Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures Using Passive Thermography
Abstract
:1. Introduction
2. Material and Method
2.1. Sample Description
2.2. Method for Loading
2.3. Passive Thermography Measurement System
2.4. Detection of Damage
2.5. Detection of Damage from Instantaneous Heating
3. Theory: Two-Dimensional Simulation for Heating at Damage Interface
4. Results: Comparison of Simulation to Measured Thermal Response
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
= | Lateral thermal diffusivity | |
= | Through-the-thickness thermal diffusivity | |
C | = | Transform matrix |
d | = | Depth of defect |
i | = | Transform matrix iterator |
= | Laplace transform of heat flux | |
= | Laplace transform of source heat flux (vector representation) | |
j | = | Transform matrix iterator |
K | = | Thermal conductivity of woven composite |
l | = | Overall thickness of flange + skin |
L | = | Slab width |
m | = | Cosine series coefficient index |
N | = | Number of evenly spaced locations along x |
s | = | Laplace complex frequency term |
V | = | Laplace transform of surface temperature vector (vector representation) |
= | Laplace transform of temperature | |
x | = | Lateral dimension |
z | = | Depth dimension |
References
- Rose, C.A.; Dávila, C.G.; Leone, F.A. Analysis Methods for Progressive Damage of Composite Structures; NASA/TM-2013-218024; NASA Langley Research Center: Hampton, VA, USA, 2013.
- Clay, S. How ready are progressive damage analysis tools? Compos. World 2017, 3, 8–10. [Google Scholar]
- Maimí, P.; Camanho, P.P.; Mayugo, J.A.; Davila, C.G. A Continuum Damage Model for Composite Laminates: Part II—Computational Implementation. Mech. Mater. 2007, 39, 909–919. [Google Scholar] [CrossRef]
- Maimí, P.; Camanho, P.P.; Mayugo, J.A.; Dávila, C.G. A Continuum Damage Model for Composite Laminates: Part I—Constitutive Model. Mech. Mater. 2007, 39, 897–908. [Google Scholar] [CrossRef]
- Dávila, C.G.; Camanho, P.P.; de Moura, M.F.S.F. Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination. In Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle, WA, USA, 16–19 April 2001. [Google Scholar]
- Turon, A.; Camanho, P.P.; Costa, J.; Dávila, C.G. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 2006, 38, 1072–1089. [Google Scholar] [CrossRef]
- O’Brien, T.K. Development of a Delamination Fatigue Methodology for Composite Rotorcraft Structure. In Proceedings of the NASA Aviation Safety Technical Conference, Denver, CO, USA, 21–23 October 2008. [Google Scholar]
- Krueger, R. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes; NASA/TM-2008-215123; NASA Langley Research Center: Hampton, VA, USA, 2008.
- Maldague, X. Introduction to NDT by active infrared thermography. Mater. Eval. 2002, 6, 1060–1073. [Google Scholar]
- Oswald-Tranta, B. Time-resolved evaluation of inductive pulse heating measurements. QIRT J. 2009, 6, 3–19. [Google Scholar] [CrossRef]
- Sakagami, T.; Kubo, S. Proposal of a new thermographical nondestructive testing technique using microwave heating. Proc. SPIE Int. Soc. Opt. Eng. 1999, 3700, 99–103. [Google Scholar]
- Dillenz, A.; Busse, G.; Wu, D. Ultrasound lock-in thermography: Feasibilities and limitations. In Proceedings of the Diagnostic Imaging Technologies and Industrial Applications, Munich, Germany, 14–15 June 1999. [Google Scholar] [CrossRef]
- Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A. Optimizing the Inversion Protocol to Determine the Geometry of Vertical Cracks from Lock-in Vibrothermography. J. Nondestruct. Eval. 2017, 36, 3. [Google Scholar] [CrossRef]
