ∆J(s) of the objective function is obtained by deriving it with
respect to s in (11):

∆J(s) = d =
(

ΘT(Θs− y)
)
+ 2λ

[
s1σ

(s1
2 + σ)

2 , . . . ,
snσ

(sn2 + σ)
2

]T

. (12)

Based on gradient projection, the basic algorithm framework of approximation minimum L0 norm
algorithm is as Algorithm 1.

Algorithm 1. Approximation Minimum L0 Norm.

1. Input: the sensor matrix Θ, the measured value y, and the sparse representation s of the original signal.

2. Initialization: ŝ(0) = Θ⊥y, Θ⊥ is the pseudoinverse matrix of Θ, Θ⊥ =
(

ΘTΘ
)−1

ΘT. Decreasing

sequence of parameter σ, σ =
[
σ0,ασ0,α2σ0, . . . ,αkσ0

]
. Weight parameter λ and gradient descent step

length γ.
3. The gradient projection iteration number k:

• σ = σk, ŝ = ŝ(k−1).
• The gradient descent direction:

d =
(

ΘT(Θs− y)
)
+ 2λ

[
s1σ

(s1
2 + σ)

2 , . . . ,
snσ

(sn2 + σ)
2

]T

.
• Update gradient direction: ŝ = ŝ− γd.
• Constrained orthogonal projection: ŝ = ŝ−Θ⊥(Θŝ− y).

• ŝ(k) = ŝ, k = k + 1.

4. If satisfy the stop iteration condition which is listed in Section 3, end the loop: the output s(k) is the final
sparse signal s.

It is worth noting that, in the process of this algorithm, the ‖Θs− y‖2
2 is getting smaller and

smaller with the iteration, and the decrease of σ makes the regular penalty term Fσ(s) more and more
close to the L0 norm. In order to reconstruct the original signal more accurately, we can make the
weight of the error ‖Θs− y‖2

2 increase gradually, and then the regular penalty term Fσ(s) is relatively
reduced. Therefore, the value of the weight lambda can be adaptively adjusted in the iterative process
according to the size of the error ‖Θs− y‖2

2, which can be set into a descending sequence that is
positively correlation with the value of the ‖Θs− y‖2

2.
From Figure 2a,b, it is known that with the gradual decrease of σ, Fσ(s) is increasingly approaching

the smooth approximation of the L0 norm, which gradually constrains the sparsity of the reconstructed
sparse signal and gradually approaches the global optimal solution in greater efficiency. Besides,
subsequent iterations of the new algorithm begin to reflect the correct coarse shape, σ can be gradually
reduced to allow the recovery of more detailed, fine structures. Thus the proposed algorithm reduces
the complexity of the algorithm and improves the accuracy of the signal reconstruction. It is more
conducive to signal reconstruction of compressed sensing. The next section will introduce the specific
implementation of gradient projection in the new approximating L0 norm algorithm in detail.
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3. The Gradient Projection Implementation in the Approximating L0 Norm Algorithm

In this section, we discuss GP (gradient projection) techniques for solving Equation (11). In order
to minimize the objective function in Equation (11), as in [25], we split the variable s into the positive
and negative parts. Therefore, we introduce vector u and v to get the following substitution:

s = u− v, u ≥ 0, v ≥ 0, (13)

where ui = (si)+ and vi = (−si)+ for all i = 1, 2, . . . , n, n is the length of the vector s. (s)+ is the
positive-part operator defined as (s)+ = max{0, s}, so Equation (11) can be rewritten as the following
bound-constrained quadratic program (BCQP):

arg min
s=u−v

{
J(s) = λFσ(u− v) +

1
2
‖Θ(u− v)− y‖2

2

}
, (14)

where, u ≥ 0, v ≥ 0. Further Equation (14) can be rewritten as:

argmin
z

{
J(z) = λFσ(z) + cTz +

1
2

zTAz
}

, (15)

where, z =

[
u
v

]
≥ 0, b = ΘTy, c =

[
−b
b

]
, and:

A =

[
ΘTΘ −ΘTΘ
ΘTΘ ΘTΘ

]
. (16)

In order to adjust the value of the sparsity term weight λ adaptively according to the error
‖Θs− y‖2

