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Abstract: Due to the rapid installation of a massive number of fixed and mobile sensors, monitoring
machines are intentionally or unintentionally involved in the production of a large amount of
geospatial data. Environmental sensors and related software applications are rapidly altering human
lifestyles and even impacting ecological and human health. However, there are rarely specific
geospatial sensor web (GSW) applications for certain ecological public health questions. In this
paper, we propose an ontology-driven approach for integrating intelligence to manage human and
ecological health risks in the GSW. We design a Human and Ecological health Risks Ontology (HERO)
based on a semantic sensor network ontology template. We also illustrate a web-based prototype,
the Human and Ecological Health Risk Management System (HaEHMS), which helps health experts
and decision makers to estimate human and ecological health risks. We demonstrate this intelligent
system through a case study of automatic prediction of air quality and related health risk.

Keywords: ecological public health; heterogeneous geospatial sensors; computational intelligence;
semantic sensor web; software agents

1. Introduction

Ecological public health promotes the concept that health depends on successful co-existence
of the natural world and social relationships [1]. This co-existence focuses on increasing people’s
awareness of environmental change and the interaction between the biological world and material
consumption. Human health ultimately depends on the health of ecosystems. Many environmental
indicators are included in health and ecological models to analyze or simulate interactions between
the nature environment and its impacts on human society. Environmental data sources cover a
wide range of fields, such as biological, physical, chemical, etc. and they are increasingly retrieved
from heterogeneous fixed and mobile sensors. It is critical to integrate computational intelligence,
such as intelligent data analysis and data-driven decision-making, to solve the problems of human
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and ecological health risks. In the coming big-data era, the effective use of environmental data for
monitoring and computing human and ecological health risks is facing many challenges. Open data
standards and open software paradigms are key concepts to offer us the best approaches [2].
Reis et al. [3] have identified a paradigm shift dealing with how the integration of models and smart
sensors can contribute to environmental and human health.

Sensors are deployed all over the world, ranging from high level remote sensing to low level
camera videoing, from earth observation to smart home monitoring, from advanced industry 4.0 to
daily healthcare [4], and from the U.S. Army to Chinese civil engineering. Sensors are installed either
as a fixed device or a mobile one, or even a wearable device to fit specific purposes, e.g., weather
station monitoring, aircraft detection, athlete training, etc. At present, most sensors and their uses
are managed by regular local file or database management technology for the Internet of Things
(IoT)—enabled connection, retrieval and management [5]. However, the effective management of
heterogeneous sensors is facing many challenges, since heterogeneous sensor nodes on the www
(World Wide Web) or IoT are not well integrated or interconnected.

Traditional platforms of sensor networks (e.g., IrisNet [6], Hourglass [7] and Global Sensor
Networks [8]) focus on composing densely wired or wireless networks for collecting and distributing
observed data [9]. The platforms barely offered interoperability within local networks. People began
to realize that there was a lack of uniform operation for resource reallocation, resource sharing, and the
standard representation of a large volume of sensor data. Therefore, a generalized or standard-based
sensor administration schema is needed to overcome the challenge of the shortage of interoperability
within the sensor networks. The Open Geospatial Consortium (OGC) Sensor Web Enablement
(SWE) [10] has been developed as an open consensus process for the intelligent use of all types
of network-connected sensors and sensor systems.

As geospatial research focuses on spatial and temporal analysis of complex geological processes,
modeling complex nonlinear systems, and supporting decision making, real-time and near real-time
data collection using the processing capability of Geospatial Sensor Web (GSW) is indispensable [11].
Data mining and computational modeling that are critical for exploring and explaining the complex
sensor network data can be greatly facilitated through ontology-based modeling. The GSW is used to
deliver and show the most valuable geospatial information to the most needed researchers and the
public through a series of object-oriented intelligent services [12].