- Reifsnider, K.L.; Williams, R.S. Determination of fatigue-related heat emission in composite materials. Exp. Mech. 1974, 14, 479. [Google Scholar] [CrossRef]
- Henneke, E.G.; Reifsnider, K.L.; Stinchcomb, W.W. Thermography—An NDI Method for Damage Detection. J. Metals 1979, 39, 11–15. [Google Scholar] [CrossRef]
- La Rosa, G.; Risitano, A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. Fatigue 2000, 22, 65–73. [Google Scholar] [CrossRef]
- Toubal, L.; Karama, M.; Toubal, L. Damage evolution and infrared thermography in woven composite laminates under fatigue loading. Int. J. Fatigue 2006, 28, 1867–1872. [Google Scholar] [CrossRef]
- Zalameda, J.N.; Burke, E.R.; Parker, R.F.; Seebo, J.P.; Wright, C.W.; Bly, J.B. Thermography Inspection for Early Detection of Composite Damage in Structures during Fatigue Loading. In Proceedings of the International Society for Optics and Photonics, Baltimore, ML, USA, 23–27 April 2012. [Google Scholar]
- Bisagni, C.; Davila, C.G.; Rose, C.; Zalameda, J.N. Experimental Evaluation of Damage Progression in Postbuckled Single Stiffener Composite Specimens. In Proceedings of the American Society for Composites 29th Technical Conference, La Jolla, CA, USA, 8–10 September 2014. [Google Scholar]
- Young, M.L.; Gollerthan, S.; Baruj, A.; Frenzel, J.; Schmahl, W.W.; Eggeler, G. Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading. Acta Mater. 2013, 61, 5800–5806. [Google Scholar] [CrossRef]
- Harizi, W.; Chaki, S.; Bourse, G.; Ourak, M. Mechanical damage assessment of Glass Fiber-Reinforced Polymer composites using passive infrared thermography. Compos. Part B Eng. 2014, 59, 74–79. [Google Scholar] [CrossRef]
- Vergani, L.; Colombo, C.; Libonati, F. A review of thermographic techniques for damage investigation in composites. Frattura ed Integrità Strutturale 2014, 27, 1–12. [Google Scholar] [CrossRef]
- Crupi, V.; Guglielmino, G.; Risitano, F.; Tavilla, F. Experimental analyses of SFRP material under static and fatigue loading by means of thermographic and DIC techniques. Compos. Part B Eng. 2015, 77, 268–277. [Google Scholar] [CrossRef]
- Munoz, V.; Vales, B.; Perrin, M.; Pastor, M.L.; Welemane, H.; Cantarel, A.; Karama, M. Damage detection in CFRP by coupling acoustic emission and infrared thermography. Compos. Part B Eng. 2015, 85, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Montesano, J.; Bougherara, H.; Fawaz, Z. Using infrared thermography for assessing the fatigue behavior of polymer matrix composites. In Proceedings of the ECCM15—15th European Conference on Composite Materials, Venice, Italy, 24–28 July 2012. [Google Scholar]
- Roche, J.-M.; Balageas, D.; Lapeyronnie, B.; Passilly, F.; Mavel, A. Use of infrared thermography for in situ damage monitoring in woven composites. In Proceedings of the Photomechanics Conference 2013, Montpellier, France, 27–29 May 2013. [Google Scholar]
- Roche, J.-M.; Balageas, D.; Lamboul, B.; Bai, G.; Passilly, F.; Mavel, A.; Grail, G. Passive and active thermography for in situ damage monitoring in woven composites during mechanical testing. In Proceedings of the 39th Annual Review of Progress in Quantitative Nondestructive Evaluation, Baltimore, MD, USA, 21–26 July 2013; pp. 555–562. [Google Scholar]
- Zalameda, J.N.; Horne, M.R. Real Time Detection of Damage during Quasi-Static Loading of a Single Stringer Panel using Passive Thermography. Proc. SPIE 2018, 106610H. [Google Scholar] [CrossRef]
- Mathworks Perspective Control/Correction. Available online: https://www.mathworks.com/matlabcentral/fileexchange/35531-perspective-control--correction (accessed on 9 January 2018).