2, we set λ to:
λ = 0.1‖Θs− y‖∞. (17)

We can observe that the dimension of Equation (15) is twice that of the original problem (11):
s ∈ Rn, while z ∈ R2n. However, this increase in dimension has only a minor impact on matrix
operations, which can be performed more economically than its size suggests, by applying the
particular structure (16) [15]. For a given zT =

[
uTvT], we have:

zTAz = (u− v)TΘTΘ(u− v) = ‖Θ(u− v)‖2
2, (18)

indicating that using only a single multiplication by Θ can calculate the quantity. Since J(z) = λFσ(z) +
cTz + 1

2 zTAz, in the same way that evaluation of J(z) also needs only one multiplication by Θ.
In order to solve the objective function of Equation (15), we introduce the scalar parameter

µ(k) > 0 and update z from iterate z(k) to iterate z(k+1) as follows:

z(k+1) =
(

z(k) − µ(k)∇J(z(k))
)
+

. (19)

For each iteration of z(k), we search along the negative gradient direction −∇J
(

z(k)
)

, projecting
onto the non negative orthant and conducting a backtracking line search until a sufficient decrease is
attained in J

(
z(k)

)
. (Bertsekas [26] refers to this strategy as “Armijo rule along the projection arc.”)

There is an initial hypothesis that the technique would yield the exact smller value of J
(

z(k)
)

along
this direction if there are no new bounds to be encountered [15]. Specifically, the vector is defined as:

gi
(k) =

{ (
∇J
(

z(k)
))

i
, zi

(k) > 0 or
(
∇J
(

z(k)
))

i
< 0

0, otherwise.
,
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where i = 1, 2, . . . , 2n, 2n is the number of elements in z vector, and we initialize it by the
following equation.

µ0 = argmin
µ

J
(

z(k) − µg(k)
)

,

which can be computed by:

µ0 =

(
g(k)

)T
g(k)(

g(k)
)
ATg(k)

. (20)

To prevent the value of µ0 from being too large or too small, we usually limit µ0 to an interval
[µmin,µmax], where 0 < µmin < µmax. That is, µ0 = mid(µmin,µmax,µ0), the operator mid(a, b, c)
are defined as the middle value of three scalar arguments. When

(
g(k)

)
ATg(k) = 0, µ0 = µmax.

This method produces a more acceptable value of µ0 than the µ0 computed only by Equation (20)
along the direction −∇J

(
z(k)

)
.

The implementation steps of the gradient projection algorithm approximating the L0 norm are
shown in Algorithm 2.

Algorithm 2. The Gradient Projection Approximating the L0 Norm.

1. Initialization: As shown in Section 2, s(0) = Θ⊥y, m(0) =
(

s(0)
)
+

, n(0) =
(
−s(0)

)
+

, z(0) =

[
m(0)

n(0)

]
;

decreasing parameter of µ0, α ∈ (0, 1), and gradient descent step parameter, γ ∈
(

0, 1
2

)
; the number of

iterations k, k = 0.
2. Calculate the value of µ0 by Equation (20), and the value of µ0 is determined by mid(µmin,µmax,µ0).

3. The line search of backtracking: Choose the first number in the sequence µ0,βµ0,β2µ0, . . . as µ(k), such
that

J
((

z(k) − µ(k)∇J
(

z(k)
))

+

)
≤ J
(

z(k)
)
− γJ

(
z(k)

)T
(

z(k) −
(

z(k) − µ(k)∇J
(

z(k)
))

+

)
, (21)

and set z(k+1) =
(

z(k) − µ(k)∇J
(

z(k)
))

+
.

4. When the algorithm performs convergence and satisfies the termination condition

‖∇J
(

z(k)
)
‖

2

‖z(k)‖2
≤ tolA, (22)

the iteration is stopped, and z(k+1) is the approximate solution of z; otherwise set k = k + 1 and return to
2 and 3, until the termination condition is satisfied.

∇J
(

z(k)
)

is the gradient of J(z) at z(k) for the kth iteration, and z(k) is the value of z at the
kth iteration, tolA is a constant of lower limit and the default value is 0.01. As the new proposed
algorithm approximates to L0 norm minimization by the way of gradient projection, we refer to it as
L0GP algorithm.

