
sensors

Review

Survey on Prominent RFID Authentication Protocols
for Passive Tags

Rania Baashirah * and Abdelshakour Abuzneid *

Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
* Correspondence: rbaashir@my.bridgeport.edu (R.B.); abuzneid@bridgeport.edu (A.A.);

Tel.: +1-(203)-576-4113 (A.A.)

Received: 1 September 2018; Accepted: 19 October 2018; Published: 22 October 2018
����������
�������

Abstract: Radio Frequency Identification (RFID) is one of the leading technologies in the Internet
of Things (IoT) to create an efficient and reliable system to securely identify objects in many
environments such as business, health, and manufacturing areas. Recent RFID authentication
protocols have been proposed to satisfy the security features of RFID communication. In this article,
we identify and review some of the most recent and enhanced authentication protocols that mainly
focus on the authentication between a reader and a tag. However, the scope of this survey includes
only passive tags protocols, due to the large scale of the RFID framework. We examined some
of the recent RFID protocols in term of security requirements, computation, and attack resistance.
We conclude that only five protocols resist all of the major attacks, while only one protocol satisfies
all of the security requirements of the RFID system.

Keywords: RFID; security; privacy; authentication; passive tag; security threats; security attacks; IoT;
lightweight protocol

1. Introduction

The wireless sensor network has expanded recently to employ new technologies in the Internet of
Things (IoT). The purpose of this evolution is to create a low-cost, reliable, and secure communication
network for current and future applications using radio waves in the most convenient way.
Radio Frequency Identification (RFID) is a technology where the detection of the electromagnetic
signals in the wireless sensor network identifies objects or people. Hundreds and thousands of
RFID applications have been used to improve business efficiency and productivity in a variety of
business operations, including supply chain management, access control limitation, product tracking,
merchandise allocation, toll collection, and so on. It is also considered an integral part of daily life
where its applications not only are limited to business activities, but also daily life activities that are
integrated into cell phones, household, automobile, etc.

Although the basic concept of RFID is similar to barcodes in identifying the items using the data
stored in barcodes, RFID technology has vital benefits over barcodes. It does not require physical
contact with the objects, allows scanning multiple and different types of barcodes using one signal,
has the ability to read and write on the tag multiple times [1], and enables identifying objects in different
climates such as fog and snow, and packaging conditions such as ice, perishable food, and liquids [2].

RFID is considered a significant structure for future market development. Many business
enterprises and manufactures nowadays in the supply chain, including banks, transportation,
government, agriculture, food safety, health care, and mass production, are using RFID to automate
their product identification faster in different conditions to improve their business efficiency and
customer service experience.

Sensors 2018, 18, 3584; doi:10.3390/s18103584 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5416-0315
http://www.mdpi.com/1424-8220/18/10/3584?type=check_update&version=1
http://dx.doi.org/10.3390/s18103584
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 3584 2 of 31

2. System Architecture and Communication Model

The basic system of RFID includes a receiver (reader), transponder (tag), and back-end database
(server) to store and manage data. The RFID tag is a label that is placed into the object to be identified
and located among hundreds and thousands of objects. It consists of a small antenna attached to a
microchip with a small memory to store the object’s identity and data [3]. The RFID reader is a scanner
placed in a fixed location to interrogate the tag whenever the tag exists in the scanning environment.
The back-end database server operates as a data processor that manages, controls, and stores the data
from the tag and reader. An RFID system is depicted in Figure 1 [4].

Sensors 2018, 18, x FOR PEER REVIEW 2 of 31

2. System Architecture and Communication Model

The basic system of RFID includes a receiver (reader), transponder (tag), and back-end database
(server) to store and manage data. The RFID tag is a label that is placed into the object to be
identified and located among hundreds and thousands of objects. It consists of a small antenna
attached to a microchip with a small memory to store the object’s identity and data [3]. The RFID
reader is a scanner placed in a fixed location to interrogate the tag whenever the tag exists in the
scanning environment. The back-end database server operates as a data processor that manages,
controls, and stores the data from the tag and reader. An RFID system is depicted in Figure 1 [4].

Figure 1. Basic Radio Frequency Identification (RFID) Model.

RFID tags can be classified into three categories based on the storage memory, cost, and battery
requirements: passive tags, semi-passive tags, and active tags [5,6].

• A passive tag operates without battery, as the tag is energized when the reader interrogates it
by sending a signal to request tag information. It has a short transmission range in
communication, and has limited resources in term of storage. It is considered the lowest in cost
and has a higher lifespan.

• A semi-passive tag has a battery for its internal chip circuit; however, it is also energized by the
reader interrogation, as in the passive tag.

• An active tag runs with battery and can have two-way communication between tag and reader.
It is larger due to the larger storage capacity and battery. The transmission range is also larger
compared to passive tags. It is more expensive and has a limited life depending on the battery
lifespan [2].

Table 1 provides some comparison of the three types of RFID tags.

Table 1. Classification of RFID Tags [7,8].

 Passive Tags Semi-Passive Tags Active Tags
Power Surrounding signal Internal chip battery Integrated battery
Storage Read memory Reade/write memory Reade/write memory
Distance 5 m 100 m 1000 m
Application Identification Real-time tracking Environmental and logistic
Cost Low High High
Size Small Large Large
Lifespan Unlimited 10 years 10 years
Tag Signal Low High High
Required Signal High Low Low

The basic communication session between an RFID reader and a tag starts when the reader
broadcasts radio waves to interrogate the tag. The tag receives the signal and responds
corresponding to the reader’s request. Since the communication channel between the reader and tag

Figure 1. Basic Radio Frequency Identification (RFID) Model.

RFID tags can be classified into three categories based on the storage memory, cost, and battery
requirements: passive tags, semi-passive tags, and active tags [5,6].

• A passive tag operates without battery, as the tag is energized when the reader interrogates it by
sending a signal to request tag information. It has a short transmission range in communication,
and has limited resources in term of storage. It is considered the lowest in cost and has a
higher lifespan.

• A semi-passive tag has a battery for its internal chip circuit; however, it is also energized by the
reader interrogation, as in the passive tag.

• An active tag runs with battery and can have two-way communication between tag and reader.
It is larger due to the larger storage capacity and battery. The transmission range is also larger
compared to passive tags. It is more expensive and has a limited life depending on the battery
lifespan [2].

Table 1 provides some comparison of the three types of RFID tags.

Table 1. Classification of RFID Tags [7,8].

Passive Tags Semi-Passive Tags Active Tags

Power Surrounding signal Internal chip battery Integrated battery
Storage Read memory Reade/write memory Reade/write memory
Distance 5 m 100 m 1000 m
Application Identification Real-time tracking Environmental and logistic
Cost Low High High
Size Small Large Large
Lifespan Unlimited 10 years 10 years
Tag Signal Low High High
Required Signal High Low Low

The basic communication session between an RFID reader and a tag starts when the reader
broadcasts radio waves to interrogate the tag. The tag receives the signal and responds corresponding
to the reader’s request. Since the communication channel between the reader and tag is assumed to
be insecure, it is important to maintain a secure system during communication to avoid information

Sensors 2018, 18, 3584 3 of 31

leakage or forgery by unauthorized users. Efficient RFID concerns about system security, cost,
and liability are essential factors for future adoption in the IoT.

3. Security Requirements and Threats

3.1. Security Requirements

The basic entities in the RFID system are the tag, reader, and database server. The communication
channel between a tag and a reader is insecure and vulnerable to different security threats.
Security requirements are the ability features that enable the system to avoid security threats. There are
several security requirements to evaluate the security level of an RFID system:

• Mutual Authentication: the main requirement in a simple scenario of RFID communication session
is the authentication between the reader and tag before exchanging or transmitting any secret or
valuable information. Both tag and reader have to prove their legitimacy to each other to start a
secure communication.

• Confidentiality: all of the transmitted messages have to be secure in which secret information and
values that are used to execute communication cannot be obtained by an unauthorized user.

• Integrity: the transmitted data has to maintain its accuracy and not to be altered or changed
during communication.

• Availability: the communication should be successfully executed by maintaining a synchronous
state between the RFID entities. Communication values have to be updated after every successful
session to provide system availability.

• Privacy: all of the secret information such as tag identity has to be secured in order to provide
anonymity and avoid tracing the tag or its location.

• Forward Security: the transmitted data during communication have to be independent and updated
for every session, and cannot be used or related to another authentication session. If a tag or any
information is compromised, it is impossible for an adversary to pass the authentication on or
violate the system.

3.2. Security Threats

A secure RFID system must be able to resist different types of attacks. Messages in RFID
communication are transmitted in clear, and thus are vulnerable to eavesdrop; hence, secret information
is disclosed. Many RFID protocols are proposed to defend against different attacks such as:

• Replay Attack: an adversary tries to capture the tag response and resend it to the reader to start a
successful communication with the reader or obtain any secret information.

• Man-In-The-Middle: an adversary intercepts the message between two legitimate entities
tag/reader to modify it and send it back.

• Impersonate Attack: an adversary obtains either the reader or tag identity information to create a
forged entity. As a result, the adversary acts as a legitimate entity to pass the authentication and
proceed with the communication.

• Traceability: an adversary traces the tag to find its location and revoke the tag’s privacy. This attack
violates the private information of RFID users, which is an instance where the privacy is important.

• Desynchronization Attack: communication session between tag and reader starts using
the synchronous values stored in both the tag and reader to authenticate each other.
A desynchronization attack occurs when an adversary breaks the synchronous state between the
tag and server by blocking the update messages, causing the communication values stored in
both server and tag to be different.

• Denial of Service: an adversary sends multiple signals simultaneously to the server as responses
to make the system unavailable for further communication, which could further lead to a
desynchronization attack.

Sensors 2018, 18, 3584 4 of 31

• Cloning: an adversary uses a malicious device to obtain the reader or tag secret information and
create a fake entity that can be used to perform a successful communication.

• Disclosure: an adversary identifies the secret information of the tag and the secret keys used in the
communication to fully compromise the security of the protocol.

Many other security threats have been identified for RFID systems. A secure RFID system is
created to defend against various threats that are related to the application in use.

4. Review of Recent RFID Authentication Protocols

Several articles are proposed to create a secure RFID protocol that improves the security measures
of RFID systems. The modern advancement in technology helps discover many gaps in the proposed
protocols presented in the literature. The aim of this work is to review some of the recent RFID
authentication protocols that specifically use passive tags. We aim to present an adequate comparison
between the protocols in terms of performance and security.

Since a passive tag is a very small chip with scarce resources, it is able to do only low computations.
Hence, RFID protocols are classified in this paper into four categories based on the complexity of
the algorithm that is used to compute the tag responses: heavyweight, simple weight, lightweight,
and ultra-lightweight [9]. Heavyweight algorithms use symmetric and public key cryptography
that is beyond the scale of the passive tag ability to process. Simple-weight algorithms use hash
functions that are also not feasible for passive tag resources. Lightweight algorithms use simple
one-way hash functions, cyclic redundancy checks, and pseudo-random number generators [10].
Finally, ultra-lightweight algorithms use bitwise operations, which can be performed at low cost.

4.1. Heavyweight Protocols

Wang and Sarma [11] proposed two session-based authentication protocols, SB-A and SB-B,
for reader–tag authentication based on symmetric key encryption to ensure privacy and access
control using two types of passive tags. The protocols are based on a symmetric cryptography
algorithm to provide low-cost authentication such as the Advanced Encryption Standard (AES)
and Data Encryption Standard (DES). Protocol SB-A in Figure 2 includes two processes. The first
phase involves mutual authentication between server and tag according to the three-pass mutual
authentication protocol according to the International Organization of Standardization and the
International Electrotechnical Commission—ISO/IEC 9798-2 [12]. The second phase is for generating
a session key between reader and tag according to the Otway–Rees protocol and updating the pseudo
tag identity (PID). Protocol SB-B in Figure 3 uses tags with no memory or ID so that all of the tag’s
information is stored in the server. A physical tag operation is mapped with the digital virtual tag
in the server that can do all of the tag’s executions. The protocol time to keep synchronization is
controlled by the tag nonce and counter, and not the server, because of the limited power of the tag
to keep synchronization. The protocols proved to be secure against major types of attacks; however,
the protocols are considered to be heavyweight, since DES and AES are expensive operations that
require a lot of computational overhead.

Sensors 2018, 18, 3584 5 of 31
Sensors 2018, 18, x FOR PEER REVIEW 5 of 31

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS
Step 5: Send EKTS (NT, NS, PIDn) to R
→

Step 9:
- Verify OPR
- Generate KRT
- Update PIDn to PIDn+1
Step 10:
Send to R
- EKRS (NR, PIDn, RID, OPR, KRT) →
- EKTS (NT, PIDn+1, RID, OPR, KRT) →

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to server ←

Step 6: Send EKTS (NT, NS, PIDn) to T →

Step 8: Send to server ←
- EKTS (NS, NT), PIDn
- RID, OPR, NR

Step 11:
- Retrieve KRT

- Send EKTS (NT, PIDn+1, RID, OPR, KRT) →
- If OPR is (write), encrypt info with KRT
and send it to T →

Step 2: Send PIDn and nonce NT to R ←

Step 7:
- Verify NT to authenticate S
- Send EKTS (NS, NT), PIDn to R ←

Step 12:
- Retrieve KRT, PIDn+1, RID, OPR
- Verify OPR = OPR in Step1
- Check the on-tag counter
- Decode OPR and execute it
- Update PIDn to PIDn+1
- If OPR is (read), encrypt info with KRT
and send it to reader ←

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce
generated by tag; NR: nonce generated by reader; NS: nonce generated by server; RID: reader ID; OPR:
operation of reader; PIDn: pseudo-ID of tag in current session; EK(M): message encrypted by key K.

Figure 2. Session-Based Authentication Protocol (SB-A) by Wang and Sarma.

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS

Step 5:
- Update PIDn to PIDn+1

- Send EKTS(NT, NS, PIDn+1) to R →

Step 9:
- Verify reader authorization for OPR

Step 10:
- If OPR = read, send the message
- If OPR = kill:

• Send EKTS (NT, PIDn+1, RID) to R
→

• Kill Vtag

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to S ←

Step 6: Send EKTS(NS, NT, PIDn+1) to T →

Step 8:
- Send EKTS (NS, NT, RID, OPR), PIDn to S ←
- Send RID, OPR, NR to S ←

Step 11: Send EKTS (NT, PIDn+1, RID) to T
→

Step 2: Send PIDn and nonce NT to R ←

Step 7:
- Verify NT to authenticate S
- Send EKTS (NS, NT, RID, OPR), PIDn to R ←
- If OPR is not (kill), update PIDn to
PIDn+1

- Retrieve NT, PIDn+1, RID
- Verify RID = RID in step1
- Check on-tag counter with time limit
- Perform physical kill operation

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by tag; NR: nonce
generated by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader; PIDn: pseudo-ID of tag in
current session; EK(M): message encrypted by key K; Vtag: virtual tag in the server.

Figure 3. Session-Based Authentication Protocol (SB-B) by Wang and Sarma.

For traceability issues in RFID, Ryu et al. [13] proposed elliptic curve cryptography-based
untraceable authentication protocol (ECU) using the Schnorr signature scheme. The elliptic curve
cryptography is considered to be a public key cryptography for RFID systems with low constrained
tags. It is used to solve the issues of three recent elliptic curve-based untraceable RFID authentication
protocols: Strong Privacy-preserving Authentication protocol (SPA) [14], Efficient Mutual
Authentication protocol EMA [15], and ECC-based authentication protocol PII [16]. Ryu’s protocol
generates a digital signature with an appendix on the binary message of arbitrary length, and

Figure 2. Session-Based Authentication Protocol (SB-A) by Wang and Sarma.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 31

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS
Step 5: Send EKTS (NT, NS, PIDn) to R
→

Step 9:
- Verify OPR
- Generate KRT
- Update PIDn to PIDn+1
Step 10:
Send to R
- EKRS (NR, PIDn, RID, OPR, KRT) →
- EKTS (NT, PIDn+1, RID, OPR, KRT) →

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to server ←

Step 6: Send EKTS (NT, NS, PIDn) to T →

Step 8: Send to server ←
- EKTS (NS, NT), PIDn
- RID, OPR, NR

Step 11:
- Retrieve KRT

- Send EKTS (NT, PIDn+1, RID, OPR, KRT) →
- If OPR is (write), encrypt info with KRT
and send it to T →

Step 2: Send PIDn and nonce NT to R ←

Step 7:
- Verify NT to authenticate S
- Send EKTS (NS, NT), PIDn to R ←

Step 12:
- Retrieve KRT, PIDn+1, RID, OPR
- Verify OPR = OPR in Step1
- Check the on-tag counter
- Decode OPR and execute it
- Update PIDn to PIDn+1
- If OPR is (read), encrypt info with KRT
and send it to reader ←

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce
generated by tag; NR: nonce generated by reader; NS: nonce generated by server; RID: reader ID; OPR:
operation of reader; PIDn: pseudo-ID of tag in current session; EK(M): message encrypted by key K.

Figure 2. Session-Based Authentication Protocol (SB-A) by Wang and Sarma.

Server S Reader R Tag T

Step 4: Use PID to search the tag KTS

Step 5:
- Update PIDn to PIDn+1

- Send EKTS(NT, NS, PIDn+1) to R →

Step 9:
- Verify reader authorization for OPR

Step 10:
- If OPR = read, send the message
- If OPR = kill:

• Send EKTS (NT, PIDn+1, RID) to R
→

• Kill Vtag

Step 1: Send RID, OPR to T →

Step 3: Send PIDn, NT to S ←

Step 6: Send EKTS(NS, NT, PIDn+1) to T →

Step 8:
- Send EKTS (NS, NT, RID, OPR), PIDn to S ←
- Send RID, OPR, NR to S ←

Step 11: Send EKTS (NT, PIDn+1, RID) to T
→

Step 2: Send PIDn and nonce NT to R ←

Step 7:
- Verify NT to authenticate S
- Send EKTS (NS, NT, RID, OPR), PIDn to R ←
- If OPR is not (kill), update PIDn to
PIDn+1

- Retrieve NT, PIDn+1, RID
- Verify RID = RID in step1
- Check on-tag counter with time limit
- Perform physical kill operation

KRS: server/reader shared key; KTS: server/tag shared key; KRT: reader/tag shared key; NT: nonce generated by tag; NR: nonce
generated by reader; NS: nonce generated by server; RID: reader ID; OPR: operation of reader; PIDn: pseudo-ID of tag in
current session; EK(M): message encrypted by key K; Vtag: virtual tag in the server.