In order to solve “intelligent” tasks at low, middle and high levels of the sensor architecture,
soft sensors [13] and computational intelligence are frequently built on fuzzy logic, artificial neural
networks, evolutionary computing, learning theory, and the probabilistic method, as the tools
to determine the best indicators for each driver and goal in a smart city computing model [14].
Moreover, researchers intend to use the sensor web for attaining these kinds of intelligence acquiring,
representation, and sharing, which are widely considered in a semantic web area [15]. For example,
Gray et al. [16] described a semantic sensor web architecture for integrating multiple heterogeneous
datasets, including live and historical sensor data, databases, and map layers. The semantic web can
structure and tag heterogeneous and ambiguous sensor data to make them machine-understandable.
A good number of researchers have been very active in sematic web studies, and they have created
many types of ontology languages. The semantic specification of sensors and reasoning were surveyed
about sensors and components based on the Commonwealth Scientific and Industrial Research
Organization (CSIRO) ontology [17]. The W3C Semantic Sensor Network Incubator group (the SSN-XG)
reviewed and analyzed existing sensor-centric and observation-centric ontologies [18], and proposed
the Semantic Sensor Network Ontology (SSNO), which used CSIRO Sensor Ontology as the starting
point for development, in order to create a domain-independent and full model for sensing applications.
The SSN-XG group gave examples and described uses of the SSNO in recent research projects [19].
Geoscientists attempted to use the SSNO for modeling geospatial data, in order to help with designing
a geo-ontology pattern for semantic trajectories [20]. There were also some successful applications,
such as the ontology plan mode for geospatial data quality characterization in the semantic sensor
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web [21], and the SSN-based ontology which is used for water quality administration to sustain the
water quality category [22]. The InWaterSense [23] was proposed as a SSN-based ontology framework
and expert system for water quality monitoring. The richness of the ontologies and the capabilities of
large reasoning offer much promise in revealing the value of environment information.

There are several typical GSW prototypes that semantically handle sensor networks.
GeoCENS [24] consists of five core components, including a sensor web service engine, sensor
web browser, semantic layer service, online social network, and recommendation engine.
GeoSensor [25] provides a sensor query, data retrieval, sensor control, and semantic map functions in
a web-based 2D and 3D Geographic Information System (GIS) platform. Sensapp [26] supports the
abstraction of sensor data and services to standardized OGC interfaces/services, semantic annotation
of such interfaces, enhanced discovery and composition of services, and data visualization on
maps and charts. Overall, these platforms support satellite, aerial, and in situ sensors and use
standardized models and interfaces in the service chain and for integration with GIS. To achieve
ontology-driven reasoning, a geo-event was decomposed into several simple tasks based on
ontology [27]. Durbha et al. [28] also proposed standards based middleware and tools, which exploited
the instance data in the ontology concepts to realize mapping between different applications. This kind
of middleware consists of syntactic standardization of metadata through open-standards-based sensor
web components, which enriches the syntactical terms by using semantics to conceptualize them
through ontology-based modeling in GSW.

However, there is a lack of cloud computing architecture to support big-data analytics.
Knowledge-based systems are proposed as the solution for big-data analytics, including the application
of automatic mode mapping to handle data-oriented heterogeneity, as well as semantic reasoning and
ontology extraction that are used for innovative processing. A semantic link network was developed
as a base system named Knowle [29], to organize and mine massive online health data, and it shows a
promising potential for building, designing and developing which shows the potential for it forming
the basis of designing and developing big-data analytics-based innovation frameworks for health.
Cloud computing and stores can be combined into big-data analytics to provide more effective
operations. In order to leverage the abilities of service-oriented decision support systems, big-data and
analytics are put into the cloud [30]. Some new cloud-based infrastructures are proposed to model and
assess environmental health and risks. For example, a cloud-enabled Climate Analytics-as-a-Service
is discussed to overcome the big-data challenges in the climate science domain [31]. Cloud-based
frameworks and intelligent platforms for home-diagnosis service and disease assessment over big
medical data are proposed [32,33], but there are rarely specific GSW applications for certain ecological
public health questions.