4. Experimental Analysis and Discussion

In the section, to verify the effectiveness of the proposed L0GP algorithm, simulation experiments
are carried on by Matlab to reconstruct one-dimensional signal and two-dimensional image signals.
For one-dimensional signal reconstruction experiments, we compare our algorithm L0GP with the
classic L1-Regularized Least Squares (L1_LS) algorithm of L1 norm [11] such as Equation (3), and with
the algorithm of minimum L2 norm, since the new proposed L0GP algorithm iteratively approximate
L0 norm from L2 norm.
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MSE, the mean square error is used to measure the reconstruction accuracy of one dimensional
sparse signal. The definition is as follows:

MSE = (1/n)‖x̂− x‖2
2, (23)

where x̂ is the estimate of x.
In the experiments, we take full account of a typical signal reconstruction of CS (similar to [11]),

and our goal is to reconstruct an original sparse signal with a length of n and sparsity of k through a
measured signal of a length of m, in which m < n. The signal are measured in space domain by matrix
Φ, which is a Gauss random matrix of m× n size, and each element of the matrix is subject to a Gauss
distribution with a mean value of 0 and a variance of 1/m. In this experiment, n = 4096, m = 1024,
sparsity k = 220, which is the original sparse signal with a length of 4096, contains 220 non-zero values
of a random distribution of +1, 0 or −1, and the observation y is generated by Equation (1). In the
L0GP algorithm, the initial value of parameter λ is chosen as suggested in [11]

λ0 = 0.1‖ΦTy‖∞. (24)

Notice that for λ ≥ 0.1‖ΦTy‖∞, the unique minimum of Equation (3) is the zero vector [11,27],
and parameters are set as σ = 1, α = 0.5, β = 0.4, γ = 0.2. The values of these parameters are
the relatively optimal results of a large number of experiments after we tried different parameters
values. In the process of experiments adjusting parameters, we think the performance of our method
is not particularly sensitive to these choices, as long as these parameters are in the certain interval.

The minimum L0 norm solution is given by x̂ = ΦT
(

ΦΦT
)−1

y, that is, x̂ is the pseudo inverse solution
of the undetermined system y = Φx. The reconstruction results of one dimensional signal are shown
in Figure 3.Sensors 2018, 18, x FOR PEER REVIEW  9 of 15 
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As shown in Figure 3, the L2 norm pseudo-inverse method can hardly recover the original
signal, and the L1 norm algorithm is better than the pseudo-inverse method. The L0GP algorithm
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is superior to the L1 norm and L2 norm algorithms, and has smaller reconstruction error and higher
reconstruction accuracy.

Since both the original sparse signal and the measurement matrix are randomly generated,
the experiments’ results may be random. To assess these algorithms objectively, five experiments
have been done for sparse signal reconstruction with the same sparsity, and then the average of their
results is taken as the evaluation. This experiment takes n = 512, m = 128, and obtains the correlation
between the reconstruction error of the sparse signal and the signal sparsity K among the three different
methods, just as curve shown in the Figure 4.
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It is known from Figure 4, that the image reconstruction error of L0GP algorithm is less than
the L1 norm algorithm and the L2 norm pseudo-inverse algorithm in the case of different sparsity.
From the above two experiments, it can be seen that the new algorithm shows advantages from
convex optimization to non-convex optimization and performs very well for the reconstruction of one
dimensional sparse signals.

In order to further prove the good performance of L0GP algorithm, we furtherly do experiments on
the reconstruction of non-sparse two-dimensional image signals. These experiments compared the new
algorithm with other algorithms, such as Subspace Pursuit (SP) [28], Iterative Reweighted Least Squares
(IRLS) [29], Orthogonal Matching Pursuit (OMP) [13], Regularized Orthogonal Matching Pursuit
(ROMP) [30], Generalized Orthogonal Matching Pursuit (GOMP) [31], L1-Basis Pursuit (L1_BP) [12]
and L1_LS [11].