Figure 3. Session-Based Authentication Protocol (SB-B) by Wang and Sarma.

For traceability issues in RFID, Ryu et al. [13] proposed elliptic curve cryptography-based
untraceable authentication protocol (ECU) using the Schnorr signature scheme. The elliptic curve
cryptography is considered to be a public key cryptography for RFID systems with low constrained
tags. It is used to solve the issues of three recent elliptic curve-based untraceable RFID authentication
protocols: Strong Privacy-preserving Authentication protocol (SPA) [14], Efficient Mutual
Authentication protocol EMA [15], and ECC-based authentication protocol PII [16]. Ryu’s protocol
generates a digital signature with an appendix on the binary message of arbitrary length, and

Figure 3. Session-Based Authentication Protocol (SB-B) by Wang and Sarma.

For traceability issues in RFID, Ryu et al. [13] proposed elliptic curve cryptography-based
untraceable authentication protocol (ECU) using the Schnorr signature scheme. The elliptic
curve cryptography is considered to be a public key cryptography for RFID systems with low
constrained tags. It is used to solve the issues of three recent elliptic curve-based untraceable
RFID authentication protocols: Strong Privacy-preserving Authentication protocol (SPA) [14],
Efficient Mutual Authentication protocol EMA [15], and ECC-based authentication protocol PII [16].

Sensors 2018, 18, 3584 6 of 31

Ryu’s protocol generates a digital signature with an appendix on the binary message of arbitrary length,
and requires a cryptographic hash function, as shown in Figure 4. The sender’s session key is combined
with the receiver’s public key to provide privacy, in which the message can be verified by only the
receiver’s private key. Ryu’s protocol is secure against replay attacks, impersonate attacks, traceability
attacks, and it maintains forward security. It requires two scalar multiplications, two hash functions,
a message total size of 544 bits, and two communications between tag and reader. Even though this
protocol requires complex computations associated with scalar multiplications and a hash function,
it does not authenticate the reader.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 31

requires a cryptographic hash function, as shown in Figure 4. The sender’s session key is combined
with the receiver’s public key to provide privacy, in which the message can be verified by only the
receiver’s private key. Ryu’s protocol is secure against replay attacks, impersonate attacks,
traceability attacks, and it maintains forward security. It requires two scalar multiplications, two
hash functions, a message total size of 544 bits, and two communications between tag and reader.
Even though this protocol requires complex computations associated with scalar multiplications and
a hash function, it does not authenticate the reader.

Server S Reader R Tag T
Setup Phase:
- Generate elliptic group G of prime
order q.
- Choose generator P of group G.
- Server private/public keys (y, Y = yP)
- Store tag verifier X = xP (public key)

Authentication Phase:

Step 1: Send random c to T →

Step 3: To authenticate tag
- Compute R’ = y−1 Z
- Derive X’ = eid ⊕ H (R’, s)
- Check X’ = X registered verifier
- Compute v’ = H (R’, c)
- Authenticate the tag as H(sP − v’ X, c) = v’

Store x, X, Y (server public key)

Step 2:
- Pick r as session secret
- R = rP
- v = H (R, c)
- schnorr sign Z = rY, s = r + x * v
- Encrypted verifier eid = X ⊕ H
(R,s)
- Send (eid, Z, s) to R ←

G: Cyclic additive group; P: Generator of group G; q: Order of group G; xi: Tag’s private key; ⊕ XOR; Xi: Tag’s public key; y:
Server’s private; Y: Server’s public; H: Hash function.

Figure 4. Elliptic Curve Cryptography-Based Untraceable Authentication Protocol (ECU) by Ryu.

To reduce the tag’s overhead in heavyweight protocols, Yao et al. [17] introduced The
Reviving-UNder-DoS (RUND) authentication protocol to defend against denial of service (DoS) and
preserve user privacy by powering up the tag to do complex computing for symmetric and public
key cryptography. It leverages the power in DoS scans to enable the tag to respond in two ways:
either using simple encryption when the tag is activated by low signals from a reader, or using
public encryption (higher security) when the backscattered signals are high in an insecure
environment. The more signals there are in communication, the more power charges the tag. The
option of using public key encryption in RUND protocol is to overcome the problem of breaking up
the synchronization state between the reader and tag in symmetric key encryption. The protocol is
secure because secret information is not sent in clear, so no useful information can be gained if any
message is compromised. Moreover, the parameters used in communication are changed and
updated in every session, as shown in Figure 5, to prevent replay attack, maintain forward security,
and resist tracking. Even though the overall efficiency of RUND is O(1), it is still not compliant with
the Electronic Product Code Class1 Generation2 (EPC C1 G2) standard [18], which is defined by
EPCGlobal Inc. for RFID data communication.

Figure 4. Elliptic Curve Cryptography-Based Untraceable Authentication Protocol (ECU) by Ryu.

To reduce the tag’s overhead in heavyweight protocols, Yao et al. [17] introduced The
Reviving-UNder-DoS (RUND) authentication protocol to defend against denial of service (DoS)
and preserve user privacy by powering up the tag to do complex computing for symmetric and
public key cryptography. It leverages the power in DoS scans to enable the tag to respond in two
ways: either using simple encryption when the tag is activated by low signals from a reader, or
using public encryption (higher security) when the backscattered signals are high in an insecure
environment. The more signals there are in communication, the more power charges the tag. The option
of using public key encryption in RUND protocol is to overcome the problem of breaking up the
synchronization state between the reader and tag in symmetric key encryption. The protocol is secure
because secret information is not sent in clear, so no useful information can be gained if any message is
compromised. Moreover, the parameters used in communication are changed and updated in every
session, as shown in Figure 5, to prevent replay attack, maintain forward security, and resist tracking.
Even though the overall efficiency of RUND is O(1), it is still not compliant with the Electronic Product
Code Class1 Generation2 (EPC C1 G2) standard [18], which is defined by EPCGlobal Inc. for RFID
data communication.

Sensors 2018, 18, 3584 7 of 31

Sensors 2018, 18, x FOR PEER REVIEW 7 of 31

Server: S Reader R: PUR, PRR, shared Ki Tag T: PUR, shared Ki, ID
Initialization Phase:

Mutual Authentication
Phase:

Updating Phase:

Step 1: Precompute and store in S: f(Ki, c, pad1) ←
Where pad is padding length for f()

Step 2: Send power waves last for Tpw with energy Ec.
Send PRN r1 in l length to tag →

Step 5: If response with symmetric:
- Check counter c and search database for f(K’, c’,
pad1) ←
- Check r1 for replayed msg.
- If matches: tag is authenticated.
If response with public key:
- Check and search database for (ID, K) pair ←
- Check r1, r2 for replayed msg.
- If matches: tag is authenticated

Step 6: Generate r3 and compute I3 = r3||f(K, r3||I1,
pad1)
- Send I3, r3 to tag →
- Update K = f(K, r3, pad1)
- Update precomputed f(Ki, c, pad1) with updated key.
- Preserve old key of tag.

- Counter c is set to 0.

Step3: Compute:
If Ec energy:
- I1 = f(K, c, pad1)
- I2 = r1||f(K, r1||I1, pad1)
- I = I1||I2
- Update c = c + 1
- Energy consumed Esk
If Epk energy:
- E(PUR, K, r1||r2, ID, c) in l length
- Energy consumed Epk
Step4: Send I to reader ←

Step 7: Check I3 using r3 by
computing I’3
- If matches: reader is authenticated.
- Update K = f(K, r3, pad1)
- C = 0

PUR: Public key of reader; ID: Tag’s ID; Ki: Shared symmetric key; c: Counter for current key lifecycle; PRR: Private key of
reader; padi: Padding for f(); Ec: The initial power the tag is charged; TPW: Time for the power waves to last; ESK: Energy
consumption for hash function; EPK: Energy consumption for public key.

Figure 5. The Reviving-UNder-Denial of Service Authentication Protocol (RUND) by Yao.

4.2. Simple-Weight Protocols

To better improve the performance of RFID protocols and reduce the power that is needed for
complex operations in ECC-based protocols, Farash [19] proposed a mutual authentication protocol
(IECC) based on the elliptic curve. The protocol enhances Chou’s authentication protocol (EMA) [15],
which does not fulfill the security requirement of forward security, mutual authentication, tag
privacy, and security against location tracking, impersonating attacks, and tag cloning attack for an
RFID system. The main idea behind the protocol is to use the server’s public key to create the
authentication message to avoid breaking the system privacy, as depicted in Figure 6. The IECC
protocol is secure against major attacks, even though the computation cost is the same as in Chou’s
protocol that needs to be reduced for practical implementation.

Figure 5. The Reviving-UNder-Denial of Service Authentication Protocol (RUND) by Yao.

4.2. Simple-Weight Protocols

To better improve the performance of RFID protocols and reduce the power that is needed for
complex operations in ECC-based protocols, Farash [19] proposed a mutual authentication protocol
(IECC) based on the elliptic curve. The protocol enhances Chou’s authentication protocol (EMA) [15],
which does not fulfill the security requirement of forward security, mutual authentication, tag privacy,
and security against location tracking, impersonating attacks, and tag cloning attack for an RFID
system. The main idea behind the protocol is to use the server’s public key to create the authentication
message to avoid breaking the system privacy, as depicted in Figure 6. The IECC protocol is secure
against major attacks, even though the computation cost is the same as in Chou’s protocol that needs
to be reduced for practical implementation.

Sensors 2018, 18, 3584 8 of 31

Sensors 2018, 18, x FOR PEER REVIEW 8 of 31

Server S: {Xi, yP, P} Reader R Tag T: {Xi, Y, P}
Setup phase:
- Generate an elliptic group G of prime order q
- Choose generator P of group G
- Choose random no. y as private key
- Public key Y = yP
- Choose random X from G as tag identifier
- Store Xi, Y, P in each tag.

Authentication phase:
Step 1:
- Choose a prime random no. r
- Compute C0 = rP
- Send C0 to tags →

Step 3:
- Obtain K’ = y−1C1
- Obtain Xi’ = C2 – h(C0, C1, K’)
- Find a match for Xi’ in DB
- If found: C3 = h(Xi’, K’) and tag authenticated
- Send C3 to tag →

Step 2:
- Choose a prime random no. k
- K = kP
- C1 = kY
- C2 = Xi + h(C0, C1, K)
- Send C1, C2 to server →

Step 4:
- Validate C3 = (Xi, K)
- Server is authenticated

G: A additive group of prime order q; P: Generator of group G; h: One-way hash function; y: Server’s private; Y: Server’s
public; Xi: Identifier of ith tag which is a random point in G.

Figure 6. Mutual Authentication Protocol Based on Elliptic Curve Cryptography (IECC) by Farash.

Zhang and Qi [20] also proposed another protocol (EECC) to withstand the security weaknesses
of Chou’s protocol, EMA [15]. EECC protocol enhances patient medication safety by also using
elliptic curve cryptography. In comparison to EMA protocol, EECC protocol resulted in better
performance and security resistance to impersonate and forward security attacks.

B.Chen [21] proposed a role-based access control (RBAC) protocol for mobile RFID to enable
user privacy, role, and access control through the back-end server based on a certification
mechanism. RBAC assigns role classes as keys to control the information and the number of times
each reader can read a tag. RBAC authorizes readers, assigns role classes to control the reader’s
authority to request tag information, and updates time stamps using random numbers and different
shared keys between the database server and reader and tag ad, as depicted in Figure 7. Traceability
and replay attacks are prevented using updated random numbers in every session; access control is
provided using shared keys to prevent unauthorized readers to request or read any tag’s
information, and integrity is ensured using timestamps. However, RBAC uses one encryption
mechanism that is excessive for low-cost passive tags.

Figure 6. Mutual Authentication Protocol Based on Elliptic Curve Cryptography (IECC) by Farash.

Zhang and Qi [20] also proposed another protocol (EECC) to withstand the security weaknesses
of Chou’s protocol, EMA [15]. EECC protocol enhances patient medication safety by also using elliptic
curve cryptography. In comparison to EMA protocol, EECC protocol resulted in better performance
and security resistance to impersonate and forward security attacks.

B.Chen [21] proposed a role-based access control (RBAC) protocol for mobile RFID to enable
user privacy, role, and access control through the back-end server based on a certification mechanism.
RBAC assigns role classes as keys to control the information and the number of times each reader can
read a tag. RBAC authorizes readers, assigns role classes to control the reader’s authority to request
tag information, and updates time stamps using random numbers and different shared keys between
the database server and reader and tag ad, as depicted in Figure 7. Traceability and replay attacks are
prevented using updated random numbers in every session; access control is provided using shared
keys to prevent unauthorized readers to request or read any tag’s information, and integrity is ensured
using timestamps. However, RBAC uses one encryption mechanism that is excessive for low-cost
passive tags.

Sensors 2018, 18, 3584 9 of 31

Sensors 2018, 18, x FOR PEER REVIEW 9 of 31

Server: kx, ky keys Reader: ky keys Tag: kx keys
1- Reader Authorization and role class:

- Request role-class command, read tag
command, TID, and RID from RBAC
- RBAC sends role-class.
- M3 = Eky(RID, r1, TS1, CertR, role-class)
- M4 = Ekx(TID, r2, TS1, role-class)
- Send M3, M4 to reader →

2- Assign No. of reads and update
timestamps:

Step 7: Retrieve CertR, r2 from M7
- If CertR is verified, retrieve TS2, TCn−1 from
M6.
- M8 = Eky(TS2, TCn−1, r2)
- Send M8 to reader →

Step 1: Reader sends Hello to tag →

- Create random no. r2.
- M2 = Eky (M1, r2, RID, Command)

Step 3: Send M2 to server ←

Step 4:
- Retrieve r1, TS1, CertR, role-class from
M3.
- M5 = H(TS1 ⊕ r2)
- Send M4, M5 to tag →

Step 6:
- Receive M6
- M7 = Eky(CertR, r2, M6)
- Send M7 to database server ←

Step 8:
- Retrieve TS2, TCn−1, r2 from M8

- Verify r2

- Create random no. r1
- M1 = Ekx (TID, TS, r1)

Step 2: Sends M1 to reader ←

Step 5: Verify M5 using TS1 from M4
and its r1 to authenticate reader
- Calculate number of reads
TCn−1 = TCn – 1
- if TS1 is verified, it’s updated to TS2
- M6 = Ekx(TS2, TCn−1)
- Send M6 to reader ←

TID: Tag ID; Ky: Server/Reader shared key; r: random number; TCn: number of times a reader request information; Kx: Server/Tag
shared key; TS: Timestamp; CertR: Reader security certificate; RBAC: role-based access control.

Figure 7. Role-Based Access Control Protocol (RBAC) by B. Chen.

4.3. Lightweight Protocols

Successful businesses demand an efficient RFID system that is mainly based on low
computation for a low cost. Many recent RFID protocols use low-cost operations that are handled by
low-cost passive tags for practical implementations.

Fernando and Abawajy [22] proposed a mutual authentication protocol for Networked RFID
Systems NRS, which is a lightweight mutual authentication scheme for an RFID system using low
operations such as excusive or operation (XOR) and one-way hash functions. However, Alagheband
and Aref [10] reported NRS to be vulnerable to major attacks and specifically a full disclosure attack
that compromises the whole RFID system. Alagheband and Aref improved NRS protocol and
proposed NRS+ by adding three more hash functions to the authentication message to increase the
system security. X. Chen et al. [23] noted that the NRS+ protocol is exposed to desynchronization
and traceability attacks by using one random number for the tag and reader. Thus, X. Chen
proposed NRS++ to improve the security flaws in the previous versions of NRS by generating two
different random numbers, r1 and r2, for the tag and reader using a pseudo-random number
generator (PRNG) to defend against replay attack. In Figure 8, the authentication message M3 is
encrypted using the tag’s random number r1 and reader’s random number r2 to provide message
integrity, so any modified message cannot be verified by the tag. NRS++ uses fewer hash functions,
which resulted in less computation overhead and storage space than the other versions, with more
security power.

Figure 7. Role-Based Access Control Protocol (RBAC) by B. Chen.

4.3. Lightweight Protocols

Successful businesses demand an efficient RFID system that is mainly based on low computation
for a low cost. Many recent RFID protocols use low-cost operations that are handled by low-cost
passive tags for practical implementations.

Fernando and Abawajy [22] proposed a mutual authentication protocol for Networked RFID
Systems NRS, which is a lightweight mutual authentication scheme for an RFID system using low
operations such as excusive or operation (XOR) and one-way hash functions. However, Alagheband
and Aref [10] reported NRS to be vulnerable to major attacks and specifically a full disclosure attack that
compromises the whole RFID system. Alagheband and Aref improved NRS protocol and proposed
NRS+ by adding three more hash functions to the authentication message to increase the system
security. X. Chen et al. [23] noted that the NRS+ protocol is exposed to desynchronization and
traceability attacks by using one random number for the tag and reader. Thus, X. Chen proposed
NRS++ to improve the security flaws in the previous versions of NRS by generating two different
random numbers, r1 and r2, for the tag and reader using a pseudo-random number generator (PRNG)
to defend against replay attack. In Figure 8, the authentication message M3 is encrypted using the tag’s
random number r1 and reader’s random number r2 to provide message integrity, so any modified
message cannot be verified by the tag. NRS++ uses fewer hash functions, which resulted in less
computation overhead and storage space than the other versions, with more security power.