In short, sensor information is associated with geospatial elements (e.g., location point,
trajectory line and monitoring area). At present, there is a lack of unified manipulation and
specification representation for geospatial sensing and computing in the big-data and cloud computing
environments. There are few means to share ecological public health resources in the heterogeneous
geographic space. The distribution and share of the resources are usually closely coupled with
particular locations, applications, or apparatuses used. Therefore, adding intelligent semantics to IoT
and deep-learning to sensor management becomes an overwhelming trend [34]. New enhanced
integration methods are needed to provide semantic web solutions. This study proposed an
ontology-driven approach for integrating intelligence to manage human and ecological health risks
in the GSW. We design a Human and Ecological health Risks Ontology (HERO) based on the SSNO
for managing environmental sensors and computational models. The paper is organized as follows:
Section 2 gives a general view of the sensor web environment, which includes our initiative, Sensor Web
Management Framework (SWMF), HERO and the Human and Ecological Health Risk Management
System (HaEHMS) which is a cloud-based GSW platform. Section 3 introduces the applications
and a case study of an air quality assessment that was referred to software agents in the platform.
The experiment and evaluation of comparing the system estimation and manual estimation are also
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described. Finally, Section 4 gives the conclusions of the full paper and suggests the topics of our
future work.

2. Sensor Web Environment

2.1. Sensor Web Management Framework

Our initiative expands the OGC SWE by providing a standard set of common message models
and service interface specifications for integrating network-connected sensors and sensor systems.
The components in the Sensor Web Management Framework are illustrated in Figure 1.
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The OGC Observations and Measurements (O&M) standard is used to encode and archive
real-time observation results and values by sensors. OGC Sensor Model Language (SensorML) contains
the Extensive Makeup Language (XML) schema and standard models for describing sensor systems and
procedures. It also offers a list of the information that is needed to discover the sensors, the procedure
of low level observations, and the process attributes. OGC SWE Common Data Model Encoding
delimits the low level data models, which are used for exchanging referred data between nodes. The
models are applied to construct, encode, and transmit data sets by self-description and semantic
possibility. OGC SWE Service Model Implementation defines the type of data and interfaces that
are common to services. The OGC Sensor Observation Service (SOS) and Sensor Alert Service (SAS)
are web service interfaces that can be used to request, filter, and retrieve observations and sensor
system messages. The OGC Sensor Planning Service (SPS) is applied to request client-driven gains and
observations. The OGC Web Notification Service (WNS) is applied to the asynchronous delivery of
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information or early warnings of the SAS and SPS network services and other parts of the service work
process. The Programmable Underwater Connector with Knowledge (PUCK) defines an agreement
for the apparatus RS232 and web connections. PUCK transducers are installed and configured to
solve the problem by defining an apparatus protocol to automatically store metadata and other
information from the instrument itself. The SWMF also follows a Service Oriented Architecture (SOA)
approach. A registry maintains a list of available sensors and queries using a group of web-based
services. The Catalog Service contains dictionaries of phenomena, units of measure, sensor types and
applications. This criterion of the SWMF includes formats for interfaces, agreements, and encodings so
as to apply sensor data and services.

2.2. Semantic Sensor Web Management

It is hard to interconnect sensor webs and to realize efficient resource sharing and reuse because
of their heterogeneity. As sensor networks become more and more common, the requirements of
administering and inquiring the sensor web need to be aided by both standards and machine reasons.
When massive numbers of sensors and amounts of data appear, it is very difficult for users to find
the sensor and its related resources through the network. Even though the data is found, users
cannot easily comprehend the acquired messages. Although the SWMF in Section 2.1 provides syntax
interoperability, these criterions do not offer a semantic interoperability basis that can mitigate the
inference of the advanced application development. The OGC SWE standard, among other things,
helps the sensors to understand the process of measurement, the limitation of interoperability, the data
switch due to XML, and the standardization of tags. However, they do not offer too much semantic
interoperability, nor do they offer the foundation for reasoning or for obtaining intelligence.

