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Abstract: Radio Frequency Identification (RFID) is one of the leading technologies in the Internet
of Things (IoT) to create an efficient and reliable system to securely identify objects in many
environments such as business, health, and manufacturing areas. Recent RFID authentication
protocols have been proposed to satisfy the security features of RFID communication. In this article,
we identify and review some of the most recent and enhanced authentication protocols that mainly
focus on the authentication between a reader and a tag. However, the scope of this survey includes
only passive tags protocols, due to the large scale of the RFID framework. We examined some
of the recent RFID protocols in term of security requirements, computation, and attack resistance.
We conclude that only five protocols resist all of the major attacks, while only one protocol satisfies
all of the security requirements of the RFID system.

Keywords: RFID; security; privacy; authentication; passive tag; security threats; security attacks; IoT;
lightweight protocol

1. Introduction

The wireless sensor network has expanded recently to employ new technologies in the Internet of
Things (IoT). The purpose of this evolution is to create a low-cost, reliable, and secure communication
network for current and future applications using radio waves in the most convenient way.
Radio Frequency Identification (RFID) is a technology where the detection of the electromagnetic
signals in the wireless sensor network identifies objects or people. Hundreds and thousands of
RFID applications have been used to improve business efficiency and productivity in a variety of
business operations, including supply chain management, access control limitation, product tracking,
merchandise allocation, toll collection, and so on. It is also considered an integral part of daily life
where its applications not only are limited to business activities, but also daily life activities that are
integrated into cell phones, household, automobile, etc.

Although the basic concept of RFID is similar to barcodes in identifying the items using the data
stored in barcodes, RFID technology has vital benefits over barcodes. It does not require physical
contact with the objects, allows scanning multiple and different types of barcodes using one signal,
has the ability to read and write on the tag multiple times [1], and enables identifying objects in different
climates such as fog and snow, and packaging conditions such as ice, perishable food, and liquids [2].

RFID is considered a significant structure for future market development. Many business
enterprises and manufactures nowadays in the supply chain, including banks, transportation,
government, agriculture, food safety, health care, and mass production, are using RFID to automate
their product identification faster in different conditions to improve their business efficiency and
customer service experience.
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2. System Architecture and Communication Model

The basic system of RFID includes a receiver (reader), transponder (tag), and back-end database
(server) to store and manage data. The RFID tag is a label that is placed into the object to be identified
and located among hundreds and thousands of objects. It consists of a small antenna attached to a
microchip with a small memory to store the object’s identity and data [3]. The RFID reader is a scanner
placed in a fixed location to interrogate the tag whenever the tag exists in the scanning environment.
The back-end database server operates as a data processor that manages, controls, and stores the data
from the tag and reader. An RFID system is depicted in Figure 1 [4].
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RFID tags can be classified into three categories based on the storage memory, cost, and battery
requirements: passive tags, semi-passive tags, and active tags [5,6].

• A passive tag operates without battery, as the tag is energized when the reader interrogates it by
sending a signal to request tag information. It has a short transmission range in communication,
and has limited resources in term of storage. It is considered the lowest in cost and has a
higher lifespan.

• A semi-passive tag has a battery for its internal chip circuit; however, it is also energized by the
reader interrogation, as in the passive tag.

• An active tag runs with battery and can have two-way communication between tag and reader.
It is larger due to the larger storage capacity and battery. The transmission range is also larger
compared to passive tags. It is more expensive and has a limited life depending on the battery
lifespan [2].

Table 1 provides some comparison of the three types of RFID tags.

Table 1. Classification of RFID Tags [7,8].

Passive Tags Semi-Passive Tags Active Tags

Power Surrounding signal Internal chip battery Integrated battery
Storage Read memory Reade/write memory Reade/write memory
Distance 5 m 100 m 1000 m
Application Identification Real-time tracking Environmental and logistic
Cost Low High High
Size Small Large Large
Lifespan Unlimited 10 years 10 years
Tag Signal Low High High
Required Signal High Low Low

The basic communication session between an RFID reader and a tag starts when the reader
broadcasts radio waves to interrogate the tag. The tag receives the signal and responds corresponding
to the reader’s request. Since the communication channel between the reader and tag is assumed to
be insecure, it is important to maintain a secure system during communication to avoid information



Sensors 2018, 18, 3584 3 of 31

leakage or forgery by unauthorized users. Efficient RFID concerns about system security, cost,
and liability are essential factors for future adoption in the IoT.

3. Security Requirements and Threats

3.1. Security Requirements

The basic entities in the RFID system are the tag, reader, and database server. The communication
channel between a tag and a reader is insecure and vulnerable to different security threats.
Security requirements are the ability features that enable the system to avoid security threats. There are
several security requirements to evaluate the security level of an RFID system:

• Mutual Authentication: the main requirement in a simple scenario of RFID communication session
is the authentication between the reader and tag before exchanging or transmitting any secret or
valuable information. Both tag and reader have to prove their legitimacy to each other to start a
secure communication.

• Confidentiality: all of the transmitted messages have to be secure in which secret information and
values that are used to execute communication cannot be obtained by an unauthorized user.

• Integrity: the transmitted data has to maintain its accuracy and not to be altered or changed
during communication.

• Availability: the communication should be successfully executed by maintaining a synchronous
state between the RFID entities. Communication values have to be updated after every successful
session to provide system availability.

• Privacy: all of the secret information such as tag identity has to be secured in order to provide
anonymity and avoid tracing the tag or its location.

• Forward Security: the transmitted data during communication have to be independent and updated
for every session, and cannot be used or related to another authentication session. If a tag or any
information is compromised, it is impossible for an adversary to pass the authentication on or
violate the system.

3.2. Security Threats

A secure RFID system must be able to resist different types of attacks. Messages in RFID
communication are transmitted in clear, and thus are vulnerable to eavesdrop; hence, secret information
is disclosed. Many RFID protocols are proposed to defend against different attacks such as:

• Replay Attack: an adversary tries to capture the tag response and resend it to the reader to start a
successful communication with the reader or obtain any secret information.

• Man-In-The-Middle: an adversary intercepts the message between two legitimate entities
tag/reader to modify it and send it back.

• Impersonate Attack: an adversary obtains either the reader or tag identity information to create a
forged entity. As a result, the adversary acts as a legitimate entity to pass the authentication and
proceed with the communication.

• Traceability: an adversary traces the tag to find its location and revoke the tag’s privacy. This attack
violates the private information of RFID users, which is an instance where the privacy is important.