Sensors 2018, 18, 3584 10 of 31
Sensors 2018, 18, x FOR PEER REVIEW 10 of 31

Server S Reader R Tag T

- Update secrets in Database
IDnew = ID ⊕ (r2right||K1left)
K1new = H[(K1right||r1left) ⊕ r2]

Step 1:
- Generate random no. r
- Calculate M1 = H(EPC ⊕ K1||r)

M2 = r ⊕ K1
- Send to tag M1||M2 →

Step 3:
- Extract r1 = N ⊕ K1
- Compute C2 = H(EPC ⊕ K1||r||r1)
- Verify C2 = M3
If equal:
Generate random no. r2
M4 = r2 ⊕ K1
M5 = H(EPC ⊕ K1||r1||r2)
If not equal: terminate
- Send M4||M5 →

Step 2:
- Extract r as r = M2 ⊕ K1
- Compute C1 = H(EPC ⊕ K1||r)
If C1 = M1, generate r1

N = r1 ⊕ K1
M3 = H(EPC ⊕ K1|| r||r1)

Else termination
- ← Send M3||N to reader

Step 4:
- Extract r2 as r2 = M4 ⊕ K1
- Compute C3 = H(EPC ⊕ K1||r1||r2)
- Verify C3 = M5
If equal: Update the secrets.
If not equal: terminate

ID, EPC: Tag identifier; H(): one-way hash function; K1: Server/Tag shared key; r, r1, r2: random No; ⊕/||: XOR and
concatenation operation.

Figure 8. Mutual Authentication Protocol for Networked RFID Systems (NRS++) by X. Chen.

C. Chen [24] proposed Anti-Counting Security Protocol (ACSP) as another lightweight protocol
for RFID systems to defend from a counter attack, which is defined as the attacker’s ability to count
the number of objects in a system. Safkhani et al. [25] reported ACSP to be vulnerable to major
attacks, including the forward/backward traceability attack. Safkhani further proposed ACSP+ to
improve Chen’s protocol. Later, X. Chen [23] pointed out that ACSP protocol is not secure, and
proposed ACSP++ to withstand DoS and forward/backward traceability attacks. ACSP++ enhances
the session identifier (SID) update, which is used to verify the current session, and tag identification
phases that suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as depicted in
Figure 9, a tag identifier (TID) is added to the identification message as (ܶܰܧܦܫതതതതതതതതത, R4, R5, TID) instead
of (ܶܰܧܦܫതതതതതതതതത, R4, R5), and the authentication message ((ܰܧܪܷܶܣതതതതതതതതതതതത, R4, R5, TID) is replaced with
 to overcome DoS attack and modifying the TID in the identification phase. The (തതതതതതതതതതതത, R5, TIDܰܧܪܷܶܣ)
update phase of every key is associated with two separate nonce values to avoid forward and
backward traceability. Even though the protocol improved the security weaknesses of all of the
ACSP versions, it did not lower the computation overhead nor the storage space.

Figure 8. Mutual Authentication Protocol for Networked RFID Systems (NRS++) by X. Chen.

C. Chen [24] proposed Anti-Counting Security Protocol (ACSP) as another lightweight protocol
for RFID systems to defend from a counter attack, which is defined as the attacker’s ability to count
the number of objects in a system. Safkhani et al. [25] reported ACSP to be vulnerable to major attacks,
including the forward/backward traceability attack. Safkhani further proposed ACSP+ to improve
Chen’s protocol. Later, X. Chen [23] pointed out that ACSP protocol is not secure, and proposed
ACSP++ to withstand DoS and forward/backward traceability attacks. ACSP++ enhances the session
identifier (SID) update, which is used to verify the current session, and tag identification phases that
suffer from different attacks in ACSP and ACSP+ versions. In ACSP++ as depicted in Figure 9, a tag
identifier (TID) is added to the identification message as (IDENT, R4, R5, TID) instead of (IDENT,
R4, R5), and the authentication message (AUTHEN, R4, R5, TID) is replaced with (AUTHEN, R5,
TID) to overcome DoS attack and modifying the TID in the identification phase. The update phase of
every key is associated with two separate nonce values to avoid forward and backward traceability.
Even though the protocol improved the security weaknesses of all of the ACSP versions, it did not
lower the computation overhead nor the storage space.

Sensors 2018, 18, 3584 11 of 31

Sensors 2018, 18, x FOR PEER REVIEW 11 of 31

Reader R Tag T
(SID Update Phase) Step 1:
- Generate nonce R1
- Send the following to tag: ܷܲܦܫܵܦതതതതതതതതതതത, R1⊕SID, H(ܷܲܦܫܵܦതതതതതതതതതതത, R1, SID) →

Step 3:
- Extract R2 and verify H(ܷܲܭܥܣܦതതതതതതതതതതതത, R2, R1, SID)
- Update SID as SIDnew = H(SID||R2||R1)

Step 2:
- Extract R1 to verify H(ܷܲܦܫܵܦതതതതതതതതതതത, R1, SID)
- Generate R2
- Update SID
SIDnew = H(SID||R2||R1)
SIDold = SIDcur
- ← Send to reader confirmation: ܷܲܭܥܣܦതതതതതതതതതതതത, R2 ⊕ SID, H(ܷܲܭܥܣܦതതതതതതതതതതതത, R2, R1, SID)

(Tag Identification Phase) Step1:
- Generate R3, R4
- Send the following messages to tag →
a) ܵܶܥܧܮܧതതതതതതതതതതത, SID1⊕ R3, H(ܵܶܥܧܮܧതതതതതതതതതതത, R3, SID))
b) ܷܻܴܳܧതതതതതതതതതത, SID ⊕ TID ⊕ R4, H(ܷܻܴܳܧതതതതതതതതതത, R4, SID, TID))

Step 4:
- Authenticate tag
- Extract R5’ to verify H(ܶܰܧܦܫതതതതതതതതത, R4, R5, TID)
- If not verified: stop the session and send ܷܻܴܳܧ	ܲܧܴതതതതതതതതതതതതതതതത →

- If verified: update TID as TIDnew = H(TID||R4||R5)

TIDold = TID
- Send (ܰܧܪܷܶܣതതതതതതതതതതതത, H(ܰܧܪܷܶܣതതതതതതതതതതതത, R5, TID) →

Step 2:
- Extract R3’ to verify H(ܵܶܥܧܮܧതതതതതതതതതതത, R3, SID)
If not verified: wait until next run.
If verified: respond with step3.

Step 3:
- Extract R4’ to verify H(ܷܻܴܳܧതതതതതതതതതത, R4, SID, TID)
- Generate R5
- ← Send (ܶܰܧܦܫതതതതതതതതത, TID ⊕ R5, H(ܶܰܧܦܫതതതതതതതതത, R4, R5, TID)

Step 5:
- Calculate and verify H(ܰܧܪܷܶܣതതതതതതതതതതതത, R5, TID)
- If not verified: stop the session.
- If verified: update the tag identifier as TIDnew =
H(TID||R4||R5)

R1, R2, R3, R4, R5: nonce; ܵܶܥܧܮܧതതതതതതതതതതത/ܷܻܴܳܧതതതതതതതതതത: Select/ query commands; SIDcur/ SIDnew: Current/ New session identifier; ܷܲܦܫܵܦതതതതതതതതതതത/ܷܲܭܥܣܦതതതതതതതതതതതത: SID update/ Update knowledge message; TIDcur/TIDnew: Current/ New unique identifier; ܶܰܧܦܫതതതതതതതതത/	ܰܧܪܷܶܣതതതതതതതതതതതത: Identification/ authentication messages.

Figure 9. Anti-Counting Security Protocol (ACSP++) by X. Chen.

Chien and Huang [26] presented LAP, which is a lightweight authentication protocol to solve
the vulnerabilities in the authentication protocol of Li et al. [27], and enhance the computational cost
from O(n) to O(1) in identifying tags in RFID systems. The security of LAP protocol is based on a
synchronized PRNG between reader and tag using a secret key, secret ID, and index pseudonym. In
Figure 10, LAP protocol uses the rotate operator on the message and left/right operator for the
divided rotation during the messages that were exchanged to form a secure permutation. Random
numbers are used to shift the secret values of the tag to be used safely in communication. Then, the
random number is XORed with the shifted secret value to securely retrieve a tag by the server. The
server uses the index pseudonym (IDS) to quickly identify the tag in the database instead of
computing PIDL ⊕ PIDR for every tag to make the computation O(1). LAP protocol is resistant to
replay attack, DoS, and forward security. It can be employed easily by different standards such as
EPC Gen2 and ISO 15693 [28] for practical implementation. However, the protocol was noted as
being partially secure against traceability and synchronization attacks, since a tag can be traced
between two successful sessions if the tag could not update its IDS.

Figure 9. Anti-Counting Security Protocol (ACSP++) by X. Chen.

Chien and Huang [26] presented LAP, which is a lightweight authentication protocol to solve
the vulnerabilities in the authentication protocol of Li et al. [27], and enhance the computational cost
from O(n) to O(1) in identifying tags in RFID systems. The security of LAP protocol is based on a
synchronized PRNG between reader and tag using a secret key, secret ID, and index pseudonym.
In Figure 10, LAP protocol uses the rotate operator on the message and left/right operator for the
divided rotation during the messages that were exchanged to form a secure permutation. Random
numbers are used to shift the secret values of the tag to be used safely in communication. Then,
the random number is XORed with the shifted secret value to securely retrieve a tag by the server.
The server uses the index pseudonym (IDS) to quickly identify the tag in the database instead of
computing PIDL ⊕ PIDR for every tag to make the computation O(1). LAP protocol is resistant to
replay attack, DoS, and forward security. It can be employed easily by different standards such as
EPC Gen2 and ISO 15693 [28] for practical implementation. However, the protocol was noted as being
partially secure against traceability and synchronization attacks, since a tag can be traced between two
successful sessions if the tag could not update its IDS.

Sensors 2018, 18, 3584 12 of 31

Sensors 2018, 18, x FOR PEER REVIEW 12 of 31

Server S: flag, Xold, Xnew, IDSold, IDSnew, SID Reader R Tag T: {SID, IDS, X}

Step 2:
- Search IDSi
- If IDS == IDSold: flag = 0, X = Xold
- If IDS == IDSnew: flag = 1, X = Xnew
- g’ = g(R1||R2||X)
- SID’ = rotate(SID, g’)
- Verify R’ as R’ = left(SID’ ⊕ g’)
- Compute R’’ = right(SID’ ⊕ g’)
- If flag = 1

• IDSold = IDSnew
• Xold = Xnew

- Else
• IDSnew = g(IDS||SID’)
• Xnew = g(X||g’)

- Send R’’ to reader →

Step 4:
- When OK is received, send SID to R →

Step 1:
- Generate R1.
- Send Query||R1 to T →

- Forward R1||R2||R’||IDS to S ←

- Forward R’’ to T →

- Forward ACK to S ←

- Generate R2
- Compute g’ = g(R1||R2||X)
- SID’ = rotate(SID, g’)
- R’ = left(SID’ ⊕ g’)
- Send R2||R’||IDS to R ←

Step 3:
- Verify R’’ right(SID’ ⊕ g’)
- Update:

• IDS = g(IDS||SID’)
• X = Xnew = g(X||g’)

- Send ACK to R ←

SID: Secure ID; PID: Partial ID; IDS: Index pseudonym; g(): Random No. generator; X: l-bit secret key; R1, R2: Random numbers;
Rotate(): Rotation function; Left(s): Left half of s; Right(s): Right half of s; ACK: Acknowledgement.

Figure 10. Lightweight Authentication Protocol (LAP) by Chien.

Burmester and Munilla [29] proposed a lightweight mutual authentication protocol called
Flyweight that is based on exchanging messages using only PRNG. Their protocol is based on a
shared PRNG algorithm between the tags and back-end server that takes the same seed to produce
the same output. The concept of the protocol is to use three consecutive numbers—RN1, RN2, and
RN3—generated by the same PRNG in the server, and the tags of five numbers if an active adversary
is presented, such as in Figure 11. Furthermore, RFID tags precompute the values to the server
challenging the response, so an adversary can be detected based on the response time from the tag.
The protocol is able to provide mutual authentication, integrity, confidentiality, and forward and
backward security. In addition, it provides strong synchronization, since the server keeps a record
for the current and next response value of the tag.

S. Lee et al. [30] proposed a lightweight protocol (MASS) for RFID systems using XOR and a
one-way hash function to conform to the scarce resources of RFID tags. The concept of the MASS
protocol is to challenge the tag with a fresh random string every session, and the tag responds using
the reader’s value and its own random key to authenticate the reader ad, as depicted in Figure 12. The
secret key is shared between entities, and all of the messages are encrypted during transmission.
However, Zuo [31] conducted a survivability experiment on the authentication protocol proposed by
S. Lee et al. and defined the vulnerability of the protocol to replay, desynchronize, and impersonate
attacks. Zuo concluded from his experiment that the system could employ two different values for the
keys (old, new) to recognize the tag and overcome the desynchronization problem.

Figure 10. Lightweight Authentication Protocol (LAP) by Chien.

Burmester and Munilla [29] proposed a lightweight mutual authentication protocol called
Flyweight that is based on exchanging messages using only PRNG. Their protocol is based on a
shared PRNG algorithm between the tags and back-end server that takes the same seed to produce
the same output. The concept of the protocol is to use three consecutive numbers—RN1, RN2,
and RN3—generated by the same PRNG in the server, and the tags of five numbers if an active
adversary is presented, such as in Figure 11. Furthermore, RFID tags precompute the values to the
server challenging the response, so an adversary can be detected based on the response time from the
tag. The protocol is able to provide mutual authentication, integrity, confidentiality, and forward and
backward security. In addition, it provides strong synchronization, since the server keeps a record for
the current and next response value of the tag.

S. Lee et al. [30] proposed a lightweight protocol (MASS) for RFID systems using XOR and a
one-way hash function to conform to the scarce resources of RFID tags. The concept of the MASS
protocol is to challenge the tag with a fresh random string every session, and the tag responds using
the reader’s value and its own random key to authenticate the reader ad, as depicted in Figure 12.
The secret key is shared between entities, and all of the messages are encrypted during transmission.
However, Zuo [31] conducted a survivability experiment on the authentication protocol proposed by
S. Lee et al. and defined the vulnerability of the protocol to replay, desynchronize, and impersonate
attacks. Zuo concluded from his experiment that the system could employ two different values for the
keys (old, new) to recognize the tag and overcome the desynchronization problem.

Sensors 2018, 18, 3584 13 of 31

Sensors 2018, 18, x FOR PEER REVIEW 13 of 31

Server S Reader R Tag T

- Check if RN1 = RN1cur

• cnt = 1
• Generate RN2, send RN2 to R →

- If RN1 = RN1next
• cnt = 0
• Update values in DB
• Send updated RN2 to R →

Step 4:
- If RN = RN3, and cnt = 0

• Tag is authenticated
- If RN = RN4

• Send RN3, store RN5
• Update values
• Send RN3 to R

Step 6:
- If RN5 is correct

• Authenticate T
• Update values

- Else terminate

Step 1:.
- Send Query to T →

Step 2:
- Forward RN1 to S ←

- Forward RN2 to T →

- Forward RN4 to S ←

- Forward RN3 to T →

- Forward RN5 to S ←

- RN1 = gtag (state)
- Set alarm cnt = 1
- Send RN1 to R ←

Step 3:
- If RN2 is correct to authenticate S

• Generate RN3, RN4, RN5
• Cnt = 0

- If cnt = 0, send RN3 to R ←
- If cnt = 1, send RN4 to R ←

Step 5:
- If RN3 is correct and cnt = 1

• Send RN5 to R ←
- Else terminate

RN: Random numbers output of the same generator function cnt: l-bit flag

Figure 11. Flyweight Mutual Authentication Protocol by Burmeter and Munilla.

Server S Reader R Tag T

Step 1:
- Generate l-bit string str
- Send str to tag →

Step 3:
- Search database to match key Ki
- If found proceed to update key
- Retrieve rB from rC
- Ki = h(Ki)
- r’C = h(rB ⊕ Ki ⊕ str)
- Send r’C to tag →

Step 2:
- Generate l-bit string rA
- rB = h(rA ⊕ Ki ⊕ str)
- rC = h(rB ⊕ Ki ⊕ str)
- Send rB, rC to reader ←

Step 4:
- Verify r’C = rC
- If verified, update key

Ki: Tag/server shared secret key; h(): One-way hash function

Figure 12. Lightweight Protocol based on Synchronized Secret (MASS) by S. Lee.

To reduce the communication time during the authentication session, K. Lee et al. [32] proposed
Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The concept of EP-UAP is that
the system precomputes all of the necessary computations before the system initialization, so only
low computation overhead is required on the tag side during the process phase. The protocol is
based on Randomized Hash-Lock protocol, which uses a static identifier, and its strong security
against traceability depends mainly on PRNG to randomize the responses, as explained in Figure 13.
Since precomputing all of the possible random numbers and responses requires a storage memory
for all of the precomputed data in the database, EP-UAP is preferred for small to medium networks,
as the storage memory increases when the number of tags increases. The protocol shows a huge

Figure 11. Flyweight Mutual Authentication Protocol by Burmeter and Munilla.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 31

Server S Reader R Tag T

- Check if RN1 = RN1cur

• cnt = 1
• Generate RN2, send RN2 to R →

- If RN1 = RN1next
• cnt = 0
• Update values in DB
• Send updated RN2 to R →

Step 4:
- If RN = RN3, and cnt = 0

• Tag is authenticated
- If RN = RN4

• Send RN3, store RN5
• Update values
• Send RN3 to R

Step 6:
- If RN5 is correct

• Authenticate T
• Update values

- Else terminate

Step 1:.
- Send Query to T →

Step 2:
- Forward RN1 to S ←

- Forward RN2 to T →

- Forward RN4 to S ←

- Forward RN3 to T →

- Forward RN5 to S ←

- RN1 = gtag (state)
- Set alarm cnt = 1
- Send RN1 to R ←

Step 3:
- If RN2 is correct to authenticate S

• Generate RN3, RN4, RN5
• Cnt = 0

- If cnt = 0, send RN3 to R ←
- If cnt = 1, send RN4 to R ←

Step 5:
- If RN3 is correct and cnt = 1

• Send RN5 to R ←
- Else terminate

RN: Random numbers output of the same generator function cnt: l-bit flag

Figure 11. Flyweight Mutual Authentication Protocol by Burmeter and Munilla.