Ontologies and some other semantic technologies can become pivotal sensor web technologies,
because they enhance the interoperability and integration of semantics, and because they promote
the OGC standard to involve reasoning, classification and other types of assurance and automation.
It is important to establish the core concepts and relationships of the sensor ontologies to describe the
sensor knowledge. To solve this problem, the OGC SWE sensor ontologies frame could be organized
into six core concepts: the systems, components, sensors, observations, process model and the process.
It has been used as a general purpose method to conceptually describe or simulate the information that
is executed in web resources that use various sorts of sentence structure markup and data serialization
pattern. The abstract data matrix requires a specific syntax for representation and transmission,
whereas the Resource Description Framework (RDF) has been given the XML syntax. Therefore,
it carries on the advantages related to XML. Based on the kernel conception and the relations with the
sensor ontologies, the RDF encoding is shown in part in Figure 2.
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Figure 3 shows a data-to-knowledge pyramid. The bottom section is the data layer without
any processing and disposal (e.g., the air pollutant data observed by the transducers). It consists
of multi-modal/level data collected from sensor and sensor networks; not only numerical data but
multimedia data, such as binary pictures and streaming video. There are no ubiquitous standards
for sensor applications in this layer. When we face the need to perform data fusion, we find that this
layer lacks interoperability. The messages stratum is above the raw data stratum (e.g., associating
the quality of the air with the site’s location). By extracting features from the raw phenomenological
data and by detecting objects-events from features, and feature and entity metadata can be stored and
queried in the form of annotations. Application services can manipulate the information through open
standards (e.g., OGC standards). The knowledge stratum is applied to specify the semantic contents
as well as to infer the association by making use of the ontology metadata. Semantic criterions will
be integrated as data, and built into the linked data and mashups. Figure 3 also provides different
perspectives on the categories, giving names for the three sets of use cases, which are (1) data discovery,
(2) device discovery and selection, and (3) source and diagnosis. The reason for identifying multiple
use case classification is that each use case demands distinct standards of detail to simulate the sensors,
the observed functions, the environments and the conditions of use.
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2.3. Human and Ecological Health Risks Ontology (HERO) Based on SSNO

Figure 4 shows a general picture of the categories and attributes in the ontology of the Human and
Ecological health Risks Ontology (HERO), which is built based on the SSNO template. The ontology
expression of the sensor connects with the field of what it gauges (the domain), the physical transducers
(the grounding), and its abilities and computational procedures. Instead of attempting to describe each
sensor and scene, the ontology exploits a general expression of the sensor and field characterization.
It depends on high-level ontologies to define the field, and on an operation pattern that describes how
the measurement is achieved.

The HERO includes Sensor, (human and ecological) Observation, and Phenomenon ontology
components. The Observation can be described with the HealthRisk component to draw a picture
of human and ecological health risks from the views of ambient air, surface water environment,
soil environment, environmental noise, ecology, and biological environment, etc. The measured
Phenomenon objects could be any natural element or event.

Take ambient air observation as an example; the analyzers for NO-NO2-NOx, SO2, CO, O3,
and PM10/PM2.5 are described in the category of the Sensor component. The measurement capability
of the Sensor is linked with the FeatureOfInterest of the Observation. The Location and Time
components use the standard GEO W3C Ontology (http://www.w3.org/2003/01/geo/), that is,
a simple RDF encoding for the WGS84 latitude and longitude values, and the OWL (Web Ontology
Language)-time ontology as the templates. The geospatial and temporal ontology and the Observation
Value component are connected with the Observation to describe the computational abilities. The
Process component grants the capability of the heterogeneous sensors to compose chained sensing.

http://www.w3.org/2003/01/geo/
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The intelligent agent for the geospatial and temporal processes will be shown in the Section 3.1.2.
The case study of sensing and computing with the Sensor and Observation ontology will be illustrated
in Section 3.2.Sensors 2018, 18, x 7 of 19 
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2.4. Human and Ecological Health Risk Management System (HaEHMS)