• Desynchronization Attack: communication session between tag and reader starts using
the synchronous values stored in both the tag and reader to authenticate each other.
A desynchronization attack occurs when an adversary breaks the synchronous state between the
tag and server by blocking the update messages, causing the communication values stored in
both server and tag to be different.

• Denial of Service: an adversary sends multiple signals simultaneously to the server as responses
to make the system unavailable for further communication, which could further lead to a
desynchronization attack.
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• Cloning: an adversary uses a malicious device to obtain the reader or tag secret information and
create a fake entity that can be used to perform a successful communication.

• Disclosure: an adversary identifies the secret information of the tag and the secret keys used in the
communication to fully compromise the security of the protocol.

Many other security threats have been identified for RFID systems. A secure RFID system is
created to defend against various threats that are related to the application in use.

4. Review of Recent RFID Authentication Protocols

Several articles are proposed to create a secure RFID protocol that improves the security measures
of RFID systems. The modern advancement in technology helps discover many gaps in the proposed
protocols presented in the literature. The aim of this work is to review some of the recent RFID
authentication protocols that specifically use passive tags. We aim to present an adequate comparison
between the protocols in terms of performance and security.

Since a passive tag is a very small chip with scarce resources, it is able to do only low computations.
Hence, RFID protocols are classified in this paper into four categories based on the complexity of
the algorithm that is used to compute the tag responses: heavyweight, simple weight, lightweight,
and ultra-lightweight [9]. Heavyweight algorithms use symmetric and public key cryptography
that is beyond the scale of the passive tag ability to process. Simple-weight algorithms use hash
functions that are also not feasible for passive tag resources. Lightweight algorithms use simple
one-way hash functions, cyclic redundancy checks, and pseudo-random number generators [10].
Finally, ultra-lightweight algorithms use bitwise operations, which can be performed at low cost.

4.1. Heavyweight Protocols

Wang and Sarma [11] proposed two session-based authentication protocols, SB-A and SB-B,
for reader–tag authentication based on symmetric key encryption to ensure privacy and access
control using two types of passive tags. The protocols are based on a symmetric cryptography
algorithm to provide low-cost authentication such as the Advanced Encryption Standard (AES)
and Data Encryption Standard (DES). Protocol SB-A in Figure 2 includes two processes. The first
phase involves mutual authentication between server and tag according to the three-pass mutual
authentication protocol according to the International Organization of Standardization and the
International Electrotechnical Commission—ISO/IEC 9798-2 [12]. The second phase is for generating
a session key between reader and tag according to the Otway–Rees protocol and updating the pseudo
tag identity (PID). Protocol SB-B in Figure 3 uses tags with no memory or ID so that all of the tag’s
information is stored in the server. A physical tag operation is mapped with the digital virtual tag
in the server that can do all of the tag’s executions. The protocol time to keep synchronization is
controlled by the tag nonce and counter, and not the server, because of the limited power of the tag
to keep synchronization. The protocols proved to be secure against major types of attacks; however,
the protocols are considered to be heavyweight, since DES and AES are expensive operations that
require a lot of computational overhead.
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For traceability issues in RFID, Ryu et al. [13] proposed elliptic curve cryptography-based
untraceable authentication protocol (ECU) using the Schnorr signature scheme. The elliptic
curve cryptography is considered to be a public key cryptography for RFID systems with low
constrained tags. It is used to solve the issues of three recent elliptic curve-based untraceable
RFID authentication protocols: Strong Privacy-preserving Authentication protocol (SPA) [14],
Efficient Mutual Authentication protocol EMA [15], and ECC-based authentication protocol PII [16].
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Ryu’s protocol generates a digital signature with an appendix on the binary message of arbitrary length,
and requires a cryptographic hash function, as shown in Figure 4. The sender’s session key is combined
with the receiver’s public key to provide privacy, in which the message can be verified by only the
receiver’s private key. Ryu’s protocol is secure against replay attacks, impersonate attacks, traceability
attacks, and it maintains forward security. It requires two scalar multiplications, two hash functions,
a message total size of 544 bits, and two communications between tag and reader. Even though this
protocol requires complex computations associated with scalar multiplications and a hash function,
it does not authenticate the reader.
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To reduce the tag’s overhead in heavyweight protocols, Yao et al. [17] introduced The
Reviving-UNder-DoS (RUND) authentication protocol to defend against denial of service (DoS)
and preserve user privacy by powering up the tag to do complex computing for symmetric and
public key cryptography. It leverages the power in DoS scans to enable the tag to respond in two
ways: either using simple encryption when the tag is activated by low signals from a reader, or
using public encryption (higher security) when the backscattered signals are high in an insecure
environment. The more signals there are in communication, the more power charges the tag. The option
of using public key encryption in RUND protocol is to overcome the problem of breaking up the
synchronization state between the reader and tag in symmetric key encryption. The protocol is secure
because secret information is not sent in clear, so no useful information can be gained if any message is
compromised. Moreover, the parameters used in communication are changed and updated in every
session, as shown in Figure 5, to prevent replay attack, maintain forward security, and resist tracking.
Even though the overall efficiency of RUND is O(1), it is still not compliant with the Electronic Product
Code Class1 Generation2 (EPC C1 G2) standard [18], which is defined by EPCGlobal Inc. for RFID
data communication.
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Figure 5. The Reviving-UNder-Denial of Service Authentication Protocol (RUND) by Yao. 

4.2. Simple-Weight Protocols 

To better improve the performance of RFID protocols and reduce the power that is needed for 
complex operations in ECC-based protocols, Farash [19] proposed a mutual authentication protocol 
(IECC) based on the elliptic curve. The protocol enhances Chou’s authentication protocol (EMA) [15], 
which does not fulfill the security requirement of forward security, mutual authentication, tag 
privacy, and security against location tracking, impersonating attacks, and tag cloning attack for an 
RFID system. The main idea behind the protocol is to use the server’s public key to create the 
authentication message to avoid breaking the system privacy, as depicted in Figure 6. The IECC 
protocol is secure against major attacks, even though the computation cost is the same as in Chou’s 
protocol that needs to be reduced for practical implementation. 
  

Figure 5. The Reviving-UNder-Denial of Service Authentication Protocol (RUND) by Yao.