The size of the experimental image is 512× 512. If the two-dimensional image signal is simply
arranged in a single column signal of one dimension, the length of the signal would be extremely
large and also it will cost a lot of time for reconstruction. Therefore, our approach is to measure
and sample the column signal (512× 1) and the row signal (1× 512) of the image in space domain
respectively, which is equivalent to the reconstruction of the column signal or the row signal of
the image, so the reconstruction time of the whole image also demonstrates the efficiency of the
reconstruction algorithms. Since the two-dimensional image signal is a non-sparse signal in space
domain, we need to transform it into the sparse representation domain by wavelet [17]. In this paper,
we use discrete wavelet sparse transform (DWT) as the sparse basis, that is, the signal x are represented
as s in sparse domain, x = Ψs, Ψ is discrete wavelet basis.
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In order to evaluate the accuracy of the reconstructed image, the peak signal to noise ratio (PSNR)
and structural similarity (SSIM) are used as the evaluation index of the image, which are defined as
follows:

PSNR(dB) = 20 log
255

1
mn ∑i ∑j(x̂(i, j)− x(i, j))2 , (25)

SSIM =
(2µXµx̂ + c1)(2σxx̂ + c2)(
µ2

x + µ
2
x̂ + c1

)(
σ2

x + σ
2
x̂ + c2

) , (26)

where µX and µx̂ are the mean values of x and x̂ respectively. σ2
x, σ2

x̂ and σxx̂ are the variance or
covariance values of x and x̂ respectively. c1 and c2 are the constants that maintain stability, c1 = (k1L)2,
c2 = (k2L)2. L is the dynamic range of pixel values, k1 = 0.01, k2 = 0.03.

For the Mandrill image with a size of 512× 512 (n = 512× 512), we reconstruct the image by m
times sampling of the image, m = 28900 (m = 170× 170), and the sampling rate is about m/n = 1/9.
The results of the experiment are shown in Figure 5.
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Then, PSNR, SSIM and the time of image reconstruction for the different algorithms are statistically
obtained, and the results are shown in the following table.
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From Figure 5 and Table 1, we can find that under the sampling rate of 1/9, compared with the
suboptimal algorithm of the least norm and the greedy algorithm of the matching pursuit, the PSNR
and SSIM of reconstructed image by the new proposed algorithm have been improved to a certain
extent, and have higher image reconstruction accuracy. By zooming in the eye area of the mandrill
marked by red box, it can be seen that the details of the reconstructed image become clearer and the
picture quality is better, and the sharpness of image edge is well enhanced and the noise becomes less.

Table 1. The quantitative results of different algorithms.

Algorithm SP IRLS OMP ROMP GOMP L1_BP L1_LS L0GP

PSNR (dB) 20.08 22.04 21.67 21.18 21.89 21.87 22.03 22.40
SSIM 0.3440 0.5798 0.5141 0.4645 0.5697 0.5709 0.5794 0.6002

Time(s) 19.56 106.6 35.64 3.664 23.98 129.0 270.0 15.17

Because the time of the image reconstruction of the greedy algorithm of the matching pursuit class
depends on the number of iterations or the terminating conditions, although the image reconstruction
time of ROMP algorithm is very short, the image reconstruction accuracy of ROMP is much worse
than that of L0GP. Moreover, when the number of iterations reaches a certain number, the image
reconstruction accuracy of ROMP will not increase obviously with the number of iterations, instead,
it will consume a lot of time and computation. Owning to fact that the L0GP can quickly approximate
the global optimal solution with bigger probability, the reconstruction time is greatly reduced
much more than the traditional iterative least square algorithm (IRLS) and the L1 norm algorithm.
Comparing L0GP with the traditional iterative least square algorithm (IRLS) and L1 norm algorithm,
the reconstruction time is greatly shortened and the image reconstruction accuracy is improved, so the
advantage of this algorithm is evident.

In order to prove the validity and generality of the L0GP algorithm for various image
reconstruction, we choose six representative images, including nature scenes, persons, animals,
detailed and texture images, as shown in Figure 6. At the same sampling rate of 1/9, these images
were reconstructed. The quantitative results of the experiment are shown in Table 2.
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Analyzing the data in Table 2, the proposed algorithm has a good performance in the
reconstruction of various types of images, and has a good advantage over the other seven algorithms.
It shows that the new algorithm has a strong generality and adaptability for all kinds of images.