Government planners around the world must develop more efficient environmental information
management systems to control human and ecological health risks, such as monitoring and evaluating
the water quality of lakes, the soil structure of farmlands, the urban air quality of cities, and other
environmental matters that are vital to people’s livelihoods, and also announcing the observation data
to the public at a regular fixed period (always every day). In addition to the governmental agency,
universities, research institutes, polluters, and citizens with green awareness are also able to acquire the
environmental data by using their own standalone systems or citizen applications. In order to analyze
the observations’ impacts on the ecosystems and human health, manage the human and ecological
health risks, and deal with relevant decision-making issues, a web-based HaEHMS integrating the
existing monitoring data, models, and processes was developed based on the SWMF and HERO.

Figure 5 shows the technical architecture of HaEHMS, which works in a cloud service environment.
Various health big-data and environmental observations in the sensing layer will be computed with
the HERO, which works as a virtual pervasive element in the form of a pre-defined SOS computational
agent. Other organizations’ environmental information databases can be integrated into the data
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integration service server. Models and geospatial analysis can be also described as atomic processes.
Through SWMF standardized interfaces and workflow engines, atomic processes could be orchestrated
to achieve visualization and decision making for the human and ecological health risk management.

In addition to SWMF standardized interfaces and HERO virtual pervasive elements, HaEHMS
consists of the following main subsystems:

(1) Environmental Sensing Subsystem

This is the observation and monitoring of subsystems that are supplying remotely sensed
observations (e.g., images), in situ measurements (e.g., PM2.5 concentrations), civil findings
(e.g., questionnaire surveys), and their transmission from regional and national backbone platforms.
In situ apparatuses consist of transducers and other numerators of the monitoring Web that lie in
and keep in touch with the phenomena where they are surveying. The main objective is to establish,
operate, and to maintain a continuous time-series monitoring platform that is capable of tracking
physical, chemical, and biological features. Another objective is to link this observatory with models,
to better describe ecosystem changes and health risks, in order to provide current condition, short-term
forecast, long-term projections, and trends analysis. Particularly, customer terminal equipment with
citizen science applications can provide sustainable environmental sensing.
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(2) Environmental Information Databases

The databases are used for information technology infrastructure and shared standards, protocols
that are able to deliver real-time, delayed-patterns, and historical data for physical, chemical,
and biological observations, and model-generated outputs. The sustainable environmental sensing
data could be stored in databases. In particular, crowdsourcing information can be always treated as
dynamic and remote sustainable environmental sensing information.

(3) Cloud Computing
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Data provisioning systems are used to capture messages from the material world, interact with
heterogeneous equipment and observation circumstances, possess high-speed processing abilities,
and save and administrate massive data. In order to deal with the big sustainable environmental
sensing data and related models, our application was enabled by the Amazon EC2 cloud hosting
environment for data services. The cloud service is intended for web and mobile application data
processing with analysis algorithms. Table 1 is the summary of resources and open sources used
for implementation. At the Amazon Web Services (AWS) management console, an Amazon EC2
instance was first created. In the cloud server, the Amazon EC2 was used for a cloud computing
environment to generate large instances, being operated in the Amazon machine image (AMI) on
Linux. The Amazon S3 was a cloud storage environment for the processed results. The integrated
development environments (IDEs) are also listed.

Table 1. Development environment and open sources for the implementation of the cloud service.