4.2. Simple-Weight Protocols

To better improve the performance of RFID protocols and reduce the power that is needed for
complex operations in ECC-based protocols, Farash [19] proposed a mutual authentication protocol
(IECC) based on the elliptic curve. The protocol enhances Chou’s authentication protocol (EMA) [15],
which does not fulfill the security requirement of forward security, mutual authentication, tag privacy,
and security against location tracking, impersonating attacks, and tag cloning attack for an RFID
system. The main idea behind the protocol is to use the server’s public key to create the authentication
message to avoid breaking the system privacy, as depicted in Figure 6. The IECC protocol is secure
against major attacks, even though the computation cost is the same as in Chou’s protocol that needs
to be reduced for practical implementation.
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shared keys between the database server and reader and tag ad, as depicted in Figure 7. Traceability 
and replay attacks are prevented using updated random numbers in every session; access control is 
provided using shared keys to prevent unauthorized readers to request or read any tag’s 
information, and integrity is ensured using timestamps. However, RBAC uses one encryption 
mechanism that is excessive for low-cost passive tags. 

  

Figure 6. Mutual Authentication Protocol Based on Elliptic Curve Cryptography (IECC) by Farash.

Zhang and Qi [20] also proposed another protocol (EECC) to withstand the security weaknesses
of Chou’s protocol, EMA [15]. EECC protocol enhances patient medication safety by also using elliptic
curve cryptography. In comparison to EMA protocol, EECC protocol resulted in better performance
and security resistance to impersonate and forward security attacks.

B.Chen [21] proposed a role-based access control (RBAC) protocol for mobile RFID to enable
user privacy, role, and access control through the back-end server based on a certification mechanism.
RBAC assigns role classes as keys to control the information and the number of times each reader can
read a tag. RBAC authorizes readers, assigns role classes to control the reader’s authority to request
tag information, and updates time stamps using random numbers and different shared keys between
the database server and reader and tag ad, as depicted in Figure 7. Traceability and replay attacks are
prevented using updated random numbers in every session; access control is provided using shared
keys to prevent unauthorized readers to request or read any tag’s information, and integrity is ensured
using timestamps. However, RBAC uses one encryption mechanism that is excessive for low-cost
passive tags.
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Fernando and Abawajy [22] proposed a mutual authentication protocol for Networked RFID 
Systems NRS, which is a lightweight mutual authentication scheme for an RFID system using low 
operations such as excusive or operation (XOR) and one-way hash functions. However, Alagheband 
and Aref [10] reported NRS to be vulnerable to major attacks and specifically a full disclosure attack 
that compromises the whole RFID system. Alagheband and Aref improved NRS protocol and 
proposed NRS+ by adding three more hash functions to the authentication message to increase the 
system security. X. Chen et al. [23] noted that the NRS+ protocol is exposed to desynchronization 
and traceability attacks by using one random number for the tag and reader. Thus, X. Chen 
proposed NRS++ to improve the security flaws in the previous versions of NRS by generating two 
different random numbers, r1 and r2, for the tag and reader using a pseudo-random number 
generator (PRNG) to defend against replay attack. In Figure 8, the authentication message M3 is 
encrypted using the tag’s random number r1 and reader’s random number r2 to provide message 
integrity, so any modified message cannot be verified by the tag. NRS++ uses fewer hash functions, 
which resulted in less computation overhead and storage space than the other versions, with more 
security power.  
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4.3. Lightweight Protocols

Successful businesses demand an efficient RFID system that is mainly based on low computation
for a low cost. Many recent RFID protocols use low-cost operations that are handled by low-cost
passive tags for practical implementations.

Fernando and Abawajy [22] proposed a mutual authentication protocol for Networked RFID
Systems NRS, which is a lightweight mutual authentication scheme for an RFID system using low
operations such as excusive or operation (XOR) and one-way hash functions. However, Alagheband
and Aref [10] reported NRS to be vulnerable to major attacks and specifically a full disclosure attack that
compromises the whole RFID system. Alagheband and Aref improved NRS protocol and proposed
NRS+ by adding three more hash functions to the authentication message to increase the system
security. X. Chen et al. [23] noted that the NRS+ protocol is exposed to desynchronization and
traceability attacks by using one random number for the tag and reader. Thus, X. Chen proposed
NRS++ to improve the security flaws in the previous versions of NRS by generating two different
random numbers, r1 and r2, for the tag and reader using a pseudo-random number generator (PRNG)
to defend against replay attack. In Figure 8, the authentication message M3 is encrypted using the tag’s
random number r1 and reader’s random number r2 to provide message integrity, so any modified
message cannot be verified by the tag. NRS++ uses fewer hash functions, which resulted in less
computation overhead and storage space than the other versions, with more security power.
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improve Chen’s protocol. Later, X. Chen [23] pointed out that ACSP protocol is not secure, and 
proposed ACSP++ to withstand DoS and forward/backward traceability attacks. ACSP++ enhances 
the session identifier (SID) update, which is used to verify the current session, and tag identification 
phases that suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as depicted in 
Figure 9, a tag identifier (TID) is added to the identification message as (ܶܰܧܦܫതതതതതതതതത, R4, R5, TID) instead 
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backward traceability. Even though the protocol improved the security weaknesses of all of the 
ACSP versions, it did not lower the computation overhead nor the storage space. 

  

Figure 8. Mutual Authentication Protocol for Networked RFID Systems (NRS++) by X. Chen.

C. Chen [24] proposed Anti-Counting Security Protocol (ACSP) as another lightweight protocol
for RFID systems to defend from a counter attack, which is defined as the attacker’s ability to count
the number of objects in a system. Safkhani et al. [25] reported ACSP to be vulnerable to major attacks,
including the forward/backward traceability attack. Safkhani further proposed ACSP+ to improve
Chen’s protocol. Later, X. Chen [23] pointed out that ACSP protocol is not secure, and proposed
ACSP++ to withstand DoS and forward/backward traceability attacks. ACSP++ enhances the session
identifier (SID) update, which is used to verify the current session, and tag identification phases that
suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as depicted in Figure 9, a tag
identifier (TID) is added to the identification message as (IDENT, R4, R5, TID) instead of (IDENT,
R4, R5), and the authentication message (AUTHEN, R4, R5, TID) is replaced with (AUTHEN, R5,
TID) to overcome DoS attack and modifying the TID in the identification phase. The update phase of
every key is associated with two separate nonce values to avoid forward and backward traceability.
Even though the protocol improved the security weaknesses of all of the ACSP versions, it did not
lower the computation overhead nor the storage space.
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Figure 9. Anti-Counting Security Protocol (ACSP++) by X. Chen. 