Server S Reader R Tag T

Step 1:
- Generate l-bit string str
- Send str to tag →

Step 3:
- Search database to match key Ki
- If found proceed to update key
- Retrieve rB from rC
- Ki = h(Ki)
- r’C = h(rB ⊕ Ki ⊕ str)
- Send r’C to tag →

Step 2:
- Generate l-bit string rA
- rB = h(rA ⊕ Ki ⊕ str)
- rC = h(rB ⊕ Ki ⊕ str)
- Send rB, rC to reader ←

Step 4:
- Verify r’C = rC
- If verified, update key

Ki: Tag/server shared secret key; h(): One-way hash function

Figure 12. Lightweight Protocol based on Synchronized Secret (MASS) by S. Lee.

To reduce the communication time during the authentication session, K. Lee et al. [32] proposed
Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The concept of EP-UAP is that
the system precomputes all of the necessary computations before the system initialization, so only
low computation overhead is required on the tag side during the process phase. The protocol is
based on Randomized Hash-Lock protocol, which uses a static identifier, and its strong security
against traceability depends mainly on PRNG to randomize the responses, as explained in Figure 13.
Since precomputing all of the possible random numbers and responses requires a storage memory
for all of the precomputed data in the database, EP-UAP is preferred for small to medium networks,
as the storage memory increases when the number of tags increases. The protocol shows a huge

Figure 12. Lightweight Protocol based on Synchronized Secret (MASS) by S. Lee.

To reduce the communication time during the authentication session, K. Lee et al. [32] proposed
Efficient Passively-Untraceable Authentication Protocol (EP-UAP). The concept of EP-UAP is that
the system precomputes all of the necessary computations before the system initialization, so only
low computation overhead is required on the tag side during the process phase. The protocol is
based on Randomized Hash-Lock protocol, which uses a static identifier, and its strong security
against traceability depends mainly on PRNG to randomize the responses, as explained in Figure 13.
Since precomputing all of the possible random numbers and responses requires a storage memory
for all of the precomputed data in the database, EP-UAP is preferred for small to medium networks,

Sensors 2018, 18, 3584 14 of 31

as the storage memory increases when the number of tags increases. The protocol shows a huge
improvement over the randomized hash lock protocol in terms of computation time, in that only
requires 40 ms for authentication; this is similar to LRMAP, which is the most efficient one in stateful
protocols. However, it requires 100 MB of database storage memory. The protocol provides integrity
due to the two randomly generated nonce values that are used from both tag and reader, and is secure
against passive attacks and traceability due to the random responses. However, the EP-UAP protocol
seems to be vulnerable to active attacks such as impersonate and replay attacks, since the random
responses depend on the database/reader. It also requires high storage capacity in the database side.

Sensors 2018, 18, x FOR PEER REVIEW 14 of 31

improvement over the randomized hash lock protocol in terms of computation time, in that only
requires 40 ms for authentication; this is similar to LRMAP, which is the most efficient one in stateful
protocols. However, it requires 100 MB of database storage memory. The protocol provides integrity
due to the two randomly generated nonce values that are used from both tag and reader, and is
secure against passive attacks and traceability due to the random responses. However, the EP-UAP
protocol seems to be vulnerable to active attacks such as impersonate and replay attacks, since the
random responses depend on the database/reader. It also requires high storage capacity in the
database side.

Reader Tag

Step 1:
- Generate RR
- Send Query, RR to tag →

Step 3:
- Search for IDi1R
- Verify H(IDi1R||RR) = mTR to authenticate
the tag.
- Compute mRT = H(IDi2R||RT)
- Send mRT to tag→

Step 2:
- Generate RT
- Compute mTR = H(ID1T||RR)
- Send mRT, RT to reader ←

Pre-compute cT = H(ID2T||RT)

Step 4:
- If mRT = cT, reader is authenticated.

H: One-way hash function; ID: Tag identifier; RR, RT: nonce generated by reader/tag; m:
Authentication challenge; c: Authentication challenge response.

Figure 13. Efficient Passively-Untraceable Authentication Protocol (EP-UAP) by K. Lee.

To defend against a desynchronization attack, Rahman and Ahamad [33] proposed a
Desynchronization attack-resistant Robust Authentication Protocol (DRAP) in the wireless
identification and sensing platforms (WISP), where RFID technology is combined with sensor nodes.
Their protocol mechanism is to decrease the tag collision that leads to DoS attack, as shown in Figure
14. The technique is to decrease the collision rate at the link layer and maintain the system’s
efficiency. The protocol also detects the DoS attack and recovers the synchronization state of the
system. It has higher resources than passive tags, which allow higher security implementation. Yet,
it has a short distance limitation, where tags can only function less than 1–2 m away from readers.

Authentication in most RFID protocols is executed between one reader and one tag at a time.
Liu et al. [34] proposed a grouping proofs-based authentication protocol (GUPA) to enable
authenticating multiple tags and multiple readers simultaneously, such that multiple readers can
authenticate a single tag, and multiple tags can be authenticated by a single reader in large-scale
RFID. GUPA protocol is based on hierarchical identification between independent subgroups in a
distributed RFID system, and the use of an asymmetric denial mechanism to resist denial-of-proof
attack (DoP). For the anonymous authentication of a new entity, GUPA deploys a ring signature
using a lightweight cryptography (elliptic curve). It also uses lightweight bitwise operations for
readers and tags secret information updates, PRNGs, one-way hash functions, timestamps for
session freshness, and access lists for each legal reader/tag during system initialization as identity
flags to prevent forgery and tracking attack, as fully explained in Figure 15. Since the flags are
chosen randomly from the pseudonym index, queries and responses are independent for each
session to resist DoP attack; hence, illegal proofs are eliminated during authentication.

Figure 13. Efficient Passively-Untraceable Authentication Protocol (EP-UAP) by K. Lee.

To defend against a desynchronization attack, Rahman and Ahamad [33] proposed a
Desynchronization attack-resistant Robust Authentication Protocol (DRAP) in the wireless
identification and sensing platforms (WISP), where RFID technology is combined with sensor nodes.
Their protocol mechanism is to decrease the tag collision that leads to DoS attack, as shown in Figure 14.
The technique is to decrease the collision rate at the link layer and maintain the system’s efficiency.
The protocol also detects the DoS attack and recovers the synchronization state of the system. It has
higher resources than passive tags, which allow higher security implementation. Yet, it has a short
distance limitation, where tags can only function less than 1–2 m away from readers.

Authentication in most RFID protocols is executed between one reader and one tag at a
time. Liu et al. [34] proposed a grouping proofs-based authentication protocol (GUPA) to enable
authenticating multiple tags and multiple readers simultaneously, such that multiple readers can
authenticate a single tag, and multiple tags can be authenticated by a single reader in large-scale
RFID. GUPA protocol is based on hierarchical identification between independent subgroups in a
distributed RFID system, and the use of an asymmetric denial mechanism to resist denial-of-proof
attack (DoP). For the anonymous authentication of a new entity, GUPA deploys a ring signature using
a lightweight cryptography (elliptic curve). It also uses lightweight bitwise operations for readers and
tags secret information updates, PRNGs, one-way hash functions, timestamps for session freshness,
and access lists for each legal reader/tag during system initialization as identity flags to prevent
forgery and tracking attack, as fully explained in Figure 15. Since the flags are chosen randomly from
the pseudonym index, queries and responses are independent for each session to resist DoP attack;
hence, illegal proofs are eliminated during authentication.

Sensors 2018, 18, 3584 15 of 31
Sensors 2018, 18, x FOR PEER REVIEW 15 of 31

Server S Reader R: IDi: Kiprev, Ki, Diprev Tag T: Ki, IDi, Δ

Step 1:
- Generate random nr.
- Send nr to tag →

Step 3:
- Generate P(Ki ⊕ nr||ni) for all tags to verify αi.
If there is a match:
- Decrypt αi and βi
- Retrieve D
- If Dnewi is not equal to Dnew then update:

Kiprev = Ki
X = h(Ki)
αj = P(X ⊕ nr||ni)
Ki = h(x)
Dipev = Dinew

- Else ignore the message and αj = rand
If there is no match:
- Generate P(Kiprev ⊕ nr||ni) for all tags to verify
αi
- If correct:
- Decrypt αi and βi

- If Dnewi is not equal to Doldi then update:
αj = P(h(Kiprev) ⊕ nr||ni)
Diprev = Dinew

- Else ignore the message and αj = rand
Else ignore the message and αj = rand
- Send αj to tag →

Step 2:
If (Δ ≤ Dnew – Dold)
- Generate random ni
- αi = P(Ki ⊕ nr||ni)
- βi = EKwti(h(IDi) ⊕ Dnew)
- Send αi, βi, ni to reader ←

Step 4:
- Y = h(Ki)
- Generate P(Y ⊕ nr||ni) to verify
αj
- if correct: Ki = h(Y)

P(): Pseudorandom No. generator; Δ: Activity threshold; D: Sensor value; Ki: Secret number; ID: Tag identifier; h():
One-way hash function.

Figure 14. Desynchronization Attack-Resistant Robust Authentication Protocol (DRAP) by Rahman
and Ahamad.

Database: DB Reader: Rj Tag: Ta

Initialization Phase:
1- Generate PRN rDB
2- Send rDB to tag →

6- Verify H1 in database for match
7- H1 = (ΔRj||LR||rTy)
8- PRNG (ΔRj)
9- Send H1||PRNG (ΔRj) to tag →

Authentication Phase:

3- Generate rTy
4- H1(LR||rDB)
5- Send rTy||H1(LR||rDB) to DB ←

10- PRNG−1(ΔRj) to obtain ΔRj
11- H1 = (ΔRj||LR||rTy) to authenticate
DB
12- Add ΔRj to LR

LR: Local access list; ΔRj: Reader’s information; H(): One-way hash function.

Figure 15. Grouping Proofs-Based Authentication Protocol (GUPA) by Liu for a
Single-Reader—Single-Tag Case.

Since tag collision is a major problem in the large-scale networks, Rahman and Ahamad [35]
proposed two probabilistic batch authentication protocols to determine the valid tags efficiently and
accurately in large-scale systems. FTest is a protocol based on Frame Slotted Aloha algorithm that is
used to reduce the probability of collision slots. The other protocol is GTest, which is a protocol
based on group batch authentication that is used to reduce the cost of detecting counterfeit tags.
Their protocols use simple lightweight operations such as XOR and cyclic redundancy checks (CRC)

Figure 14. Desynchronization Attack-Resistant Robust Authentication Protocol (DRAP) by Rahman
and Ahamad.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 31

Server S Reader R: IDi: Kiprev, Ki, Diprev Tag T: Ki, IDi, Δ

Step 1:
- Generate random nr.
- Send nr to tag →

Step 3:
- Generate P(Ki ⊕ nr||ni) for all tags to verify αi.
If there is a match:
- Decrypt αi and βi
- Retrieve D
- If Dnewi is not equal to Dnew then update:

Kiprev = Ki
X = h(Ki)
αj = P(X ⊕ nr||ni)
Ki = h(x)
Dipev = Dinew

- Else ignore the message and αj = rand
If there is no match:
- Generate P(Kiprev ⊕ nr||ni) for all tags to verify
αi
- If correct:
- Decrypt αi and βi

- If Dnewi is not equal to Doldi then update:
αj = P(h(Kiprev) ⊕ nr||ni)
Diprev = Dinew

- Else ignore the message and αj = rand
Else ignore the message and αj = rand
- Send αj to tag →

Step 2:
If (Δ ≤ Dnew – Dold)
- Generate random ni
- αi = P(Ki ⊕ nr||ni)
- βi = EKwti(h(IDi) ⊕ Dnew)
- Send αi, βi, ni to reader ←

Step 4:
- Y = h(Ki)
- Generate P(Y ⊕ nr||ni) to verify
αj
- if correct: Ki = h(Y)

P(): Pseudorandom No. generator; Δ: Activity threshold; D: Sensor value; Ki: Secret number; ID: Tag identifier; h():
One-way hash function.

Figure 14. Desynchronization Attack-Resistant Robust Authentication Protocol (DRAP) by Rahman
and Ahamad.

Database: DB Reader: Rj Tag: Ta

Initialization Phase:
1- Generate PRN rDB
2- Send rDB to tag →

6- Verify H1 in database for match
7- H1 = (ΔRj||LR||rTy)
8- PRNG (ΔRj)
9- Send H1||PRNG (ΔRj) to tag →

Authentication Phase:

3- Generate rTy
4- H1(LR||rDB)
5- Send rTy||H1(LR||rDB) to DB ←

10- PRNG−1(ΔRj) to obtain ΔRj
11- H1 = (ΔRj||LR||rTy) to authenticate
DB
12- Add ΔRj to LR

LR: Local access list; ΔRj: Reader’s information; H(): One-way hash function.

Figure 15. Grouping Proofs-Based Authentication Protocol (GUPA) by Liu for a
Single-Reader—Single-Tag Case.

Since tag collision is a major problem in the large-scale networks, Rahman and Ahamad [35]
proposed two probabilistic batch authentication protocols to determine the valid tags efficiently and
accurately in large-scale systems. FTest is a protocol based on Frame Slotted Aloha algorithm that is
used to reduce the probability of collision slots. The other protocol is GTest, which is a protocol
based on group batch authentication that is used to reduce the cost of detecting counterfeit tags.
Their protocols use simple lightweight operations such as XOR and cyclic redundancy checks (CRC)

Figure 15. Grouping Proofs-Based Authentication Protocol (GUPA) by Liu for a Single-Reader—
Single-Tag Case.

Since tag collision is a major problem in the large-scale networks, Rahman and Ahamad [35]
proposed two probabilistic batch authentication protocols to determine the valid tags efficiently and
accurately in large-scale systems. FTest is a protocol based on Frame Slotted Aloha algorithm that
is used to reduce the probability of collision slots. The other protocol is GTest, which is a protocol

Sensors 2018, 18, 3584 16 of 31

based on group batch authentication that is used to reduce the cost of detecting counterfeit tags.
Their protocols use simple lightweight operations such as XOR and cyclic redundancy checks (CRC)
with a shared key for each group of tags. The theory in both protocols is not to send the tag ID
when responding, but rather accept or reject a tag by estimating the number of fake tags. In the
FTest protocol that is depicted in Figure 16, a counterfeit threshold parameter is used in the system to
reduce the number of rounds in the detection process and response time of the protocol, so that the
entire tag responses do not need to be checked. Instead, the detection will stop if the percentage of
counterfeit tags exceeds the counterfeit threshold. In GTest, the reader randomly selects a population
of tags to authenticate. If one counterfeit tag is detected, the batch of tags will be considered invalid.
The reader needs to read a large amount of data to identify the validity of a batch in GTest, so the
reader still consumes time through the computation overhead from the tag search. Both FTest and
GTest protocols are proved to be secure against tracking and privacy attacks, since tags responses are
based on dynamic frame size, random numbers, and ID that is not transmitted during communication.
However, the FTest shows less execution time and better performance over GTest.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 31

with a shared key for each group of tags. The theory in both protocols is not to send the tag ID when
responding, but rather accept or reject a tag by estimating the number of fake tags. In the FTest
protocol that is depicted in Figure 16, a counterfeit threshold parameter is used in the system to
reduce the number of rounds in the detection process and response time of the protocol, so that the
entire tag responses do not need to be checked. Instead, the detection will stop if the percentage of
counterfeit tags exceeds the counterfeit threshold. In GTest, the reader randomly selects a
population of tags to authenticate. If one counterfeit tag is detected, the batch of tags will be
considered invalid. The reader needs to read a large amount of data to identify the validity of a batch
in GTest, so the reader still consumes time through the computation overhead from the tag search.
Both FTest and GTest protocols are proved to be secure against tracking and privacy attacks, since
tags responses are based on dynamic frame size, random numbers, and ID that is not transmitted
during communication. However, the FTest shows less execution time and better performance over
GTest.

Server S Reader R Tag T: Shared group key ki
Group Identification Phase:

Authentication Initialization
Phase:

Counterfeit Detection Phase:

4- Reconstruct RVS as only valid
tags can compute correct h()
5- Accept valid tags if RVS = RV

1- Send nonce nr to tag→

3- Find a group key to decrypt the message.
4- Identify the group of tags based on the
group key.

1- Send to server “Start authentication” ←
2- Receive (f, r) from server
3- Broadcast frame size and random no.

6- Generate RV based on responses 0, 1, coll.
7- Turn collision slot into singleton by
removing one tag (removed tags remain
silent until next phase)
8- Send RV to server for verification.

1- Send random nr from server to rem tags
→

3- Forward RV to server ←

2- Respond by h(ki||nr) ←

4- Each tag compute its slot
position
SP = h(id, r) mod f = 0 or 1
5- Send SP to reader with random
bits ←

2- Respond h(id||nr)

n: Nonce value; ki: Shared group key; h(): One-way hash function; SP: Slot position within frame; id: Tag ID; f: Frame
size; r: Random N; RV: Response vector generated by reader; RVs: Response vector generated by server; rem: Set of
tags removed to reduce collision slot.

Figure 16. Batch Authentication Protocol based on Frame Slotted Aloha (FTest) by Rahman and
Ahamad.

Another anti-collision security protocol (ACS) is proposed by Keqiang et al. [36] for a
high-efficiency RFID system combining the chaotic sequence generator with the dynamic
frame-slotted ALOHA algorithm for fast tag identification. The protocol scheme is based on a
logistic mapping structure with XOR operation and spreading operation to generate real-time keys
in a chaotic sequence that are used in authentication messages. Keys are updated in each response
from tag to reader and reader to tag during the same session using iteration equations that are
known only to the server and tag, such as in Figure 17. The protocol is effective against counterfeits
and impersonates attacks, as the authentication scheme not only depends on the iterated key, but
also on spreading code and random numbers, so faking at least one of them will result in a wrong
response. The protocol requires only four message exchanges, low hardware cost, and low
computation cost on the tag side. It also has lower energy consumption than other heavy and simple
weight protocols, because XOR uses less energy than symmetric encryption and hash functions.