Development/Operation
Environment Opensource/Platform/IDE URL

Cloud computing Amazon EC2 (64bit) http://aws.amazon.com/ec2/
Cloud storage Amazon S3 http://aws.amazon.com/s3/

Operating Amazon Linux AMI http://aws.amazon.com/amazon-linux-ami/
Image processing algorithm Orfeo Toolbox (OTB) http://www.orfeo-toolbox.org/otb/

Image tiling and converting Geospatial Data Abstraction
Library (GDAL) http://www.gdal.org/

Web server Apache Httpd, Tomcat http://tomcat.apache.org/

Programming language Python, https://www.python.org/
JAVA http://www.java.com/

Python interface to AWS Boto
http://docs.pythonboto.org/en/latest/#

https://github.com/boto/boto/
Parallel processing Parallel Python http://www.parallelpython.com/

3. Application

The semantic web annotates data with geospatial, temporal, and topic semantic metadata.
Throughout the SWMF, it is crucial to add semantic annotation to current criterion languages to
promote the significance of the sensor observations. The HERO enhances its implication through
adding semantic notes to SWMF’s existing criterion language. These notes offer more significant
characterization and improve access to the data, and they play the role of a connection mechanism to
make up the disparity between the principally syntactical XML-based metadata criterions of the sensor
network, and the RDF/OWL-based metadata criterions. The HaEHMS is assembled by semantic
web technologies through adding semantic notes, and constructing ontologies for interoperability,
analysis, and reasoning over the heterogeneous multimodal data. This section mainly discusses the
agent components and it gives a case study of querying the Air Quality Index (AQI) levels around the
individual from the shared the Keyhole Markup Language (KML) sensor files that are annotated with
RDF serializations in the HaEHMS.

3.1. Agent Components

The “agent components” in our study are the software programs that provided access to sensor
data through web pages, and then trusted individuals could freely search, obtain, query and publish
the data.

Sensor knowledge was intended to have the characteristics of being open and free, and the
semantic specification offers a powerful ability of sharing. Sharing is not restricted to standing up a
SPARQL (the standardized query language for RDF) endpoint or to storing a static RDF document on
the net server. In order to sustain the hybrid standards of KML, we developed the agent components,
as shown in Figure 6, to realize the solution of admixing XLink for the XML detail, RDFa for the HTML,
and the XHTML detail. In the solution, the interim from XML-based services to the RDF-based services
is known as the lifting operation; as a comparison, we call the operation from the RDF to the XML the

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/amazon-linux-ami/
http://www.orfeo-toolbox.org/otb/
http://www.gdal.org/
http://tomcat.apache.org/
https://www.python.org/
http://www.java.com/
http://docs.pythonboto.org/en/latest/#
https://github.com/boto/boto/
http://www.parallelpython.com/
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lowering operation. Software agents are developed for extracting, querying, and publishing XLink
and RDFa automatically.
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3.1.1. Extracting Agent

The extracting agent works like a web crawler. Since much sensor data are hidden in the
heterogeneous geospatial sensor web, we must find ways to export the data. We are developing two
extracting software agents for web mixtures that are applicable at distinct levels of the multi-layered
plan, including the inclusion of remote RDF (or OWL) resources in XML using XLink, or in
HTML/XHTML/KML using RDFa. The Extracting Agents are developed, based on the technology for
processing XML/XHTML microformats as conventional RDF syntaxes, through having each point of
file, directly or indirectly, to a transformation to an RDF figure. RDFa allows a single parser to work for
data from any area, and they offer a direct relationship between the RDF data and the XHTML/HTML
file construction.

The RDF of the KML place mark is extracted by the agents, resulting in triples. The Table in
Figure 7 shows the Scraping Triples of the Site Location from the RDFa. The RDF turtle format snippet
extracted from the KML files could be used for reasoning.
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The links in Figure 7 specify the inclusion of remotely managed sensor resources. The link may
represent a mechanism for extending accessible substances through any kind of resource, using
messages originating from remotely administrated substances, and the possibility between two
documents of the same type, or between different types of documents. Semantic notes define how
service abilities are mapped to semantic circumscription, to enable the findings or components of
net services. The addition of semantic annotation (or say “markup”) to the existing SWMF, so as to
offer semantic characterizations and to promote data standards being obtained, can provide more
meaning to the characterizations, and can promote the significance of the sensing data. Adding
semantic annotations is an ontology-based and useful way to model and share sensor knowledge,
and it promotes viable utilizations. Appending semantic messages to former networks can improve
the web page’s status from being human-readable to being machine-readable, and it can even make
the computer easier to understand.