Chien and Huang [26] presented LAP, which is a lightweight authentication protocol to solve 
the vulnerabilities in the authentication protocol of Li et al. [27], and enhance the computational cost 
from O(n) to O(1) in identifying tags in RFID systems. The security of LAP protocol is based on a 
synchronized PRNG between reader and tag using a secret key, secret ID, and index pseudonym. In 
Figure 10, LAP protocol uses the rotate operator on the message and left/right operator for the 
divided rotation during the messages that were exchanged to form a secure permutation. Random 
numbers are used to shift the secret values of the tag to be used safely in communication. Then, the 
random number is XORed with the shifted secret value to securely retrieve a tag by the server. The 
server uses the index pseudonym (IDS) to quickly identify the tag in the database instead of 
computing PIDL ⊕ PIDR for every tag to make the computation O(1). LAP protocol is resistant to 
replay attack, DoS, and forward security. It can be employed easily by different standards such as 
EPC Gen2 and ISO 15693 [28] for practical implementation. However, the protocol was noted as 
being partially secure against traceability and synchronization attacks, since a tag can be traced 
between two successful sessions if the tag could not update its IDS.  
  

Figure 9. Anti-Counting Security Protocol (ACSP++) by X. Chen.

Chien and Huang [26] presented LAP, which is a lightweight authentication protocol to solve
the vulnerabilities in the authentication protocol of Li et al. [27], and enhance the computational cost
from O(n) to O(1) in identifying tags in RFID systems. The security of LAP protocol is based on a
synchronized PRNG between reader and tag using a secret key, secret ID, and index pseudonym.
In Figure 10, LAP protocol uses the rotate operator on the message and left/right operator for the
divided rotation during the messages that were exchanged to form a secure permutation. Random
numbers are used to shift the secret values of the tag to be used safely in communication. Then,
the random number is XORed with the shifted secret value to securely retrieve a tag by the server.
The server uses the index pseudonym (IDS) to quickly identify the tag in the database instead of
computing PIDL ⊕ PIDR for every tag to make the computation O(1). LAP protocol is resistant to
replay attack, DoS, and forward security. It can be employed easily by different standards such as
EPC Gen2 and ISO 15693 [28] for practical implementation. However, the protocol was noted as being
partially secure against traceability and synchronization attacks, since a tag can be traced between two
successful sessions if the tag could not update its IDS.
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Figure 10. Lightweight Authentication Protocol (LAP) by Chien. 

Burmester and Munilla [29] proposed a lightweight mutual authentication protocol called 
Flyweight that is based on exchanging messages using only PRNG. Their protocol is based on a 
shared PRNG algorithm between the tags and back-end server that takes the same seed to produce 
the same output. The concept of the protocol is to use three consecutive numbers—RN1, RN2, and 
RN3—generated by the same PRNG in the server, and the tags of five numbers if an active adversary 
is presented, such as in Figure 11. Furthermore, RFID tags precompute the values to the server 
challenging the response, so an adversary can be detected based on the response time from the tag. 
The protocol is able to provide mutual authentication, integrity, confidentiality, and forward and 
backward security. In addition, it provides strong synchronization, since the server keeps a record 
for the current and next response value of the tag. 

S. Lee et al. [30] proposed a lightweight protocol (MASS) for RFID systems using XOR and a 
one-way hash function to conform to the scarce resources of RFID tags. The concept of the MASS 
protocol is to challenge the tag with a fresh random string every session, and the tag responds using 
the reader’s value and its own random key to authenticate the reader ad, as depicted in Figure 12. The 
secret key is shared between entities, and all of the messages are encrypted during transmission. 
However, Zuo [31] conducted a survivability experiment on the authentication protocol proposed by 
S. Lee et al. and defined the vulnerability of the protocol to replay, desynchronize, and impersonate 
attacks. Zuo concluded from his experiment that the system could employ two different values for the 
keys (old, new) to recognize the tag and overcome the desynchronization problem.  

  

Figure 10. Lightweight Authentication Protocol (LAP) by Chien.

Burmester and Munilla [29] proposed a lightweight mutual authentication protocol called
Flyweight that is based on exchanging messages using only PRNG. Their protocol is based on a
shared PRNG algorithm between the tags and back-end server that takes the same seed to produce
the same output. The concept of the protocol is to use three consecutive numbers—RN1, RN2,
and RN3—generated by the same PRNG in the server, and the tags of five numbers if an active
adversary is presented, such as in Figure 11. Furthermore, RFID tags precompute the values to the
server challenging the response, so an adversary can be detected based on the response time from the
tag. The protocol is able to provide mutual authentication, integrity, confidentiality, and forward and
backward security. In addition, it provides strong synchronization, since the server keeps a record for
the current and next response value of the tag.

S. Lee et al. [30] proposed a lightweight protocol (MASS) for RFID systems using XOR and a
one-way hash function to conform to the scarce resources of RFID tags. The concept of the MASS
protocol is to challenge the tag with a fresh random string every session, and the tag responds using
the reader’s value and its own random key to authenticate the reader ad, as depicted in Figure 12.
The secret key is shared between entities, and all of the messages are encrypted during transmission.
However, Zuo [31] conducted a survivability experiment on the authentication protocol proposed by
S. Lee et al. and defined the vulnerability of the protocol to replay, desynchronize, and impersonate
attacks. Zuo concluded from his experiment that the system could employ two different values for the
keys (old, new) to recognize the tag and overcome the desynchronization problem.
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To reduce the communication time during the authentication session, K. Lee et al. [32] proposed
Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The concept of EP-UAP is that
the system precomputes all of the necessary computations before the system initialization, so only
low computation overhead is required on the tag side during the process phase. The protocol is
based on Randomized Hash-Lock protocol, which uses a static identifier, and its strong security
against traceability depends mainly on PRNG to randomize the responses, as explained in Figure 13.
Since precomputing all of the possible random numbers and responses requires a storage memory
for all of the precomputed data in the database, EP-UAP is preferred for small to medium networks,
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as the storage memory increases when the number of tags increases. The protocol shows a huge
improvement over the randomized hash lock protocol in terms of computation time, in that only
requires 40 ms for authentication; this is similar to LRMAP, which is the most efficient one in stateful
protocols. However, it requires 100 MB of database storage memory. The protocol provides integrity
due to the two randomly generated nonce values that are used from both tag and reader, and is secure
against passive attacks and traceability due to the random responses. However, the EP-UAP protocol
seems to be vulnerable to active attacks such as impersonate and replay attacks, since the random
responses depend on the database/reader. It also requires high storage capacity in the database side.
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To defend against a desynchronization attack, Rahman and Ahamad [33] proposed a
Desynchronization attack-resistant Robust Authentication Protocol (DRAP) in the wireless
identification and sensing platforms (WISP), where RFID technology is combined with sensor nodes.
Their protocol mechanism is to decrease the tag collision that leads to DoS attack, as shown in Figure 14.
The technique is to decrease the collision rate at the link layer and maintain the system’s efficiency.
The protocol also detects the DoS attack and recovers the synchronization state of the system. It has
higher resources than passive tags, which allow higher security implementation. Yet, it has a short
distance limitation, where tags can only function less than 1–2 m away from readers.