Figure 16. Batch Authentication Protocol based on Frame Slotted Aloha (FTest) by Rahman
and Ahamad.

Another anti-collision security protocol (ACS) is proposed by Keqiang et al. [36] for a
high-efficiency RFID system combining the chaotic sequence generator with the dynamic frame-slotted
ALOHA algorithm for fast tag identification. The protocol scheme is based on a logistic mapping
structure with XOR operation and spreading operation to generate real-time keys in a chaotic sequence
that are used in authentication messages. Keys are updated in each response from tag to reader and
reader to tag during the same session using iteration equations that are known only to the server and
tag, such as in Figure 17. The protocol is effective against counterfeits and impersonates attacks, as the
authentication scheme not only depends on the iterated key, but also on spreading code and random
numbers, so faking at least one of them will result in a wrong response. The protocol requires only four
message exchanges, low hardware cost, and low computation cost on the tag side. It also has lower
energy consumption than other heavy and simple weight protocols, because XOR uses less energy
than symmetric encryption and hash functions.

Sensors 2018, 18, 3584 17 of 31

Sensors 2018, 18, x FOR PEER REVIEW 17 of 31

Server S: K0 Reader R Tag T: K’0

- K0 = Master key, x0 = K0 to compute xi
- Verify ChaosSpec using xi:

• If there is collision, go to
step5.

• If no collision, proceed.
- Perform one-time iteration to get
xi+1 = Ki+1
- Extract R’0 from H’(R0) and verify
R’0 = R0
- Tag is authenticated.
- Extract ID from H’(ID)
- Perform R1 iteration to get xj,
j = (r+R1+R0)
- Kj = xj
- H(R1) = R1 ⨁ Kj
- Send to reader (H(R1)) ⊗ ChaosSpec
→

Step 1:
- Generate and send a frame size R0 to
tag →

Step 3:
- Send (H’(R0)||H’(ID)||R1) ⊗
ChaosSpec, and R0 to S ←

- Send (H(R1)) ⊗ ChaosSpec →

Step 5: Collision case
- Increase tag’s slot counter by 1
- Restart identification process in
Step2
Step 6: No authentication occurs
- Issue AdjustQuery command
- Adjust R0 to decide a new frame size
- Send search signal to rest of tags →

Step 2:
- Receive R0.
- Choose slot index with the value in [1,
R0]
- Reset time slot counter = slot-index
- r = 20, i = (r+R0), x’0 = K’0
- x’k+1 = rx’k (1-x’k) iteration = x’i
- x’i = ChaosSpec
- Perform one-time iteration to get
K’i+1 = x’i+1
- H’(R0) = R0 ⨁ K’i+1
- H’(ID) = K’i+1 ⨁ ID
- Generate random R1
- Send (H’(R0)||H’(ID)||R1) ⊗
ChaosSpec ←

Step 4:
- Perform the equations to get K’j = x’j
- Calculate R’1 = H(R1) ⨁ K’j
- If R’1 = R1, then K’j = Kj
- R is authenticated

R0: Frame size; i: Number of iterations; K’0: Tag key; K0: Server master key; K’i+1: Real-time key; H(), H’(): One-way hash
functions; ChaosSpec: Spreading code; ID: Tag’s ID; R1: Random number generated by tag; r: Constant value to put the
equation in chaotic state.

Figure 17. Anti-Collision Security Protocol (ACS) by Keqiang.

Cho et al. [37] proposed a hash-based mutual authentication protocol (HBA) to defend against
the brute force attack. This protocol was reported by Chang et al. [6] to be vulnerable to denial of
service (DoS) and replay attacks. Later, Chang et al. proposed an improved (HBA+) protocol to
avoid DoS and replay attacks using a shared PRNG algorithm between the server and tag to produce
the same output that is used in updating the protocol values, as in Figure 18. Also, the confidentiality
in the protocol is based on protecting the secret value datai using reader ID (Rid), which is only
known to a legitimate reader and server. The improved protocol of Chang is considered to be
efficient and secure against DoS attack, traceability, and forward secrecy.

Figure 17. Anti-Collision Security Protocol (ACS) by Keqiang.

Cho et al. [37] proposed a hash-based mutual authentication protocol (HBA) to defend against the
brute force attack. This protocol was reported by Chang et al. [6] to be vulnerable to denial of service
(DoS) and replay attacks. Later, Chang et al. proposed an improved (HBA+) protocol to avoid DoS
and replay attacks using a shared PRNG algorithm between the server and tag to produce the same
output that is used in updating the protocol values, as in Figure 18. Also, the confidentiality in the
protocol is based on protecting the secret value datai using reader ID (Rid), which is only known to a
legitimate reader and server. The improved protocol of Chang is considered to be efficient and secure
against DoS attack, traceability, and forward secrecy.

Sensors 2018, 18, 3584 18 of 31
Sensors 2018, 18, x FOR PEER REVIEW 18 of 31

Server S Reader R Tag T

Step 4:
Search the database using I:
- Found:
I = Inew {EPCi, Auknew, Acknew, datai}
I = Iold {EPCi, Aukold, Ackold, datai}
M1’ = Auknew ⨁ Inew ⨁ PRNG(EPCk ⨁
Acknew ⨁ Rt ⨁ Rr) to authenticate T.
- Not Found: termination.
- B = datai ⨁ Ridk
- M2 = PRNG(Auknew ⨁ Rt) ⨁ Acknew
- C = H(datai ⨁ Rr)
- Update database values and keys:
Aukold = Auknew
Auknew = PRNG(Auknew)
Ackold = Acknew
Acknew = PRNG(Acknew)
Iold = Inew
Inew = PRNG(Acknew ⨁ Inew)
- send {B, C, M2} →

Step 1:
- Generate random No. Rr →

Step 3:
- A = H(Rid ⨁ Rr)
- ← {M1, Rt, I, A, Rr}

Step 5:
- Obtain datai from B
- C’ = H(datai ⨁ Rr)
- send M2 →

Step 2:
- Generate random No. Rt
- M1 = Auk ⨁ I ⨁ PRNG (EPC ⨁ Ack ⨁ Rr ⨁
Rt)
- ← {M1, Rt, I}

Step 6:
- Compute M2’ = PRNG(Auk ⨁ Rt) ⨁ Ack
- Update tag values and keys

Rr, Rt: Random No. of reader/tag; Auk: Authentication key of tags shared with server; Rid: Reader ID; EPC: Electronic
product code of tag; Ack: Access key of tags shared with server; I: Index value of tag; H(): One-way hash function; datai:
Secret information of the tag’s object.

Figure 18. Hash-Based Mutual Authentication (HBA+) Protocol by Chang.

Z.Liu et al. [38] proposed variable linear shift-based authentication protocol (VLP) to support
the implementation of RFID for the new EPC Gen2v2 standard, satisfy its security features of
untraceability and access control, and reduce a tag’s read range. In Figure 19, the protocol is based
on a lightweight encryption function called Variable Linear Feedback Shift Register (VLFSR), which
is implemented at the application-specific integrated circuit (ASIC) level. In every session, mutual
authentication involves different random numbers from the tag and reader combined with the new
secret value SID stored in the database to provide resistance against active attacks.

Another protocol (OMP) is proposed by Niu et al. [39] mainly for passive tag ownership
transfer using a lightweight authentication mechanism to support EPC Gen2 standard. Since the
ownership transfer is based on transferring the keys, the OMP protocol aims to prove the possession
of the shared secret key to a tag and reader without disclosing it using ultra-lightweight permutation
operation (Per), as in Figure 20. Yet, the protocol has no mechanism to check the freshness of the
message that is sent by a legitimate reader.

Figure 18. Hash-Based Mutual Authentication (HBA+) Protocol by Chang.

Z.Liu et al. [38] proposed variable linear shift-based authentication protocol (VLP) to support the
implementation of RFID for the new EPC Gen2v2 standard, satisfy its security features of untraceability
and access control, and reduce a tag’s read range. In Figure 19, the protocol is based on a lightweight
encryption function called Variable Linear Feedback Shift Register (VLFSR), which is implemented
at the application-specific integrated circuit (ASIC) level. In every session, mutual authentication
involves different random numbers from the tag and reader combined with the new secret value SID
stored in the database to provide resistance against active attacks.

Another protocol (OMP) is proposed by Niu et al. [39] mainly for passive tag ownership transfer
using a lightweight authentication mechanism to support EPC Gen2 standard. Since the ownership
transfer is based on transferring the keys, the OMP protocol aims to prove the possession of the shared
secret key to a tag and reader without disclosing it using ultra-lightweight permutation operation
(Per), as in Figure 20. Yet, the protocol has no mechanism to check the freshness of the message that is
sent by a legitimate reader.

Sensors 2018, 18, 3584 19 of 31
Sensors 2018, 18, x FOR PEER REVIEW 19 of 31

Server S Reader R Tag T

Step 5: Authenticate and Update
1- Find an SIDj match in database based
on UID
2- Extract Rt1, Rt2
3- (Rt2||Rt1) ⨁ SIDj
4- Find mj from Mj table based on SIDj
5- Bb = VLFSR (Rt1||Rr, mj)
6- If Bb = Bt, proceed to update
• mj+1 = (Rt2||Rt1) ⨁ mj
• SIDj+1 = VLFSR (Rt1||Rt2, mj)
• Store new values in Mj and keep

the old in Mj−1 tables.
7- If Bb ≠ Bt, find mj and SIDj from Mj−1
table and do step3
8- If no match is found, protocol will
stop.

Step 6:
- Send to reader VLFSR (Rt1||Rr, SIDj) →

Step 1:
- Generate random Rr
- Send Rr to tag →

Step 4:
- Send to server Rr, Bt, (Rt2||Rt1) ⨁ SIDj
and UID ←

Step 7:
- Send to reader VLFSR (Rt1||Rr, SIDj)
→

Step 2:
- Generate random Rt1, Rt2
- Secret value = mj
- Bt = VLFSR (Rt1||Rr, mj)

Step 3:
- Send to reader Bt, (Rt2||Rt1) ⨁
SIDj ←

Step 8: Authenticate R and S
- Authentication via received msg.
- mj+1 = Rt2||Rt1) ⨁ mj
- SIDj+1 = VLFSR (Rt1||Rt2, mj)

SID: Session secure ID of tag; UID: Unique ID of tag; Rr: Reader random No.; Rt1, Rt2: Random No. generated by tag; mj:
Secret value used in a session; VLFSR(): Variable LFSR function.

Figure 19. Variable Linear Shift-Based Authentication Protocol (VLP) by Z. Liu et al.

Server S Reader R: K, KM, EPC, RID1 Tag T: K, KM, EPC, RID, IDS
Mutual
Authentication:

1- Generate random rnd1, rnd2 of 96 bits
2- Ai = rnd1i ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁
RID2i)
3- Bi = rnd2i ⨁ PRNG(rnd1i ⨁ Ki)
4- Ci PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁
RID2i)
5- Send Ai, Bi, Ci to tag →

9- Verify D:
- D’i = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6
- If D is verified, tag is authenticated

6- Extract rnd1, rnd2
- rnd1i = Ai ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁
RID2i)
- rnd2i = Bi ⨁PRNG(rnd1i ⨁ Ki)
- C’i = PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁
RID2i)

7- If C = C’, reader authenticated
- Ki+1 = Per(rnd1i, Ki) ⨁ K(i+1 mod 6)
- IDSi+1 = Per(rnd2i, Ki) ⨁ Ki
- Di = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6

8- Send D to reader←

K: Secret shared key for owners; KM: Master key to modify K. EPC: Static ID of a tag. RID: ID of reader owning tag. IDS:
Pointer to tag database.

Figure 20. Passive Tag Ownership Authentication Protocol (OMP) Protocol by Niu.

Dass and Om [40] also proposed an efficient authentication protocol (SEAS) that uses
lightweight operations and a pseudo-random number generator (PRNG) for a low computational
cost. Their scheme is based on a secure channel between the back-end server and reader, prestored

Figure 19. Variable Linear Shift-Based Authentication Protocol (VLP) by Z. Liu et al.

Sensors 2018, 18, x FOR PEER REVIEW 19 of 31

Server S Reader R Tag T

Step 5: Authenticate and Update
1- Find an SIDj match in database based
on UID
2- Extract Rt1, Rt2
3- (Rt2||Rt1) ⨁ SIDj
4- Find mj from Mj table based on SIDj
5- Bb = VLFSR (Rt1||Rr, mj)
6- If Bb = Bt, proceed to update
• mj+1 = (Rt2||Rt1) ⨁ mj
• SIDj+1 = VLFSR (Rt1||Rt2, mj)
• Store new values in Mj and keep

the old in Mj−1 tables.
7- If Bb ≠ Bt, find mj and SIDj from Mj−1
table and do step3
8- If no match is found, protocol will
stop.

Step 6:
- Send to reader VLFSR (Rt1||Rr, SIDj) →

Step 1:
- Generate random Rr
- Send Rr to tag →

Step 4:
- Send to server Rr, Bt, (Rt2||Rt1) ⨁ SIDj
and UID ←

Step 7:
- Send to reader VLFSR (Rt1||Rr, SIDj)
→

Step 2:
- Generate random Rt1, Rt2
- Secret value = mj
- Bt = VLFSR (Rt1||Rr, mj)

Step 3:
- Send to reader Bt, (Rt2||Rt1) ⨁
SIDj ←

Step 8: Authenticate R and S
- Authentication via received msg.
- mj+1 = Rt2||Rt1) ⨁ mj
- SIDj+1 = VLFSR (Rt1||Rt2, mj)

SID: Session secure ID of tag; UID: Unique ID of tag; Rr: Reader random No.; Rt1, Rt2: Random No. generated by tag; mj:
Secret value used in a session; VLFSR(): Variable LFSR function.

Figure 19. Variable Linear Shift-Based Authentication Protocol (VLP) by Z. Liu et al.

Server S Reader R: K, KM, EPC, RID1 Tag T: K, KM, EPC, RID, IDS
Mutual
Authentication:

1- Generate random rnd1, rnd2 of 96 bits
2- Ai = rnd1i ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁
RID2i)
3- Bi = rnd2i ⨁ PRNG(rnd1i ⨁ Ki)
4- Ci PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁
RID2i)
5- Send Ai, Bi, Ci to tag →

9- Verify D:
- D’i = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6
- If D is verified, tag is authenticated

6- Extract rnd1, rnd2
- rnd1i = Ai ⨁ PRNG(Ki ⨁ RID1i) ⨁ PRNG(Ki ⨁
RID2i)
- rnd2i = Bi ⨁PRNG(rnd1i ⨁ Ki)
- C’i = PRNG(rnd1i ⨁ RID1i) ⨁ PRNG(rnd2i ⨁
RID2i)

7- If C = C’, reader authenticated
- Ki+1 = Per(rnd1i, Ki) ⨁ K(i+1 mod 6)
- IDSi+1 = Per(rnd2i, Ki) ⨁ Ki
- Di = PRNG(Ki+1 ⨁ IDSi+1), where i = 1 to 6

8- Send D to reader←

K: Secret shared key for owners; KM: Master key to modify K. EPC: Static ID of a tag. RID: ID of reader owning tag. IDS:
Pointer to tag database.

Figure 20. Passive Tag Ownership Authentication Protocol (OMP) Protocol by Niu.

Dass and Om [40] also proposed an efficient authentication protocol (SEAS) that uses
lightweight operations and a pseudo-random number generator (PRNG) for a low computational
cost. Their scheme is based on a secure channel between the back-end server and reader, prestored

Figure 20. Passive Tag Ownership Authentication Protocol (OMP) Protocol by Niu.

Dass and Om [40] also proposed an efficient authentication protocol (SEAS) that uses
lightweight operations and a pseudo-random number generator (PRNG) for a low computational cost.

Sensors 2018, 18, 3584 20 of 31

Their scheme is based on a secure channel between the back-end server and reader, prestored tags’
secret (SIDs) in the tags side, a one-way hash function of the tag ID in the server side, and rewritable
memory with a flag indicator in the server side to update the secret values. Any change to the messages
transmitted leads to terminate the communication during the verification to resist security attacks,
as shown in Figure 21.

Sensors 2018, 18, x FOR PEER REVIEW 20 of 31

tags’ secret (SIDs) in the tags side, a one-way hash function of the tag ID in the server side, and
rewritable memory with a flag indicator in the server side to update the secret values. Any change to
the messages transmitted leads to terminate the communication during the verification to resist
security attacks, as shown in Figure 21.

Server S Reader R Tag T

Step 4:
Search the database using h(ID):
- Not Found: termination
- Found: verify V
V’ = PRNG(Snew ⨁ NR ⨁ NT)
Send Snew to reader →
Flag = 0

V” = PRNG(Sold ⨁ NR ⨁ NT)
Send Sold to reader →
Flag = 1

Step 6:
- Flag = 0 → S = Snew
U = h (Snew||M)
Sold = Snew
Snew = Snew ⨁ U

- Flag = 1 → S = Sold
U = h (Sold||M)
Sold = Sold
Snew = Sold ⨁ U

Step 1:
- Generate random No. NR →

Step 3:
- ← {V,H, NR, NT}

Step 5:
- Reader takes Snew or Sold
- M = PRNG(Snew, old, NR)
- N = PRNG(M)
- Send N to tag →
- ← send M to server

Step 2:
- Generate random No. NT
- V = PRNG (S ⨁ NR ⨁ NT)
- H = h (ID)
- ← {V, H, NT}

Step 6:
- To authenticate reader:
Calculate M’ = PRNG(S, NR)
Calculate N’ = PRNG(M’)
Verify N’ = N
- If equal calculate U = h (S||M’)
- Update S = S ⨁ U

h(): One-way hash function; NR, NT: Random No. generated by reader/tag; S: Secret value of tag; ID: ID pseudonym
of tag; Snew, Sold: Current and old session secrets of tag.

Figure 21. Efficient Authentication Protocol (SEAS) by Dass and Om.