- Johnston, P.H.; Wright, C.W.; Zalameda, J.N.; Seebo, J.P. Ultrasonic monitoring of ply crack and delamination formation in composite tube under torsion load. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010. [Google Scholar]
- Winfree, W.P.; Zalameda, J.N.; Gregory, E.D. Application of the Quadrupole Method for Simulation of Passive Thermography. In Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Anaheim, CA, USA, 5 May 2017. [Google Scholar]
- Winfree, W.P.; Zalameda, J.N.; Cramer, K.E.; Howell, P.A. Numerical simulations of thermographic responses in composites. AIP Conf. Proc. 2016, 1706, 120012. [Google Scholar] [Green Version]
- Talbot, A. The Accurate Numerical Inversion of Laplace Transforms. IMA J. Appl. Math. 1979, 23, 97–120. [Google Scholar] [CrossRef]
- Winfree, W.P.; Heath, D.M. Thermal diffusivity imaging of aerospace materials and structures. In Proceedings of the Aerospace/Defense Sensing and Controls, Orlando, FL, USA, 13–17 April 1998; pp. 282–290. [Google Scholar]
- Dasgupta, A.; Agarwal, R.K. Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique. J. Compos. Mater. 1992, 26, 2736–2758. [Google Scholar] [CrossRef]
- Gowayed, Y.; Hwang, J. Thermal conductivity of composite materials made from plain weaves and 3-D. weaves. Compos. Eng. 1995, 5, 1177–1186. [Google Scholar] [CrossRef]
- Colombo, C.; Libonati, F.; Pezzani, F.; Salerno, A.; Vergani, L. Fatigue behavior of a GFRP laminate by thermographic measurements. Proc. Eng. 2011, 10, 3518–3527. [Google Scholar] [CrossRef]
- Montesano, J.; Fawaz, Z.; Bougherara, H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos. Struct. 2013, 97, 76–83. [Google Scholar] [CrossRef]
IR Camera | Specifications |
---|---|
Detectable Wavelength | 3–5 microns |
Detector Type | InSb |
Total Number of Detectors | 640 × 512 |
Temperature Resolution | <18 milli-Kelvin |
Pixel Pitch | 15 × 15 microns |
Frame Rate | 80 to 180 Hz |
Dynamic Range | 14 bits |
Delamination And Location | Thermal Estimation of Crack Length (cm) | Ultrasonically Measured Crack Length (cm) |
---|---|---|
Small Delamination along Edge | 4.8 | 6.2 ± 0.05 |
Small Delamination Halfway down toward Hat | 3.5 | 4.7 ± 0.05 |
Large Delamination along Edge | 14.1 | 15.0 ± 0.05 |
Large Delamination Halfway up toward Hat | 10.6 | 12.1 ± 0.05 |
Model Variable | Value |
---|---|
l (thickness of flange + skin) | 0.46 cm |
Instantaneous Heat Flux | 1.0 Watt/cm2 |
Flaw Position | 4.3 to 6.3 cm |
L (Slab Width) | 10.2 cm |
(through thickness thermal diffusivity) | 0.0042 cm2/s |
(lateral thermal diffusivity) | 0.021 cm2/s |
K (thermal conductivity) | 0.0045 W/cm/K |
N (Discrete positions in x) | 160 |
Thickness (cm) | Pixel Plot (a) Mean Squared Difference | Pixel Plot (b) Mean Squared Difference | Pixel Plot (c) Mean Squared Difference |
---|---|---|---|
0.240 | 0.0165 | 0.0139 | 0.0150 |
0.258 | 0.00965 | 0.00578 | 0.0105 |
0.276 | 0.0100 | 0.00326 | 0.0139 |
0.294 | 0.0188 | 0.00755 | 0.0251 |
0.312 | 0.0338 | 0.0172 | 0.0419 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalameda, J.; Winfree, W. Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures Using Passive Thermography. Sensors 2018, 18, 3562. https://doi.org/10.3390/s18103562
Zalameda J, Winfree W. Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures Using Passive Thermography. Sensors. 2018; 18(10):3562. https://doi.org/10.3390/s18103562
Chicago/Turabian StyleZalameda, Joseph, and William Winfree. 2018. "Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures Using Passive Thermography" Sensors 18, no. 10: 3562. https://doi.org/10.3390/s18103562
APA StyleZalameda, J., & Winfree, W. (2018). Detection and Characterization of Damage in Quasi-Static Loaded Composite Structures Using Passive Thermography. Sensors, 18(10), 3562. https://doi.org/10.3390/s18103562