Authentication in most RFID protocols is executed between one reader and one tag at a
time. Liu et al. [34] proposed a grouping proofs-based authentication protocol (GUPA) to enable
authenticating multiple tags and multiple readers simultaneously, such that multiple readers can
authenticate a single tag, and multiple tags can be authenticated by a single reader in large-scale
RFID. GUPA protocol is based on hierarchical identification between independent subgroups in a
distributed RFID system, and the use of an asymmetric denial mechanism to resist denial-of-proof
attack (DoP). For the anonymous authentication of a new entity, GUPA deploys a ring signature using
a lightweight cryptography (elliptic curve). It also uses lightweight bitwise operations for readers and
tags secret information updates, PRNGs, one-way hash functions, timestamps for session freshness,
and access lists for each legal reader/tag during system initialization as identity flags to prevent
forgery and tracking attack, as fully explained in Figure 15. Since the flags are chosen randomly from
the pseudonym index, queries and responses are independent for each session to resist DoP attack;
hence, illegal proofs are eliminated during authentication.
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Since tag collision is a major problem in the large-scale networks, Rahman and Ahamad [35]
proposed two probabilistic batch authentication protocols to determine the valid tags efficiently and
accurately in large-scale systems. FTest is a protocol based on Frame Slotted Aloha algorithm that
is used to reduce the probability of collision slots. The other protocol is GTest, which is a protocol
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based on group batch authentication that is used to reduce the cost of detecting counterfeit tags.
Their protocols use simple lightweight operations such as XOR and cyclic redundancy checks (CRC)
with a shared key for each group of tags. The theory in both protocols is not to send the tag ID
when responding, but rather accept or reject a tag by estimating the number of fake tags. In the
FTest protocol that is depicted in Figure 16, a counterfeit threshold parameter is used in the system to
reduce the number of rounds in the detection process and response time of the protocol, so that the
entire tag responses do not need to be checked. Instead, the detection will stop if the percentage of
counterfeit tags exceeds the counterfeit threshold. In GTest, the reader randomly selects a population
of tags to authenticate. If one counterfeit tag is detected, the batch of tags will be considered invalid.
The reader needs to read a large amount of data to identify the validity of a batch in GTest, so the
reader still consumes time through the computation overhead from the tag search. Both FTest and
GTest protocols are proved to be secure against tracking and privacy attacks, since tags responses are
based on dynamic frame size, random numbers, and ID that is not transmitted during communication.
However, the FTest shows less execution time and better performance over GTest.
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Figure 16. Batch Authentication Protocol based on Frame Slotted Aloha (FTest) by Rahman
and Ahamad.

Another anti-collision security protocol (ACS) is proposed by Keqiang et al. [36] for a
high-efficiency RFID system combining the chaotic sequence generator with the dynamic frame-slotted
ALOHA algorithm for fast tag identification. The protocol scheme is based on a logistic mapping
structure with XOR operation and spreading operation to generate real-time keys in a chaotic sequence
that are used in authentication messages. Keys are updated in each response from tag to reader and
reader to tag during the same session using iteration equations that are known only to the server and
tag, such as in Figure 17. The protocol is effective against counterfeits and impersonates attacks, as the
authentication scheme not only depends on the iterated key, but also on spreading code and random
numbers, so faking at least one of them will result in a wrong response. The protocol requires only four
message exchanges, low hardware cost, and low computation cost on the tag side. It also has lower
energy consumption than other heavy and simple weight protocols, because XOR uses less energy
than symmetric encryption and hash functions.
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the same output that is used in updating the protocol values, as in Figure 18. Also, the confidentiality 
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Cho et al. [37] proposed a hash-based mutual authentication protocol (HBA) to defend against the
brute force attack. This protocol was reported by Chang et al. [6] to be vulnerable to denial of service
(DoS) and replay attacks. Later, Chang et al. proposed an improved (HBA+) protocol to avoid DoS
and replay attacks using a shared PRNG algorithm between the server and tag to produce the same
output that is used in updating the protocol values, as in Figure 18. Also, the confidentiality in the
protocol is based on protecting the secret value datai using reader ID (Rid), which is only known to a
legitimate reader and server. The improved protocol of Chang is considered to be efficient and secure
against DoS attack, traceability, and forward secrecy.
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Z.Liu et al. [38] proposed variable linear shift-based authentication protocol (VLP) to support the
implementation of RFID for the new EPC Gen2v2 standard, satisfy its security features of untraceability
and access control, and reduce a tag’s read range. In Figure 19, the protocol is based on a lightweight
encryption function called Variable Linear Feedback Shift Register (VLFSR), which is implemented
at the application-specific integrated circuit (ASIC) level. In every session, mutual authentication
involves different random numbers from the tag and reader combined with the new secret value SID
stored in the database to provide resistance against active attacks.