An alternative solution to replace the central database in the RFID system is to use a serverless
model in which the database server does not maintain a connection with the readers and tags during
the communication. Regarding this challenge, Mtita et al. [41] proposed (SAP), a serverless security
protocol used for the mass authentication of RFID tags in the presence of untrusted readers. In SAP
protocol, the reader and tag do not communicate with the back-end server; instead, they
authenticate each other using only ephemeral of the tag’s secrets that expire within a given time, as
shown in Figure 22. Verification and authentication between reader and tag are done during the
authentication phase to exchange the data and generate the session key locally in both tag and reader
for their next communication. The protocol has also been proved using the CryptoVerif tool [42], which
was shown to have low computation overhead and resources.

Figure 21. Efficient Authentication Protocol (SEAS) by Dass and Om.

An alternative solution to replace the central database in the RFID system is to use a serverless
model in which the database server does not maintain a connection with the readers and tags during
the communication. Regarding this challenge, Mtita et al. [41] proposed (SAP), a serverless security
protocol used for the mass authentication of RFID tags in the presence of untrusted readers. In SAP
protocol, the reader and tag do not communicate with the back-end server; instead, they authenticate
each other using only ephemeral of the tag’s secrets that expire within a given time, as shown in
Figure 22. Verification and authentication between reader and tag are done during the authentication
phase to exchange the data and generate the session key locally in both tag and reader for their next
communication. The protocol has also been proved using the CryptoVerif tool [42], which was shown
to have low computation overhead and resources.

Sensors 2018, 18, 3584 21 of 31
Sensors 2018, 18, x FOR PEER REVIEW 21 of 31

Server: S Reader: Rj Tag: Ti
Initialization Phase:

2- Generate Kij, tempij, ARij (access right)
for each tag derived from time window
and start date
Kij = HMACidi(Wsj||ARij)
3- Build lists of authenticated tags Lj for
Rj
Lj − {(temp1j, K1j), (temp2j, K2j),.., (tempij,
Kij)}
4- Send Lj, ARij, Wsj to Rj →

Mutual Authentication Phase:

1- Request permission from server S.

1- Generate rj
2- Send to tag A= WSj, ARij, rj →

6- Verify H’ij = HMACKij (ri||rj)
If equal: Ti is authenticated
If not equal: Kij is not in the list and tag is
not authorized
7- Generate timestamp tj and calculate
Vij = HMACKij (ri||tj)
9- Send to tag C = ti, Vij →

12- Generate session key
KS = HMACKij (tj||ri WSj)

- Ti has Timestamp TSYS and idi

3- Generate ri
4- Hij = HMACKij (ri||rj)
5- Send to reader B = Hij, ri ←

10- Verify V’ij = HMACKij (ri||tj)
If equal: Rj is authenticated
11- Update TSYS = tj

13- Generate session key
KS = HMACK’ij (tj||ri WSj)

TSYS: Tag static timestamp; tj: Reader timestamp; idi: Tag ID; Kij: Tag’s key; tempij: Temporary tag ID; ARij: Access rights;
Wsj: Time window; Ks: Session key; Lj: List of authorized tags; ri, rj: Reader/Tag random No.

Figure 22. Serverless Security Authentication Protocol (SAP) by Mtita.

4.4. Ultra-Lightweight Protocols

As mentioned earlier in this paper, passive tags are small chips with scarce resources that can
only support low-cost operations. The goal of ultra-lightweight protocols is to reduce the cost of
RFID systems at a minimum and provide strong security for promising future use. In this regard,
Sundaresan et al. [43] introduced an ultra-lightweight serverless protocol (STS) using only simple
XOR and 128-bit PRNG operations that require less than 2000 gates, three random number
generation on the tag, and two message exchanges. In Figure 23, the STS protocol mechanism is to
use a blind factor to hide the pseudo-random numbers that are used in communication between
readers and tags to overcome impersonation attacks. RFID tag is also able to preserve its location
privacy by responding as a noise tag. Moreover, the protocol does not employ a one-way hash
function nor any encryption conforming to EPC C1 G2 Standards.

Figure 22. Serverless Security Authentication Protocol (SAP) by Mtita.

4.4. Ultra-Lightweight Protocols

As mentioned earlier in this paper, passive tags are small chips with scarce resources that can
only support low-cost operations. The goal of ultra-lightweight protocols is to reduce the cost of
RFID systems at a minimum and provide strong security for promising future use. In this regard,
Sundaresan et al. [43] introduced an ultra-lightweight serverless protocol (STS) using only simple XOR
and 128-bit PRNG operations that require less than 2000 gates, three random number generation on
the tag, and two message exchanges. In Figure 23, the STS protocol mechanism is to use a blind factor
to hide the pseudo-random numbers that are used in communication between readers and tags to
overcome impersonation attacks. RFID tag is also able to preserve its location privacy by responding
as a noise tag. Moreover, the protocol does not employ a one-way hash function nor any encryption
conforming to EPC C1 G2 Standards.

Sensors 2018, 18, 3584 22 of 31
Sensors 2018, 18, x FOR PEER REVIEW 22 of 31

Server: ts Reader R Tag T
Setup Phase:
- Stores access list (AL) of all n tags:
h(TID1, ts1) = id1, rts1, ctr1, ctrmax1
h(TIDn, tsn) = idn, rtsn, ctrn, ctrmaxn
- Establish shared rts between a reader
and each tag to be searched.

Search Phase:
- Server is offline.

- Precompute and store id =
h(TID, ts)

Step 1:
1- Check that ctr <= ctrmax
2- Generate PRN rr
3- B = rtsj ⨁ idi
4- M1 = idi ⨁ PRNG (rtsj ⨁ rr)
5- M2 = rr ⨁ B
6- Broadcast M1, M2 to all
tags →

Step 3:
1- Extract tr from M4
2- Verify rtsj = M3 ⨁ PRNG
(idj ⨁ tr)
3- If verified, tag is
authenticated
4- Update rtsj = M3 ⨁ PRNG
(idj ⨁ tr)
ctr = ctr + 1

- Stores id = h(TID, ts).
- Stores for each reader:
rts1, rts1−1, ctr1, ctrmax1, rr1−1
rtsm, rtsm−1, ctrm, ctrmaxm, rrm−1
- ctr = 0.

Step 2:
1- B = rts ⨁ id
2- Extract rr from M2 = B ⨁ rr
3- Check rr:

- If rr = rr−1, a replayed msg, exit.
- If rr ≠ rr−1, proceed

4- Verify id = M1 ⨁ PRNG (rts ⨁ rr):
- If equal, reader is authenticated
- If not equal, repeat using rts−1.
- If not equal, respond with λ and

exit.
5- If id is verified, check if ctr < ctrmax:

- Generate PRN tr
- M3 = rts ⨁ PRNG (id ⨁ tr)
- M4 = tr ⨁ B

6- Update rr−1 = rr
7- If id is verified using rts:

- Update rts−1 = rts
- rts = PRNG (rts)
- ctr = ctr + 1

8- Send M3, M4 to reader ←

AL: Access list for the reader; ts: Secret key of tag; rts, rts−1: Shared secrets between reader/tag; B: Blind factor to hide PRN;
ctr: Counter value; ctrmax: Number of times a reader is pre-authorized to search; TID: Tag ID; id: hashed value of TID; rr:
Random No. of reader in current session.

Figure 23. Ultra-Lightweight Serverless Authentication Protocol (STS) by Sundaresan.

Aggarwal and Das [44] proposed the CHW+ protocol, which is based on a previous version
introduced by Y. Chen, Wang, and Hwang (CWH) [45]. In Figure 24, the protocol CHW+ solves the
problem of full disclosure attack due to the simple XOR operation that is used in the authentication
message, which uses the bit rotation and shifting operation on the message before transmission to
increase the protocol complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS
with a very efficient computation.

Huang and Li [46] proposed and implemented two improved protocols of RFID mutual
authentication based on generating the PadGen function in the ISO 18000-6C [47] protocol to protect
the memory with a 32-bit access password. The concept of their protocols is to cover up the tag’s
access password (Apwd) before transmitting the data using a set of 16-bit random numbers such as
RTx and RMx. One of the improved schemes, PadGen with XOR (PGX), implements XOR operation
between the random number sets and the PadGen function; the other protocol, PadGen with Mod
(PGM), implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random number
set (RTx, RMx) to be used in the PadGen function. Both improved schemes conform to the EPC C1
G2 standard, do not require any hash function or key exchange, do not involve synchronization for
hash or key values, and also show better efficiency during implementation. The security level of the
MOD scheme is higher due to the low-cost implementation, but requires a higher computation cost
in PadGen than XOR.

Figure 23. Ultra-Lightweight Serverless Authentication Protocol (STS) by Sundaresan.

Aggarwal and Das [44] proposed the CHW+ protocol, which is based on a previous version
introduced by Y. Chen, Wang, and Hwang (CWH) [45]. In Figure 24, the protocol CHW+ solves the
problem of full disclosure attack due to the simple XOR operation that is used in the authentication
message, which uses the bit rotation and shifting operation on the message before transmission to
increase the protocol complexity. CWH+ protocol is resistant to replay attack, forge attack, and DoS
with a very efficient computation.

Huang and Li [46] proposed and implemented two improved protocols of RFID mutual
authentication based on generating the PadGen function in the ISO 18000-6C [47] protocol to protect
the memory with a 32-bit access password. The concept of their protocols is to cover up the tag’s
access password (Apwd) before transmitting the data using a set of 16-bit random numbers such as
RTx and RMx. One of the improved schemes, PadGen with XOR (PGX), implements XOR operation
between the random number sets and the PadGen function; the other protocol, PadGen with Mod
(PGM), implements a Modulo operation (MOD9) in the eight-bit half of the 16-bit random number
set (RTx, RMx) to be used in the PadGen function. Both improved schemes conform to the EPC C1
G2 standard, do not require any hash function or key exchange, do not involve synchronization for
hash or key values, and also show better efficiency during implementation. The security level of the
MOD scheme is higher due to the low-cost implementation, but requires a higher computation cost in
PadGen than XOR.

Sensors 2018, 18, 3584 23 of 31

Sensors 2018, 18, x FOR PEER REVIEW 23 of 31

Server S Reader R Tag T

- n = weight(r)
- r’ = Rot(r,n)
- r’prev = Rot(rprev, n)
- Retrieve and verify TID to authenticate
tag.
- r’’ = Rot(r’, n)
- r’’prev = Rot(r’prev, n)
- t2 = (TID + r’’prev) ⋀ r’’
- Update rold = rprev, rprev = r’
- Send t2 to tag →

Step 1:
- Generate random r.
- s = RID ⨁ r
- n1 = weight(RID), n1 = no. of bit value 1 of
RID
- s’ = Rot(s, n1)
- Send s’ to tag →

Step 3:
- Forward t1, r to server ←

Step 2:
- s = Rot’(s’, n1)
- Retrieve r = RID ⨁ s
- n1 = weight(r)
- r’ = Rot(r, n1)
- r’prev = Rot(rprev, n1)
- t1 = (TID ⨁ r’prev) + (r’ ⋀
r’prev)
- Send t1 to reader ←

Step 4:
- Compute r’’, r’’prev as the
server
- t’2 = (TID + r’’prev) ⋀ r’’
- Verify t’2 = t2
- Update rprev = r’

RID: Reader ID; Rot(): Rotation function; TID: Tag ID; Weight(r): number of 1’s in the binary string shifts r to the left for n
bits.

Figure 24. Improved Authentication Protocol (CWH+) by Aggarwal and Dass.

Huang and Jiang [48] proposed an ultra-lightweight reader–tag mutual authentication protocol
(MACC) based on Chien and Chen’s protocol [49] to overcome forge attacks, DoS, and forward
security attacks. Although the improved scheme uses only lightweight operations such as RNG,
PRNG, and XOR, it involves an exhaustive search in the database for tag pseudo-IDs in every session
that leads to computational overhead, as shown in Figure 25. It also fails to resist tracking attacks.

Server S Reader R Tag T

Step 4:
- Verify VR using reader ID and r1
- Search database for tag PIDi
- Verify M1 as: r2 = M1 ⨁ Niold OR r2 = M1 ⨁ Ninew
- Verify M2 as: M2 = P(EPCi||r1||r2||Kiold or
Kinew)
- M3 = P(EPCi||r2||Nix||Kix) x = old or new
- Send M3 to reader →

- If x = new, proceed to update
Niold = Ninew, Ninew = P(Ninew ⨁ r2)
Kiold = Kinew, Kinew = P(Kinew ⨁ r2)
PIDiold = PIDinew, PIDinew = P(PIDinew ⨁ r2)

Step 1:
- Generate r1
- VR = h(RIDj ⨁ r1)
- Send to tag r1 →

Step 3:
- Send to server (M1, M2, PIDi, r1,
VR)

Step 5:
- Forward M3 to tag →

Step 2:
- Generate r2
- M1 = Ni ⨁ r2
- M2 = P(EPCi||r1||r2||Ki)
- Send to reader (M1, M2, PIDi)
←

Step 6:
- Verify M3 =
P(EPCi||r2||Ni||Ki)
- Ni = P(Ni ⨁ r2)
- Ki = P(Ki ⨁ r2)
- PIDi = P(PIDi ⨁ r2)

P: Access key with reader; PID: Pseudonym ID of tag; Ni: Nonce; EPC: Electronic product code for the tag; Ki:
Authentication key.

Figure 25. Ultra-Lightweight Reader–Tag Mutual Authentication Protocol (MACC) by Huang and
Jiang.

Figure 24. Improved Authentication Protocol (CWH+) by Aggarwal and Dass.

Huang and Jiang [48] proposed an ultra-lightweight reader–tag mutual authentication protocol
(MACC) based on Chien and Chen’s protocol [49] to overcome forge attacks, DoS, and forward security
attacks. Although the improved scheme uses only lightweight operations such as RNG, PRNG,
and XOR, it involves an exhaustive search in the database for tag pseudo-IDs in every session that
leads to computational overhead, as shown in Figure 25. It also fails to resist tracking attacks.

Sensors 2018, 18, x FOR PEER REVIEW 23 of 31

Server S Reader R Tag T

- n = weight(r)
- r’ = Rot(r,n)
- r’prev = Rot(rprev, n)
- Retrieve and verify TID to authenticate
tag.
- r’’ = Rot(r’, n)
- r’’prev = Rot(r’prev, n)
- t2 = (TID + r’’prev) ⋀ r’’
- Update rold = rprev, rprev = r’
- Send t2 to tag →

Step 1:
- Generate random r.
- s = RID ⨁ r
- n1 = weight(RID), n1 = no. of bit value 1 of
RID
- s’ = Rot(s, n1)
- Send s’ to tag →

Step 3:
- Forward t1, r to server ←

Step 2:
- s = Rot’(s’, n1)
- Retrieve r = RID ⨁ s
- n1 = weight(r)
- r’ = Rot(r, n1)
- r’prev = Rot(rprev, n1)
- t1 = (TID ⨁ r’prev) + (r’ ⋀
r’prev)
- Send t1 to reader ←

Step 4:
- Compute r’’, r’’prev as the
server
- t’2 = (TID + r’’prev) ⋀ r’’
- Verify t’2 = t2
- Update rprev = r’

RID: Reader ID; Rot(): Rotation function; TID: Tag ID; Weight(r): number of 1’s in the binary string shifts r to the left for n
bits.

Figure 24. Improved Authentication Protocol (CWH+) by Aggarwal and Dass.

Huang and Jiang [48] proposed an ultra-lightweight reader–tag mutual authentication protocol
(MACC) based on Chien and Chen’s protocol [49] to overcome forge attacks, DoS, and forward
security attacks. Although the improved scheme uses only lightweight operations such as RNG,
PRNG, and XOR, it involves an exhaustive search in the database for tag pseudo-IDs in every session
that leads to computational overhead, as shown in Figure 25. It also fails to resist tracking attacks.

Server S Reader R Tag T

Step 4:
- Verify VR using reader ID and r1
- Search database for tag PIDi
- Verify M1 as: r2 = M1 ⨁ Niold OR r2 = M1 ⨁ Ninew
- Verify M2 as: M2 = P(EPCi||r1||r2||Kiold or
Kinew)
- M3 = P(EPCi||r2||Nix||Kix) x = old or new
- Send M3 to reader →

- If x = new, proceed to update
Niold = Ninew, Ninew = P(Ninew ⨁ r2)
Kiold = Kinew, Kinew = P(Kinew ⨁ r2)
PIDiold = PIDinew, PIDinew = P(PIDinew ⨁ r2)

Step 1:
- Generate r1
- VR = h(RIDj ⨁ r1)
- Send to tag r1 →

Step 3:
- Send to server (M1, M2, PIDi, r1,
VR)

Step 5:
- Forward M3 to tag →

Step 2:
- Generate r2
- M1 = Ni ⨁ r2
- M2 = P(EPCi||r1||r2||Ki)
- Send to reader (M1, M2, PIDi)
←

Step 6:
- Verify M3 =
P(EPCi||r2||Ni||Ki)
- Ni = P(Ni ⨁ r2)
- Ki = P(Ki ⨁ r2)
- PIDi = P(PIDi ⨁ r2)

P: Access key with reader; PID: Pseudonym ID of tag; Ni: Nonce; EPC: Electronic product code for the tag; Ki:
Authentication key.

Figure 25. Ultra-Lightweight Reader–Tag Mutual Authentication Protocol (MACC) by Huang and
Jiang.

Figure 25. Ultra-Lightweight Reader–Tag Mutual Authentication Protocol (MACC) by Huang
and Jiang.

Sensors 2018, 18, 3584 24 of 31

Huang and Jiang [48] proposed another mutual authentication protocol (MACD) based on Chen
and Deng’s scheme [50] to overcome forge attacks, DoS, replay attacks, and mainly the tag identification
time. It is shown in Figure 26 that the MACD protocol uses ultra-lightweight operations and achieves
a lower communication cost between tag and reader than the other improved scheme, MACC.

Sensors 2018, 18, x FOR PEER REVIEW 24 of 31

Huang and Jiang [48] proposed another mutual authentication protocol (MACD) based on
Chen and Deng’s scheme [50] to overcome forge attacks, DoS, replay attacks, and mainly the tag
identification time. It is shown in Figure 26 that the MACD protocol uses ultra-lightweight
operations and achieves a lower communication cost between tag and reader than the other
improved scheme, MACC.