For the Fingerprint image with a size of 512× 512 (n = 512× 512), we increase the number of
sampling on the image and do the simulation experiment again. We reconstruct the image by m times
sampling of image, m = 65536 (m = 256× 256), i.e., the sampling rate is about m/n = 1/4. The results
of the experiment are shown in Figure 7.
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As shown in Figure 7 and Table 3, the texture and details of the Fingerprint image are well
reconstructed. Clearly, the proposed algorithm show better performance at reconstructing fine
structures. Moreover, the blur is obviously suppressed, meanwhile the new algorithm reconstructs
more rich information than the others, and the reconstructed image has the highest PSNR and SSIM in
the quantitative assessment indexes.
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Table 3. The quantitative results of different arithmetics.

Algorithm SP IRLS OMP ROMP GOMP L1_BP L1_LS L0GP

PSNR (dB) 20.90 29.34 28.25 27.51 29.04 29.32 29.35 29.53
SSIM 0.5022 0.9296 0.9042 0.9096 0.9230 0.9293 0.9296 0.9310

Time(s) 67.63 290.5 266.3 15.40 61.20 276.9 300.3 40.71

For the large amount of data like image and the reconstruction of high sampling rate signal,
the greedy algorithm of the OMP class has weak theoretical guarantee. From the data statistics above
Figure 7 and Table 3, the accuracy and time of the reconstruction cannot reach the ideal at the same time,
and the accurate reconstruction of the signal has some randomness. Therefore, the greedy algorithm
for OMP class often considers the time cost on the basis of satisfying the reconstruction accuracy,
and takes a compromise between the reconstruction time and the reconstruction accuracy. Similarly,
when the sampling rate is 1/4, different types of images are reconstructed, and statistical data are
obtained as shown in Table 4.

Based on the data statistics of the above experiments, with increasing signal sampling rate,
more information of the original signal is obtained from sampling, so the advantages of the new
proposed algorithm have been weakened slightly. Although the performance of the new proposed
L0GP algorithm is not the best in the reconstruction time, the reconstruction time is also very
short and the accuracy of the reconstructed signal is the highest among the eight algorithms.
The experimental simulation results also further verify the effectiveness of the algorithm theory
analysis in Sections 2 and 3.

Table 4. The quantitative results (PSNR/SSIM) of different algorithms for the different types of images.

Algorithm Peppers Bridge Lena Barbara Goldhill Mandrill

SP 26.07/0.6361 21.85/0.4598 26.70/0.6439 24.10/0.6830 25.89/0.6046 20.96/0.4385
IRLS 29.32/0.7860 25.86/0.8044 31.62/0.816 28.07/0.9084 30.46/0.8554 23.50/0.7396
OMP 29.28/0.7791 25.66/0.7810 31.53/0.8089 28.01/0.9005 30.27/0.8411 23.38/0.7165

ROMP 29.04/0.7709 25.19/0.7552 31.30/0.8001 27.63/0.8874 29.28/0.8212 22.98/0.6905
GOMP 29.30/0.7837 25.81/0.7983 31.58/0.8135 28.05/0.9062 30.40/0.8516 23.46/0.7330
L1_BP 29.31/0.785 25.85/0.8038 31.60/0.8150 28.06/0.9080 30.44/0.8547 23.48/0.7389
L1_LS 29.33/0.7866 25.89/0.8051 31.64/0.8164 28.09/0.9087 30.48/0.8559 23.53/0.7404
L0GP 29.43/0.7922 26.17/0.8145 31.90/0.8231 28.62/0.9152 30.78/0.8634 23.98/0.7551

5. Conclusions

In this paper, a gradient projection algorithm approximating the minimum L0 norm from the L2
norm is proposed to solve the optimization problem of sparse signal reconstruction. This new algorithm
integrates the characteristics of both convex optimization and non-convex optimization algorithm,
making the algorithm approximate the global optimal sparse solution with higher probability and higher
efficiency in the iterative process. The simulations are carried out on sparse signal reconstructions of
one-dimensional signal and two-dimensional no sparse signal. Compared with the convex optimization
algorithm of the minimum norm and the greedy algorithm of the matching tracking, the new proposed
algorithm performs better in the precision and speed of reconstructing signal. Especially under the low
sampling rate of sparse signal, the performance of L0GP is much outstanding. As a result, the required
number of measurements for sparse signal of compressed sensing would be less and the speed of
compressed sensing can be accelerated greatly.
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