Another protocol (OMP) is proposed by Niu et al. [39] mainly for passive tag ownership transfer
using a lightweight authentication mechanism to support EPC Gen2 standard. Since the ownership
transfer is based on transferring the keys, the OMP protocol aims to prove the possession of the shared
secret key to a tag and reader without disclosing it using ultra-lightweight permutation operation
(Per), as in Figure 20. Yet, the protocol has no mechanism to check the freshness of the message that is
sent by a legitimate reader.
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Dass and Om [40] also proposed an efficient authentication protocol (SEAS) that uses
lightweight operations and a pseudo-random number generator (PRNG) for a low computational cost.
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Their scheme is based on a secure channel between the back-end server and reader, prestored tags’
secret (SIDs) in the tags side, a one-way hash function of the tag ID in the server side, and rewritable
memory with a flag indicator in the server side to update the secret values. Any change to the messages
transmitted leads to terminate the communication during the verification to resist security attacks,
as shown in Figure 21.
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for their next communication. The protocol has also been proved using the CryptoVerif tool [42], which 
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An alternative solution to replace the central database in the RFID system is to use a serverless
model in which the database server does not maintain a connection with the readers and tags during
the communication. Regarding this challenge, Mtita et al. [41] proposed (SAP), a serverless security
protocol used for the mass authentication of RFID tags in the presence of untrusted readers. In SAP
protocol, the reader and tag do not communicate with the back-end server; instead, they authenticate
each other using only ephemeral of the tag’s secrets that expire within a given time, as shown in
Figure 22. Verification and authentication between reader and tag are done during the authentication
phase to exchange the data and generate the session key locally in both tag and reader for their next
communication. The protocol has also been proved using the CryptoVerif tool [42], which was shown
to have low computation overhead and resources.
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RFID systems at a minimum and provide strong security for promising future use. In this regard, 
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4.4. Ultra-Lightweight Protocols

As mentioned earlier in this paper, passive tags are small chips with scarce resources that can
only support low-cost operations. The goal of ultra-lightweight protocols is to reduce the cost of
RFID systems at a minimum and provide strong security for promising future use. In this regard,
Sundaresan et al. [43] introduced an ultra-lightweight serverless protocol (STS) using only simple XOR
and 128-bit PRNG operations that require less than 2000 gates, three random number generation on
the tag, and two message exchanges. In Figure 23, the STS protocol mechanism is to use a blind factor
to hide the pseudo-random numbers that are used in communication between readers and tags to
overcome impersonation attacks. RFID tag is also able to preserve its location privacy by responding
as a noise tag. Moreover, the protocol does not employ a one-way hash function nor any encryption
conforming to EPC C1 G2 Standards.
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Aggarwal and Das [44] proposed the CHW+ protocol, which is based on a previous version 
introduced by Y. Chen, Wang, and Hwang (CWH) [45]. In Figure 24, the protocol CHW+ solves the 
problem of full disclosure attack due to the simple XOR operation that is used in the authentication 
message, which uses the bit rotation and shifting operation on the message before transmission to 
increase the protocol complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS 
with a very efficient computation.  

Huang and Li [46] proposed and implemented two improved protocols of RFID mutual 
authentication based on generating the PadGen function in the ISO 18000-6C [47] protocol to protect 
the memory with a 32-bit access password. The concept of their protocols is to cover up the tag’s 
access password (Apwd) before transmitting the data using a set of 16-bit random numbers such as 
RTx and RMx. One of the improved schemes, PadGen with XOR (PGX), implements XOR operation 
between the random number sets and the PadGen function; the other protocol, PadGen with Mod 
(PGM), implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random number 
set (RTx, RMx) to be used in the PadGen function. Both improved schemes conform to the EPC C1 
G2 standard, do not require any hash function or key exchange, do not involve synchronization for 
hash or key values, and also show better efficiency during implementation. The security level of the 
MOD scheme is higher due to the low-cost implementation, but requires a higher computation cost 
in PadGen than XOR.   

Figure 23. Ultra-Lightweight Serverless Authentication Protocol (STS) by Sundaresan.

Aggarwal and Das [44] proposed the CHW+ protocol, which is based on a previous version
introduced by Y. Chen, Wang, and Hwang (CWH) [45]. In Figure 24, the protocol CHW+ solves the
problem of full disclosure attack due to the simple XOR operation that is used in the authentication
message, which uses the bit rotation and shifting operation on the message before transmission to
increase the protocol complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS
with a very efficient computation.

Huang and Li [46] proposed and implemented two improved protocols of RFID mutual
authentication based on generating the PadGen function in the ISO 18000-6C [47] protocol to protect
the memory with a 32-bit access password. The concept of their protocols is to cover up the tag’s
access password (Apwd) before transmitting the data using a set of 16-bit random numbers such as
RTx and RMx. One of the improved schemes, PadGen with XOR (PGX), implements XOR operation
between the random number sets and the PadGen function; the other protocol, PadGen with Mod
(PGM), implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random number
set (RTx, RMx) to be used in the PadGen function. Both improved schemes conform to the EPC C1
G2 standard, do not require any hash function or key exchange, do not involve synchronization for
hash or key values, and also show better efficiency during implementation. The security level of the
MOD scheme is higher due to the low-cost implementation, but requires a higher computation cost in
PadGen than XOR.
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Huang and Jiang [48] proposed an ultra-lightweight reader–tag mutual authentication protocol
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Huang and Jiang [48] proposed another mutual authentication protocol (MACD) based on Chen
and Deng’s scheme [50] to overcome forge attacks, DoS, replay attacks, and mainly the tag identification
time. It is shown in Figure 26 that the MACD protocol uses ultra-lightweight operations and achieves
a lower communication cost between tag and reader than the other improved scheme, MACC.
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Considering the complexity of the authentication protocol, Hopper and Blum proposed the first
HB protocol to identify unaided humans to computers [51]. Many authors adopted the idea of HB
protocol to identify tags in RFID networks. As a matter of fact, HB family protocols are based on the
hard problems of Learning Parity with Noise (LPN), which involves the calculation of inner products
of binary vectors and Bernoulli noise bit generation [52]. In this regard, Lin and Song [53] proposed
HBROT, which is one of the latest HB protocols that produces the key in each authentication round
using the rotation function. The protocol is considered to be secure against most of the RFID attacks.

Another improvement of the HB protocol is proposed by Juels and Weis [54] as (HB+) to overcome
the weaknesses of the original HB. The HB+ protocol involves two secret keys, x and y, which are used
with shared blind vectors between the reader and tag. The reader and tag verify the values that are
computed to perform the mutual authentication. Later, the protocol is reported by Gilbert et al. [55] to
be vulnerable to the man-in-the-middle attack (MIM). Hence, Ouaskou et al. [56] proposed a variant of
HB protocol based on Permutation function (HBPER). The protocol performs a permutation of the
keys x, y during each round of the protocol to update the value of the keys, as shown in Figure 27.
This method secures the protocol against the MIM attack that is reported in the HB+ protocol, although
both protocols HB+ and HBPER almost have the same complexity.
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5. Analysis and Security Evaluation

In this section, we compare the different protocols in terms of computation, security requirements,
and attacks resistance. Since the passive tag used in the RFID system has limited computation
capabilities and resources, it is important to consider the computation and security features for the
appropriate application. Table 2 demonstrates the different operations computed by the tag in each
protocol, and the communication overhead based on the number of transmitted messages between tag
and reader.