Server S Reader R Tag T

Step 4:
- Search database for EPCi match
- r2 = B ⨁ (Piold||r1) OR B ⨁ (Pinew||r1)
- A’ = r1 ⨁ r2 ⨁ Piold or Pinew
- Verify M1 = CRC(EPCi||A’|| B|| Kiold or
Kinew)
- M2 = CRC (EPCi||r2||Pix||Kix) x = old,
new
- Send M2 to reader →

- If x = new, proceed to update
Piold = Pinew, Pinew = P(Pinew ⨁ r2)
Kiold = Kinew, Kinew = P(Kinew ⨁ r2)

Step 1:
- Generate r1
- Send r1 to tag →

Step 3:
- Send to server (M1, B,
r1)

Step 5:
- Send M2 to tag →

Step 2:
- Generate r2
- A = r1 ⨁ r2 ⨁ Pi
- B = P(Pi||r1) ⨁ r2
- M1 = CRC(EPCi||A||B||Ki)
- Send to reader (M1, B) ←

Step 6:
- Verify M2 = CRC
(EPCi||r2||Pi||Ki)
- Pi = P(Pi ⨁ r2)
- Ki = P(Ki ⨁ r2)

P: Access key with reader; Ki: Authentication key; Ni: Nonce; EPC: Electronic product code for the tag; CRC():
Cyclic redundancy check function.

Figure 26. Mutual Authentication Protocol (MACD) by Huang and Jiang.

Considering the complexity of the authentication protocol, Hopper and Blum proposed the first
HB protocol to identify unaided humans to computers [51]. Many authors adopted the idea of HB
protocol to identify tags in RFID networks. As a matter of fact, HB family protocols are based on the
hard problems of Learning Parity with Noise (LPN), which involves the calculation of inner
products of binary vectors and Bernoulli noise bit generation [52]. In this regard, Lin and Song [53]
proposed HBROT, which is one of the latest HB protocols that produces the key in each
authentication round using the rotation function. The protocol is considered to be secure against
most of the RFID attacks.

Another improvement of the HB protocol is proposed by Juels and Weis [54] as (HB+) to
overcome the weaknesses of the original HB. The HB+ protocol involves two secret keys, x and y,
which are used with shared blind vectors between the reader and tag. The reader and tag verify the
values that are computed to perform the mutual authentication. Later, the protocol is reported by
Gilbert et al. [55] to be vulnerable to the man-in-the-middle attack (MIM). Hence, Ouaskou et al. [56]
proposed a variant of HB protocol based on Permutation function (HBPER). The protocol performs a
permutation of the keys x, y during each round of the protocol to update the value of the keys, as
shown in Figure 27. This method secures the protocol against the MIM attack that is reported in the
HB+ protocol, although both protocols HB+ and HBPER almost have the same complexity.

Figure 26. Mutual Authentication Protocol (MACD) by Huang and Jiang.

Considering the complexity of the authentication protocol, Hopper and Blum proposed the first
HB protocol to identify unaided humans to computers [51]. Many authors adopted the idea of HB
protocol to identify tags in RFID networks. As a matter of fact, HB family protocols are based on the
hard problems of Learning Parity with Noise (LPN), which involves the calculation of inner products
of binary vectors and Bernoulli noise bit generation [52]. In this regard, Lin and Song [53] proposed
HBROT, which is one of the latest HB protocols that produces the key in each authentication round
using the rotation function. The protocol is considered to be secure against most of the RFID attacks.

Another improvement of the HB protocol is proposed by Juels and Weis [54] as (HB+) to overcome
the weaknesses of the original HB. The HB+ protocol involves two secret keys, x and y, which are used
with shared blind vectors between the reader and tag. The reader and tag verify the values that are
computed to perform the mutual authentication. Later, the protocol is reported by Gilbert et al. [55] to
be vulnerable to the man-in-the-middle attack (MIM). Hence, Ouaskou et al. [56] proposed a variant of
HB protocol based on Permutation function (HBPER). The protocol performs a permutation of the
keys x, y during each round of the protocol to update the value of the keys, as shown in Figure 27.
This method secures the protocol against the MIM attack that is reported in the HB+ protocol, although
both protocols HB+ and HBPER almost have the same complexity.

Sensors 2018, 18, 3584 25 of 31
Sensors 2018, 18, x FOR PEER REVIEW 25 of 31

Reader R Tag T
x = xk−1, …, x1, x0
y = yk−1, …, y1, y0

Step 1:
- Generate random challenge (a)
- Send (a) to T →

Step 3:
- Compute y = Per(y,a)
- Compute x = Per(x,a)
- Verify z = a . x

x = xk−1, …, x1, x0
y = yk−1, …, y1, y0

Step 2:
- Compute y = Per(y,a)
- Compute x = Per(x,a)
- Compute z = a . x ⨁ v
(v = noise bit; v = 1 with probability of η)
- Send z to R ←

x: Shared key by tag and reader of k-bit; k: Length of secret keys; y: Shared key by tag and reader of
k-bit; η = noise level ∈]0,1/2[).

Figure 27. A Variant of HB Protocol Based on Permutation Function (HBPER) by Ouaskou et al.

5. Analysis and Security Evaluation

In this section, we compare the different protocols in terms of computation, security
requirements, and attacks resistance. Since the passive tag used in the RFID system has limited
computation capabilities and resources, it is important to consider the computation and security
features for the appropriate application. Table 2 demonstrates the different operations computed by
the tag in each protocol, and the communication overhead based on the number of transmitted
messages between tag and reader.

Table 2. Comparison of the Computation Cost on Tag.

Protocol Operations Tag Passes Reader Passes Tag Overhead
SB-A [11] 1 TENC + 2 TDEC + 2 TPRNG 2 3 High
SB-B [11] 2 TENC + 2 TDEC + 2 TPRNG 2 3 High
EMA [15] 2 TSMUL + 2 TCH 2 1 High
ECU [13] 2 TSMUL + 2 TCH 1 1 High
SPA [14] 4 TSMUL + 1 TCH 1 1 High
PII [16] 4 TSMUL + 3 TCH 1 1 High

RUND [17] 2 TH OR 1 TENC + 1 TPRNG 1 2 High
IECC [19] 2 TSMUL + 2 TH 1 2 High
EECC [20] 2 TSMUL + 2 TH 1 2 High
RBAC [21] 2 TENC + 2 TDEC + 1 TPRNG 2 2 High
DRAP [33] 1 TENC + 3 TXOR + 3 TH + 1 TRNG + 2 TPRNG 1 2 High
NRS [22] 10 TXOR + 3 TH 4 5 Medium
NRS+ [10] 10 TXOR + 6 TH 4 5 Medium

NRS++ [23] 8 TXOR + 4 TH 1 2 Medium
ACSP [24] 3 TXOR + 7 TH + 4 TCRC 1 4 Medium

ACSP+ [25] 4 TXOR + 8 TH 2 4 Medium
ACSP++ [23] 6 TXOR + 8 TH 1 2 Medium
MASS [31] 4 TXOR + 2 TH + 1 TRNG 1 2 Medium

EP-UAP [32] 2 TH + 1 TRNG 1 2 Medium
GUPA [34] 2 TH + 3 TPRNG + 19 TBIT 3 3 Medium
HBA [37] 6 TXOR + 2 TH + 1 TRNG + 4 TMOD 1 2 Medium
VLP [38] 2 TXOR + 2 TRNG + 3 TBIT + 2 TVLFSR 1 2 Medium

SEAS [40] 1 TXOR + 2 TH + 1 TRNG + 3 TPRNG + 1 TBIT 1 2 Medium
SAP [41] 2 TH + 2 TRNG 1 2 Medium
LAP [26] 2 TXOR + 1 TRNG + 2 TPRNG + 1 TROT + 1 TSHIFT 2 2 Low

Flyweight [29] 5 TPRNG 3 3 Low
FTest [35] 1 TXOR + 3 TCRC 3 2 Low

Figure 27. A Variant of HB Protocol Based on Permutation Function (HBPER) by Ouaskou et al.

5. Analysis and Security Evaluation

In this section, we compare the different protocols in terms of computation, security requirements,
and attacks resistance. Since the passive tag used in the RFID system has limited computation
capabilities and resources, it is important to consider the computation and security features for the
appropriate application. Table 2 demonstrates the different operations computed by the tag in each
protocol, and the communication overhead based on the number of transmitted messages between tag
and reader.

Table 2. Comparison of the Computation Cost on Tag.

Protocol Operations Tag Passes Reader Passes Tag Overhead

SB-A [11] 1 TENC + 2 TDEC + 2 TPRNG 2 3 High
SB-B [11] 2 TENC + 2 TDEC + 2 TPRNG 2 3 High
EMA [15] 2 TSMUL + 2 TCH 2 1 High
ECU [13] 2 TSMUL + 2 TCH 1 1 High
SPA [14] 4 TSMUL + 1 TCH 1 1 High
PII [16] 4 TSMUL + 3 TCH 1 1 High

RUND [17] 2 TH OR 1 TENC + 1 TPRNG 1 2 High
IECC [19] 2 TSMUL + 2 TH 1 2 High
EECC [20] 2 TSMUL + 2 TH 1 2 High
RBAC [21] 2 TENC + 2 TDEC + 1 TPRNG 2 2 High
DRAP [33] 1 TENC + 3 TXOR + 3 TH + 1 TRNG + 2 TPRNG 1 2 High
NRS [22] 10 TXOR + 3 TH 4 5 Medium

NRS+ [10] 10 TXOR + 6 TH 4 5 Medium
NRS++ [23] 8 TXOR + 4 TH 1 2 Medium
ACSP [24] 3 TXOR + 7 TH + 4 TCRC 1 4 Medium

ACSP+ [25] 4 TXOR + 8 TH 2 4 Medium
ACSP++ [23] 6 TXOR + 8 TH 1 2 Medium

MASS [31] 4 TXOR + 2 TH + 1 TRNG 1 2 Medium
EP-UAP [32] 2 TH + 1 TRNG 1 2 Medium
GUPA [34] 2 TH + 3 TPRNG + 19 TBIT 3 3 Medium
HBA [37] 6 TXOR + 2 TH + 1 TRNG + 4 TMOD 1 2 Medium
VLP [38] 2 TXOR + 2 TRNG + 3 TBIT + 2 TVLFSR 1 2 Medium

SEAS [40] 1 TXOR + 2 TH + 1 TRNG + 3 TPRNG + 1 TBIT 1 2 Medium
SAP [41] 2 TH + 2 TRNG 1 2 Medium
LAP [26] 2 TXOR + 1 TRNG + 2 TPRNG + 1 TROT + 1 TSHIFT 2 2 Low

Flyweight [29] 5 TPRNG 3 3 Low
FTest [35] 1 TXOR + 3 TCRC 3 2 Low
ACS [36] 3 TXOR + 2 TITER + 1 TSPR 1 2 Low
HBA+ [6] 7 TXOR + 1 TRNG + 5 TPRNG 1 2 Low
OMP [39] 12 TXOR + 6 TPRNG + 2 TPER 1 1 Low
STS [43] 7 TXOR + 3 TPRNG 1 1 Low

Sensors 2018, 18, 3584 26 of 31

Table 2. Cont.

Protocol Operations Tag Passes Reader Passes Tag Overhead

CWH+ [44] 2 TXOR + 5 TROT + 1 TSHIFT + TBIT 1 1 Low
PGX [46] 8 TXOR + 2 TRNG 2 2 Low
PGM [46] 4 TXOR + 2 TRNG + 32 TMOD 2 2 Low

MACC [48] 6 TXOR + 5 TPRNG 1 2 Low
MACD [48] 5 TXOR + 3 TPRNG + 1 TCRC 1 2 Low
HBROT [53] 1 TRNG + 2 TROT + 1 TXOR + 1 TBIT 1 1 Low
HBPER [56] 1 TRNG + 2 TPER + 1 TXOR + 1 TBIT 1 1 Low

TENC: encryption, TDEC: decryption, TPRNG: pseudo-random number generator, TRNG: random number generator,
TSMUL: scalar multiplication, TXOR: XOR, TCH: cryptographic hash, TH: one-way hash function, TCRC: cyclic
redundancy check, TROT: rotation, TSHIFT: shifting, TITER: iteration, TBIT: bitwise operation, TSPR: spreading, TPER:
permutation, TMOD: modulo, TVLFSR: variable linear shift register function.

5.1. Comparison of Computation Cost

We denote TENC, TDEC, TPRNG, TRNG, TSMUL, TXOR, TCH, TH, TCRC, TROT, TSHIFT, TITER, TBIT,
TSPR, TPER, TMOD, TVLFSR as the computation cost for encryption, decryption, pseudo-random
number generator, random number generator, scalar multiplication, XOR, cryptographic hash,
one-way hash function, cyclic redundancy check, rotation, shifting, iteration, bitwise operation,
spreading, permutation, modulo, variable linear shift register function, respectively. Tag overhead is
classified based on the cryptographic level of operations used in the protocol: high for symmetric key
cryptography and scalar multiplication, medium for one-way hash function, and low for other bitwise
operations and random number generators. The passes are designated for the number of messages
sent by a reader or a tag.

5.2. Comparison of Security Threats

Protocols resistance to different RFID threats is presented in Table 3, where we denote ST1
for a replay attack, ST2 for a man-in-the-middle attack (MITM), ST3 for eavesdropping, ST4 for an
impersonating attack, ST5 for traceability, ST6 for desynchronization, ST7 for denial of service (DoS),
and ST8 for other types of attack. We found that most of the recently proposed protocols do not pay
close enough attention to DoS, MITM, and eavesdropping attacks, while most of the protocols consider
the system security against replay, impersonate, traceability, and desynchronization attacks. Certainly,
protocols [6,19,20,23,34,53,56] are strongly resistant to all of the major attacks.

Table 3. Comparison of Various Security Threats Resistance.

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

SB-A [11] Y Y Y Y Y Y * Cloning
SB-B [11] Y Y Y Y Y Y * Cloning
ECU [13] Y Y * Y Y * * *
SPA [14] N * * N Y * * *

EMA [15] Y * * N N * * *
PII [16] Y * * Y Y * * *

RUND [17] Y * * Y Y Y Y *
IECC [19] Y Y Y Y Y Y Y Cloning
EECC [20] Y Y Y Y Y Y Y Spoofing
RBAC [21] Y * * Y Y * Y *
NRS [22] N Y N N N N N *

NRS+ [10] N Y Y N N N N *
NRS++ [23] Y Y Y Y Y Y Y *
ACSP [24] N N N N N N N Counting

ACSP+ [25] N * * N Y Y N Counting
ACSP++ [23] Y Y Y Y Y Y Y Counting

LAP [26] Y * * N N N Y *
Flyweight [29] Y Y Y Y Y Y * *

Sensors 2018, 18, 3584 27 of 31

Table 3. Cont.

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

MASS [31] N N N N Y N * *
EP-UAP [32] N Y Y N Y * * *
DRAP [33] Y * * Y Y Y Y Y
GUPA [34] Y Y Y Y Y Y Y DoP
FTest [35] Y Y Y Y Y * * Counterfeit + Collision
ACS [36] Y Y Y Y Y * * Counterfeit + Collision
HBA [37] N Y Y Y Y Y N Brute + Counterfeit
HBA+ [6] Y Y Y Y Y Y Y Brute for
VLP [38] Y Y Y * Y Y * *
OMP [39] N * * Y Y Y Y *
SEAS [40] Y Y * Y Y Y Y *
SAP [41] Y * Y Y Y * * *
STS [43] Y * * Y Y Y Y *

CWH+ [44] Y * Y Y * Y * Disclosure
PGX [46] Y Y Y Y N Y * Cloning
PGM [46] Y Y Y Y N Y * Cloning

MACC [48] Y Y * Y N Y Y *
MACD [48] Y Y * Y Y Y Y *
HBROT [53] Y Y Y Y Y Y Y *
HBPER [56] Y Y Y Y Y Y Y *

ST1: replay attack, ST2: man-in-the-middle, ST3: eavesdropping, ST4: impersonate attack, ST5: traceability, ST6:
desynchronization, ST7: DoS, ST8: other types of attack, Y: satisfied, N: not satisfied. *: not applicable.

5.3. Comparison of Security Requirements

Security requirements for an RFID system should be satisfied in order for the system to defend
against the attacks mentioned in this paper. Table 4 compares the security requirements in each
protocol, which includes mutual authentication (SR1), confidentiality (SR2), message integrity (SR3),
privacy (SR4), forward secrecy (SR5), backward secrecy (SR6), tag anonymity (SR7), and conforming to
EPC standards (SR8). We found that most of the protocols fully considered the mutual authentication,
privacy, and data protection, while backward secrecy is given the least attention, and should be more
considered in future work. However, Niu et al. [39] and X. Chen [23] completely satisfied all of the
security requirements in their protocol.

Table 4. Comparison of the Security Requirements.

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

SB-A [11] Y Y Y Y Y * Y N
SB-B [11] Y Y Y Y Y * Y N
ECU [13] N Y Y Y Y * Y N
SPA [14] * * * * N * * *

EMA [15] * * * * N * * *
PII [16] * * * * N * * *

RUND [17] Y Y Y Y Y * Y N
IECC [19] Y Y Y Y Y Y Y N
EECC [20] Y Y Y Y Y Y Y N
RBAC [21] Y Y Y Y * * Y N
NRS [22] N Y N N N N N Y

NRS+ [10] N Y Y N N N N Y
NRS++ [23] Y Y Y Y Y Y Y Y
ACSP [24] Y N N N N N N Y

ACSP+ [25] Y Y Y * N Y * Y
ACSP++ [23] Y Y Y Y Y Y * Y

Sensors 2018, 18, 3584 28 of 31

Table 4. Cont.

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

LAP [26] Y Y Y N Y * N Y
Flyweight [29] Y Y Y Y Y Y Y Y

MASS [31] Y Y N * Y * * Y
EP-UAP [32] N Y Y Y * * Y Y
DRAP [33] Y * * Y * * Y Y
GUPA [34] Y Y Y Y Y * Y Y
FTest [35] N Y Y Y Y * Y Y
ACS [36] Y * * Y * * Y Y
HBA [37] Y Y Y Y Y * Y Y
HBA+ [6] Y Y Y Y Y * Y Y
VLP [38] Y Y Y Y Y * Y Y
OMP [39] Y Y Y Y Y Y Y Y
SEAS [40] Y Y Y Y Y * Y Y
SAP [41] Y Y Y * * * * Y
STS [43] Y Y Y Y Y * Y Y

CWH+ [44] Y Y Y * Y * * Y
PGX [46] Y * * N * * N Y
PGM [46] Y * * N * * N Y

MACC [48] Y Y Y N Y * N Y
MACD [48] Y Y Y Y Y * Y Y
HBROT [53] Y Y Y Y Y * * Y
HBPER [56] Y Y Y Y Y * * Y

SR1: mutual authentication, SR2: confidentiality, SR3: message integrity, SR4: privacy, SR5: forward secrecy,
SR6: backward secrecy, SR7: tag anonymity, SR8: conforming to EPC standard, Y: satisfied, N: not satisfied, *:
not applicable.

6. Conclusions

Recent RFID authentication protocols are proposed to develop an efficient and secure RFID
system. This survey is conducted to review and compare different RFID authentication protocols of
low-cost passive tags for better utilization in the appropriate application. We demonstrate in this
study the security requirements of an RFID system that must be satisfied, so the system could be able
to defend major attacks such as replay, man-in-the-middle, impersonation, desynchronization, DoS,
and more. We further identify the category levels of the protocols based on the operation complexity
on the tag side, and compare the protocols based on the tag computation cost. Since the RFID
passive tag has limited resources to compute complex operations, the heavyweight and simple-weight
protocols are not feasible for practical implementation. However, lightweight and ultra-lightweight
protocols use only simple operations within the tag computation limits, and show the lowest tag
overhead level. Lightweight and ultra-lightweight protocols are considered the most suitable for the
current applications. Another vital aspect when considering the appropriate RFID protocol is the
security resistance to the attacks. We examined the security threats in each protocol presented in
the review. We found out that Chang et al. [6], Farash [19], Zhang and Qi [20], X. Chen et al. [23],
Liu et al. [34], Lin and Song [53], and Ouaskou et al. [56] protocols successfully resist all of the
major attacks. Although the other protocols could not resist all of the attacks, they could perform
better than the fully secure protocols in term of computation cost; examples include the protocols
presented in Farash [19], Zhang and Qi [20], X. Chen et al. [23], and Liu et al. [34], which have high
computation overhead on the tag side. We encourage researchers to pay attention to the forward
and backward security, since most protocols do not reflect on these two types of attacks. Finally,
maintaining the basic security requirements for an RFID system is required to achieve protection
against the mentioned attacks in this article. Our assessment is that only the protocols of Niu et al. [39]
and X. Chen et al. [23] satisfy all of the security requirements to maintain the system in a stable and
available state. Even though this review shows security variation among the reviewed protocols, each
one could still be a preference over others, depending on the requirements of the application in hand.

Sensors 2018, 18, 3584 29 of 31

Author Contributions: Conceptualization, R.B., and A.A.; Methodology, R.B. and A.A.; Formal Analysis, R.B.
and A.A.; Writing-Original Draft Preparation, R.B.; Writing-Review & Editing, A.A., and R.B.; Supervision, A.A.;
Project Administration, A.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhao, Z. A Secure RFID Authentication Protocol for Healthcare Environments Using Elliptic Curve
Cryptosystem. J. Med. Syst. 2014, 38, 46. [CrossRef] [PubMed]

2. Roberts, C.M. Radio frequency identification (RFID). Comput. Secur. 2006, 25, 18–26. [CrossRef]
3. Xie, L.; Yin, Y.; Vasilakos, A.V.; Lu, S. Managing RFID Data: Challenges, Opportunities and Solutions.

IEEE Commun. Surv. Tutor. 2014, 16, 1294–1311. [CrossRef]
4. Pagán Alexander, J.; Baashirah, R.; Abuzneid, A. Comparison and Feasibility of Various RFID Authentication

Methods Using ECC. Sensors 2018, 18, 2902. [CrossRef] [PubMed]
5. Syamsuddin, I.; Han, S.; Dillon, T. A survey on low-cost RFID authentication protocols. In Proceedings of

the 2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS),
Depok, Indonesia, 1–2 December 2012.

6. Chang, C.C.; Chen, W.Y.; Cheng, T.F. A Secure RFID Mutual Authentication Protocol Conforming to EPC
Class 1 Generation 2 Standard. In Proceedings of the 2014 Tenth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 27–29 August 2014.

7. Swedberg, C. Iotera Develops Active RFID Tag with 4-Mile Read Range. Available online: https://www.
rfidjournal.com/articles/view?11374 (accessed on 22 October 2018).

8. Roque, P. Performance Analysis of Effective Range and Orientation for UHF Passive RFID. In Department of
Electrical and Computer Engieering; Air Force Institute of Technology: Dayton, OH, USA, 2008.

9. Zheng, L.; Xue, Y.; Zhang, L.; Zhang, R. Mutual Authentication Protocol for RFID Based on ECC.
In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou,
China, 21–24 July 2017.

10. Alagheband, M.R.; Aref, M.R. Simulation-Based Traceability Analysis of RFID Authentication Protocols.
Wirel. Pers. Commun. 2014, 77, 1019–1038. [CrossRef]

11. Wang, J.; Floerkemeier, C.; Sarma, S.E. Session-based security enhancement of RFID systems for emerging
open-loop applications. Pers. Ubiquitous Comput. 2014, 18, 1881–1891. [CrossRef]

12. ISO. ISO/IEC DIS 9798-2. In Information Technology-Security Techniques-Entity Authentication—Part 2:
Mechanisms Using Authenticated Encryption; International Organization for Standardization: Geneva,
Switzerland, 2017.

13. Ryu, E.-K.; Kim, D.-S.; Yoo, K.-Y. On Elliptic Curve Based Untraceable RFID Authentication Protocols.
In Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Portland, OR,
USA, 17–19 June 2015.

14. Songhela, R.; Das, M.L. Yet Another Strong Privacy-Preserving RFID Mutual Authentication Protocol; Springer
International Publishing: Cham, Switzerland, 2014.

15. Chou, J.-S. An efficient mutual authentication RFID scheme based on elliptic curve cryptography.
J. Supercomput. 2014, 70, 75–94. [CrossRef]

16. Chen, Y.; Chou, J.-S. ECC-based untraceable authentication for large-scale active-tag RFID systems.
Electron. Commer. Res. 2015, 15, 97–120. [CrossRef]

17. Yao, Q.; Ma, J.; Cong, S.; Li, X.; Li, J. Attack gives me power: DoS-defending constant-time privacy-preserving
authentication of low-cost devices such as backscattering RFID tags. In Proceedings of the 3rd ACM
Workshop on Mobile Sensing, Computing and Communication, Paderborn, Germany, 5–8 July 2016.

18. EPCglobal, E.P.C. Radio-Frequency Identity Protocols Generation-2 UHF RFID. In Specification for RFID Air
Interface Protocol for Communications at 860 MHz–960 MHz Version 2.0.1 Ratified; EPCglobal Inc.: Lawrenceville,
NJ, USA, 2015.

19. Farash, M.S. Cryptanalysis and improvement of an efficient mutual authentication RFID scheme based on
elliptic curve cryptography. J. Supercomput. 2014, 70, 987–1001. [CrossRef]

http://dx.doi.org/10.1007/s10916-014-0046-9
http://www.ncbi.nlm.nih.gov/pubmed/24756871
http://dx.doi.org/10.1016/j.cose.2005.12.003
http://dx.doi.org/10.1109/SURV.2014.022614.00143
http://dx.doi.org/10.3390/s18092902
http://www.ncbi.nlm.nih.gov/pubmed/30200493
https://www.rfidjournal.com/articles/view?11374
https://www.rfidjournal.com/articles/view?11374
http://dx.doi.org/10.1007/s11277-013-1552-7
http://dx.doi.org/10.1007/s00779-014-0788-x
http://dx.doi.org/10.1007/s11227-013-1073-x
http://dx.doi.org/10.1007/s10660-014-9165-0
http://dx.doi.org/10.1007/s11227-014-1272-0

Sensors 2018, 18, 3584 30 of 31

20. Zhang, Z.; Qi, Q. An Efficient RFID Authentication Protocol to Enhance Patient Medication Safety Using
Elliptic Curve Cryptography. J. Med. Syst. 2014, 38, 47. [CrossRef] [PubMed]

21. Chen, B.-C.; Yang, C.T.; Yeh, H.T.; Lin, C.C. Mutual Authentication Protocol for Role-Based Access Control
Using Mobile RFID. Appl. Sci. 2016, 6, 215. [CrossRef]

22. Fernando, H.; Abawajy, J. Mutual Authentication Protocol for Networked RFID Systems. In Proceedings
of the 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and
Communications, Changsha, China, 16–18 November 2011.

23. Chen, X.; Cao, T.; Zhai, J. Untraceability Analysis of Two RFID Authentication Protocols. Chin. J. Electron.
2016, 25, 912–920. [CrossRef]

24. Chen, C.; Qian, Z.; You, I.; Hong, J.; Lu, S. ACSP: A Novel Security Protocol against Counting Attack for
UHF RFID Systems. In Proceedings of the 2011 Fifth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, Seoul, Korea, 30 June–2 July 2011.

25. Safkhani, M.; Bagheri, N.; Mahani, A. On the security of RFID anti-counting security protocol (ACSP).
J. Comput. Appl. Math. 2014, 259, 512–521. [CrossRef]

26. Chien, H.-Y.; Huang, C.-W. A Lightweight Authentication Protocol for Low-Cost RFID. J. Signal Process. Syst.
2010, 59, 95–102. [CrossRef]

27. Li, Y.Z.; Cho, Y.B.; Um, N.K.; Lee, S.H. Security and Privacy on Authentication Protocol for Low-cost RFID.
In Proceedings of the 2006 International Conference on Computational Intelligence and Security, Guangzhou,
China, 3–6 November 2006.

28. ISO. ISO/IEC 15693-2:2006. In Identification Cards-Contactless Integrated Circuit Cards-Vicinity Cards—Part 2:
Air Interface and Initialization; International Organization for Standardization: Geneva, Switzerland, 2006.

29. Burmester, M.; Munilla, J. Lightweight RFID authentication with forward and backward security. ACM Trans.
Inf. Syst. Secur. 2011, 14, 1–26. [CrossRef]

30. Lee, S.; Asano, T.; Kim, K. RFID Mutual Authentication Scheme based on Synchronized Secret Information.
In Proceedings of the 2006 Symposium on Cryptography and Information Security, Hiroshima, Japan,
17–20 January 2006.

31. Zuo, Y. Survivability Experiment and Attack Characterization for RFID. IEEE Trans. Dependable Secur. Comput.
2012, 9, 289–302. [CrossRef]

32. Lee, K.; Nieto, J.M.G.; Boyd, C. Improving the efficiency of RFID authentication with pre-computation.
In Proceedings of the Tenth Australasian Information Security Conference, Melbourne, Australia,
31 January–3 February 2012.

33. Rahman, F.; Ahamed, S.I. DRAP: A Robust Authentication protocol to ensure survivability of computational
RFID networks. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, Italy,
26–30 March 2012.

34. Liu, H.; Liu, H.; Ning, H.; Zhang, Y.; He, D.; Xiong, Q.; Yang, L.T. Grouping-Proofs-Based Authentication
Protocol for Distributed RFID Systems. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1321–1330. [CrossRef]

35. Rahman, F.; Ahamed, S.I. Efficient detection of counterfeit products in large-scale RFID systems using batch
authentication protocols. Pers. Ubiquitous Comput. 2014, 18, 177–188. [CrossRef]

36. Keqiang, Y.; Lingling, S.; Xing, Q.; Zhonghua, Z. Design of anti-collision integrated security mechanism
based on chaotic sequence in UHF RFID system. China Commun. 2014, 11, 137–147. [CrossRef]

37. Cho, J.-S.; Jeong, Y.-S.; Park, S.O. Consideration on the brute-force attack cost and retrieval cost: A hash-based
radio-frequency identification (RFID) tag mutual authentication protocol. Comput. Math. Appl. 2015, 69,
58–65. [CrossRef]

38. Liu, Z.; Liu, Z.; Liu, D.; Li, L.; Lin, H.; Yong, Z. Implementation of a New RFID Authentication Protocol for
EPC Gen2 Standard. IEEE Sens. J. 2015, 15, 1003–1011.

39. Niu, H.; Taqieddin, E.; Jagannathan, S. EPC Gen2v2 RFID Standard Authentication and Ownership
Management Protocol. IEEE Trans. Mob. Comput. 2016, 15, 137–149. [CrossRef]

40. Dass, P.; Om, H. A Secure Authentication Scheme for RFID Systems. Procedia Comput. Sci. 2016, 78, 100–106.
[CrossRef]

41. Mtita, C.; Laurent, M.; Delort, J. Efficient serverless radio-frequency identification mutual authentication and
secure tag search protocols with untrusted readers. IET Inf. Secur. 2016, 10, 262–271. [CrossRef]

42. Blanchet, B. CryptoVerif: Cryptographic Protocol Verifier in the Computational Model; IEEE: Oxford, UK, 2010;
pp. 16–30.

http://dx.doi.org/10.1007/s10916-014-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/24733525
http://dx.doi.org/10.3390/app6080215
http://dx.doi.org/10.1049/cje.2016.08.013
http://dx.doi.org/10.1016/j.cam.2013.06.016
http://dx.doi.org/10.1007/s11265-008-0281-8
http://dx.doi.org/10.1145/1952982.1952993
http://dx.doi.org/10.1109/TDSC.2011.30
http://dx.doi.org/10.1109/TPDS.2012.218
http://dx.doi.org/10.1007/s00779-012-0629-8
http://dx.doi.org/10.1109/CC.2014.6825266
http://dx.doi.org/10.1016/j.camwa.2012.02.025
http://dx.doi.org/10.1109/TMC.2015.2412933
http://dx.doi.org/10.1016/j.procs.2016.02.017
http://dx.doi.org/10.1049/iet-ifs.2015.0428

Sensors 2018, 18, 3584 31 of 31

43. Sundaresan, S.; Doss, R.; Piramuthu, S.; Zhou, W. Secure Tag Search in RFID Systems Using Mobile Readers.
IEEE Trans. Dependable Secur. Comput. 2015, 12, 230–242. [CrossRef]

44. Aggarwal, R.; Das, M.L. RFID security in the context of “internet of things”. In Proceedings of the First
International Conference on Security of Internet of Things, Kollam, India, 17–19 August 2012.

45. Chen, Y.C.; Wang, W.L.; Hwang, M.S. RFID Authentication Protocol for Anti-Counterfeiting and Privacy
Protection. In Proceedings of the 9th International Conference on Advanced Communication Technology,
Kobe, Japan, 12–14 February 2007.

46. Huang, Y.J.; Lin, W.C.; Li, H.L. Efficient Implementation of RFID Mutual Authentication Protocol. IEEE Trans.
Ind. Electron. 2012, 59, 4784–4791. [CrossRef]

47. ISO. ISO/IEC 18000-6:2013. In Information Technology-Radio Frequency Identification for Item Management—Part 6:
Parameters for Air Interface Communications at 860 MHz to 960 MHz General; International Organization for
Standardization: Geneva, Switzerland, 2013.

48. Huang, Y.C.; Jiang, J.R. Ultralightweight RFID Reader-Tag Mutual Authentication. In Proceedings of the
2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan, 1–5 July 2015.

49. Chien, H.-Y.; Chen, C.-H. Mutual authentication protocol for RFID conforming to EPC Class 1 Generation 2
standards. Comput. Stand. Interfaces 2007, 29, 254–259. [CrossRef]

50. Chen, C.-L.; Deng, Y.-Y. Conformation of EPC Class 1 Generation 2 standards RFID system with mutual
authentication and privacy protection. Eng. Appl. Artif. Intell. 2009, 22, 1284–1291. [CrossRef]

51. Hopper, N.J.; Blum, M. Secure Human Identification Protocols. In Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology,
Gold Coast, Australia, 9–13 December 2001; Springer: Berlin/Heidelberg, Germany; pp. 52–66.

52. Piramuthu, S. HB and Related Lightweight Authentication Protocols for Secure RFID Tag/Reader
Authentication. CollECTeR Eur. 2006, 2006, 239.

53. Lin, Z.; Song, J.S. An Improvement in HB-Family Lightweight Authentication Protocols for Practical Use of
RFID System. J. Adv. Comput. Netw. 2013, 1, 61–65. [CrossRef]

54. Juels, A.; Weis, S.A. Authenticating Pervasive Devices with Human Protocols. In Annual International
Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2005; pp. 293–308.

55. Gilbert, H.; Robshaw, M.; Sibert, H. Active attack against HB/sup +/: A provably secure lightweight
authentication protocol. Electron. Lett. 2005, 41, 1169–1170. [CrossRef]

56. Ouaskou, M.; Lahmer, M.; Belkasmi, M. A variant of HB protocols based on permutation for low-cost RFID.
In Proceedings of the 2015 International Conference on Wireless Networks and Mobile Communications
(WINCOM), Marrakech, Morocco, 20–23 October 2015.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TDSC.2014.2302305
http://dx.doi.org/10.1109/TIE.2011.2178215
http://dx.doi.org/10.1016/j.csi.2006.04.004
http://dx.doi.org/10.1016/j.engappai.2008.10.022
http://dx.doi.org/10.7763/JACN.2013.V1.13
http://dx.doi.org/10.1049/el:20052622
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Architecture and Communication Model
	Security Requirements and Threats
	Security Requirements
	Security Threats

	Review of Recent RFID Authentication Protocols
	Heavyweight Protocols
	Simple-Weight Protocols
	Lightweight Protocols
	Ultra-Lightweight Protocols

	Analysis and Security Evaluation
	Comparison of Computation Cost
	Comparison of Security Threats
	Comparison of Security Requirements

	Conclusions
	References