Table 2. Comparison of the Computation Cost on Tag.

Protocol Operations Tag Passes Reader Passes Tag Overhead

SB-A [11] 1 TENC + 2 TDEC + 2 TPRNG 2 3 High
SB-B [11] 2 TENC + 2 TDEC + 2 TPRNG 2 3 High
EMA [15] 2 TSMUL + 2 TCH 2 1 High
ECU [13] 2 TSMUL + 2 TCH 1 1 High
SPA [14] 4 TSMUL + 1 TCH 1 1 High
PII [16] 4 TSMUL + 3 TCH 1 1 High

RUND [17] 2 TH OR 1 TENC + 1 TPRNG 1 2 High
IECC [19] 2 TSMUL + 2 TH 1 2 High
EECC [20] 2 TSMUL + 2 TH 1 2 High
RBAC [21] 2 TENC + 2 TDEC + 1 TPRNG 2 2 High
DRAP [33] 1 TENC + 3 TXOR + 3 TH + 1 TRNG + 2 TPRNG 1 2 High
NRS [22] 10 TXOR + 3 TH 4 5 Medium

NRS+ [10] 10 TXOR + 6 TH 4 5 Medium
NRS++ [23] 8 TXOR + 4 TH 1 2 Medium
ACSP [24] 3 TXOR + 7 TH + 4 TCRC 1 4 Medium

ACSP+ [25] 4 TXOR + 8 TH 2 4 Medium
ACSP++ [23] 6 TXOR + 8 TH 1 2 Medium

MASS [31] 4 TXOR + 2 TH + 1 TRNG 1 2 Medium
EP-UAP [32] 2 TH + 1 TRNG 1 2 Medium
GUPA [34] 2 TH + 3 TPRNG + 19 TBIT 3 3 Medium
HBA [37] 6 TXOR + 2 TH + 1 TRNG + 4 TMOD 1 2 Medium
VLP [38] 2 TXOR + 2 TRNG + 3 TBIT + 2 TVLFSR 1 2 Medium

SEAS [40] 1 TXOR + 2 TH + 1 TRNG + 3 TPRNG + 1 TBIT 1 2 Medium
SAP [41] 2 TH + 2 TRNG 1 2 Medium
LAP [26] 2 TXOR + 1 TRNG + 2 TPRNG + 1 TROT + 1 TSHIFT 2 2 Low

Flyweight [29] 5 TPRNG 3 3 Low
FTest [35] 1 TXOR + 3 TCRC 3 2 Low
ACS [36] 3 TXOR + 2 TITER + 1 TSPR 1 2 Low
HBA+ [6] 7 TXOR + 1 TRNG + 5 TPRNG 1 2 Low
OMP [39] 12 TXOR + 6 TPRNG + 2 TPER 1 1 Low
STS [43] 7 TXOR + 3 TPRNG 1 1 Low
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Table 2. Cont.

Protocol Operations Tag Passes Reader Passes Tag Overhead

CWH+ [44] 2 TXOR + 5 TROT + 1 TSHIFT + TBIT 1 1 Low
PGX [46] 8 TXOR + 2 TRNG 2 2 Low
PGM [46] 4 TXOR + 2 TRNG + 32 TMOD 2 2 Low

MACC [48] 6 TXOR + 5 TPRNG 1 2 Low
MACD [48] 5 TXOR + 3 TPRNG + 1 TCRC 1 2 Low
HBROT [53] 1 TRNG + 2 TROT + 1 TXOR + 1 TBIT 1 1 Low
HBPER [56] 1 TRNG + 2 TPER + 1 TXOR + 1 TBIT 1 1 Low

TENC: encryption, TDEC: decryption, TPRNG: pseudo-random number generator, TRNG: random number generator,
TSMUL: scalar multiplication, TXOR: XOR, TCH: cryptographic hash, TH: one-way hash function, TCRC: cyclic
redundancy check, TROT: rotation, TSHIFT: shifting, TITER: iteration, TBIT: bitwise operation, TSPR: spreading, TPER:
permutation, TMOD: modulo, TVLFSR: variable linear shift register function.

5.1. Comparison of Computation Cost

We denote TENC, TDEC, TPRNG, TRNG, TSMUL, TXOR, TCH, TH, TCRC, TROT, TSHIFT, TITER, TBIT,
TSPR, TPER, TMOD, TVLFSR as the computation cost for encryption, decryption, pseudo-random
number generator, random number generator, scalar multiplication, XOR, cryptographic hash,
one-way hash function, cyclic redundancy check, rotation, shifting, iteration, bitwise operation,
spreading, permutation, modulo, variable linear shift register function, respectively. Tag overhead is
classified based on the cryptographic level of operations used in the protocol: high for symmetric key
cryptography and scalar multiplication, medium for one-way hash function, and low for other bitwise
operations and random number generators. The passes are designated for the number of messages
sent by a reader or a tag.

5.2. Comparison of Security Threats

Protocols resistance to different RFID threats is presented in Table 3, where we denote ST1
for a replay attack, ST2 for a man-in-the-middle attack (MITM), ST3 for eavesdropping, ST4 for an
impersonating attack, ST5 for traceability, ST6 for desynchronization, ST7 for denial of service (DoS),
and ST8 for other types of attack. We found that most of the recently proposed protocols do not pay
close enough attention to DoS, MITM, and eavesdropping attacks, while most of the protocols consider
the system security against replay, impersonate, traceability, and desynchronization attacks. Certainly,
protocols [6,19,20,23,34,53,56] are strongly resistant to all of the major attacks.

Table 3. Comparison of Various Security Threats Resistance.

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

SB-A [11] Y Y Y Y Y Y * Cloning
SB-B [11] Y Y Y Y Y Y * Cloning
ECU [13] Y Y * Y Y * * *
SPA [14] N * * N Y * * *

EMA [15] Y * * N N * * *
PII [16] Y * * Y Y * * *

RUND [17] Y * * Y Y Y Y *
IECC [19] Y Y Y Y Y Y Y Cloning
EECC [20] Y Y Y Y Y Y Y Spoofing
RBAC [21] Y * * Y Y * Y *
NRS [22] N Y N N N N N *

NRS+ [10] N Y Y N N N N *
NRS++ [23] Y Y Y Y Y Y Y *
ACSP [24] N N N N N N N Counting

ACSP+ [25] N * * N Y Y N Counting
ACSP++ [23] Y Y Y Y Y Y Y Counting

LAP [26] Y * * N N N Y *
Flyweight [29] Y Y Y Y Y Y * *
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Table 3. Cont.

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

MASS [31] N N N N Y N * *
EP-UAP [32] N Y Y N Y * * *
DRAP [33] Y * * Y Y Y Y Y
GUPA [34] Y Y Y Y Y Y Y DoP
FTest [35] Y Y Y Y Y * * Counterfeit + Collision
ACS [36] Y Y Y Y Y * * Counterfeit + Collision
HBA [37] N Y Y Y Y Y N Brute + Counterfeit
HBA+ [6] Y Y Y Y Y Y Y Brute for
VLP [38] Y Y Y * Y Y * *
OMP [39] N * * Y Y Y Y *
SEAS [40] Y Y * Y Y Y Y *
SAP [41] Y * Y Y Y * * *
STS [43] Y * * Y Y Y Y *

CWH+ [44] Y * Y Y * Y * Disclosure
PGX [46] Y Y Y Y N Y * Cloning
PGM [46] Y Y Y Y N Y * Cloning

MACC [48] Y Y * Y N Y Y *
MACD [48] Y Y * Y Y Y Y *
HBROT [53] Y Y Y Y Y Y Y *
HBPER [56] Y Y Y Y Y Y Y *

ST1: replay attack, ST2: man-in-the-middle, ST3: eavesdropping, ST4: impersonate attack, ST5: traceability, ST6:
desynchronization, ST7: DoS, ST8: other types of attack, Y: satisfied, N: not satisfied. *: not applicable.

5.3. Comparison of Security Requirements

Security requirements for an RFID system should be satisfied in order for the system to defend
against the attacks mentioned in this paper. Table 4 compares the security requirements in each
protocol, which includes mutual authentication (SR1), confidentiality (SR2), message integrity (SR3),
privacy (SR4), forward secrecy (SR5), backward secrecy (SR6), tag anonymity (SR7), and conforming to
EPC standards (SR8). We found that most of the protocols fully considered the mutual authentication,
privacy, and data protection, while backward secrecy is given the least attention, and should be more
considered in future work. However, Niu et al. [39] and X. Chen [23] completely satisfied all of the
security requirements in their protocol.

Table 4. Comparison of the Security Requirements.

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

SB-A [11] Y Y Y Y Y * Y N
SB-B [11] Y Y Y Y Y * Y N
ECU [13] N Y Y Y Y * Y N
SPA [14] * * * * N * * *

EMA [15] * * * * N * * *
PII [16] * * * * N * * *

RUND [17] Y Y Y Y Y * Y N
IECC [19] Y Y Y Y Y Y Y N
EECC [20] Y Y Y Y Y Y Y N
RBAC [21] Y Y Y Y * * Y N
NRS [22] N Y N N N N N Y

NRS+ [10] N Y Y N N N N Y
NRS++ [23] Y Y Y Y Y Y Y Y
ACSP [24] Y N N N N N N Y

ACSP+ [25] Y Y Y * N Y * Y
ACSP++ [23] Y Y Y Y Y Y * Y
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Table 4. Cont.

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

LAP [26] Y Y Y N Y * N Y
Flyweight [29] Y Y Y Y Y Y Y Y

MASS [31] Y Y N * Y * * Y
EP-UAP [32] N Y Y Y * * Y Y
DRAP [33] Y * * Y * * Y Y
GUPA [34] Y Y Y Y Y * Y Y
FTest [35] N Y Y Y Y * Y Y
ACS [36] Y * * Y * * Y Y
HBA [37] Y Y Y Y Y * Y Y
HBA+ [6] Y Y Y Y Y * Y Y
VLP [38] Y Y Y Y Y * Y Y
OMP [39] Y Y Y Y Y Y Y Y
SEAS [40] Y Y Y Y Y * Y Y
SAP [41] Y Y Y * * * * Y
STS [43] Y Y Y Y Y * Y Y

CWH+ [44] Y Y Y * Y * * Y
PGX [46] Y * * N * * N Y
PGM [46] Y * * N * * N Y

MACC [48] Y Y Y N Y * N Y
MACD [48] Y Y Y Y Y * Y Y
HBROT [53] Y Y Y Y Y * * Y
HBPER [56] Y Y Y Y Y * * Y

SR1: mutual authentication, SR2: confidentiality, SR3: message integrity, SR4: privacy, SR5: forward secrecy,
SR6: backward secrecy, SR7: tag anonymity, SR8: conforming to EPC standard, Y: satisfied, N: not satisfied, *:
not applicable.

6. Conclusions

Recent RFID authentication protocols are proposed to develop an efficient and secure RFID
system. This survey is conducted to review and compare different RFID authentication protocols of
low-cost passive tags for better utilization in the appropriate application. We demonstrate in this
study the security requirements of an RFID system that must be satisfied, so the system could be able
to defend major attacks such as replay, man-in-the-middle, impersonation, desynchronization, DoS,
and more. We further identify the category levels of the protocols based on the operation complexity
on the tag side, and compare the protocols based on the tag computation cost. Since the RFID
passive tag has limited resources to compute complex operations, the heavyweight and simple-weight
protocols are not feasible for practical implementation. However, lightweight and ultra-lightweight
protocols use only simple operations within the tag computation limits, and show the lowest tag
overhead level. Lightweight and ultra-lightweight protocols are considered the most suitable for the
current applications. Another vital aspect when considering the appropriate RFID protocol is the
security resistance to the attacks. We examined the security threats in each protocol presented in
the review. We found out that Chang et al. [6], Farash [19], Zhang and Qi [20], X. Chen et al. [23],
Liu et al. [34], Lin and Song [53], and Ouaskou et al. [56] protocols successfully resist all of the
major attacks. Although the other protocols could not resist all of the attacks, they could perform
better than the fully secure protocols in term of computation cost; examples include the protocols
presented in Farash [19], Zhang and Qi [20], X. Chen et al. [23], and Liu et al. [34], which have high
computation overhead on the tag side. We encourage researchers to pay attention to the forward
and backward security, since most protocols do not reflect on these two types of attacks. Finally,
maintaining the basic security requirements for an RFID system is required to achieve protection
against the mentioned attacks in this article. Our assessment is that only the protocols of Niu et al. [39]
and X. Chen et al. [23] satisfy all of the security requirements to maintain the system in a stable and
available state. Even though this review shows security variation among the reviewed protocols, each
one could still be a preference over others, depending on the requirements of the application in hand.
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