3.1.2. Spatiotemporal Querying Agent

Consider the sensor locations that were included in Figure 7. If spatiotemporal information were
encoded as RDF, how could it be ingested and indexed in such a way as to efficiently return the closest
monitoring site to a particular location? Given a set of geospatial information in RDF, all of which are
points, a system is created that is capable of efficiently answering the query, “Return all of the points
that are within a distance X of a given location.”

Notions of space and time are intimately related to every sensor in the world, because every
sensing event happens somewhere and some when. Almost every sensor network is concerned
with the spatiotemporal aspect of data to some degree, though some deal only with the temporal
plane. One of our goals is to develop appropriate RDF and OWL representations of spatiotemporal
information from heterogeneous sensor networks. Any system that maintains information that can
change must at some level deal with time; for instance, and many questions include some assumptions
of location as well. For some sensor network applications, the connections to space and time are very
obvious (e.g., the Radio-frequency identification (RFID) tag tracking applications). However, different
sorts of sensor network applications use space or time more implicitly; more so, to contextualize an
answer to a related query. For example, for a query asking about whether someone should do their
morning exercise outside today, the answer is not exclusively dependent on the spatiotemporal sensor
data, but the information from the nearby air quality monitoring sites must be considered. Being able
to bound queries into a particular spatiotemporal region can be very useful.

This section presents the spatiotemporal development for the Query Agent. These challenges
include not only abstract problems of information computing, but also practical concerns of program
efficiency. A geospatial index in the agent, which is a special data structure, can be integrated into a
Jena model, so as to make some of the most common types of spatial queries efficient.

The SpatiotemporalQuery Agent uses RDF serializations (RDF/XML, Turtle, or N-Triples format)
to answer spatiotemporal sensor information queries. As Figure 8 shows, the GeospatialIndex class
and TimeTripleIndex class wrap JTS Quadtree objects so that they can be easily used from Jena API,
serving as the bridge between the program and JTS. The GeospatialGraph class and the TimeGraph
class implement Jena’s Graph interfaces, and they are used to integrate the geospatial and temporal
indexings into the higher-level Jena constructs. The QueryPortal class is used to read the RDF
serializations and query strings. An inner class GeoLocation is used to represent the latitude, longitude,
and elevation values, while the TimeTriple class represents the standard time.

There are two main methods in the GeospatialIndex class. The addNodetoIndex method adds
a sensor node, represented as a RDF resource, and defined with a latitude and longitude to the
underlying geospatial index. The queryInMaxDistance method creates a bounding box based on the
user-defined distance, and uses the geospatial index to return all sensor nodes within the box.

The GeospatialGraph class wraps an existing Jena Graph object, and it has two methods
of significance. The addTripletoGraph method inspects its parameter to determine whether
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it is a statement that describes a latitude or longitude value. If it is, the GeospatialGraph
calls the addNodetoIndex method on its GeospatialIndex object to register the value.
The getGeospatialSubgraph method is used to pose the geospatial queries of the model. Calling
that method with latitude, longitude, and distance values, returns another Graph object containing
only statements about the sensor locations within the specified region. This class addresses the
challenge that a statement expresses only a single datum, but the spatial index requires both latitude
and longitude values before a point can be indexed. Since the existence of one statement is independent
of all others, it is possible that there could be a set of statements with an incompletely defined point,
or of only a latitude or longitude. A final confirmation of all of the returned candidates is used to
populate a list of sensor nodes that are ultimately returned to the calling code.
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The agent, however, is not specifically limited to enhancing Jena for spatial data. A similar
approach is used to incorporate a temporal index by using the TimeTripleIndex class and the
TimeGraph class, allowing for queries that are bounded in transaction time.
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Ontology components in the agent store the HERO Location and Time ontologies, which are
designed according to the standard GEO W3C Ontology and the OWL-time Ontology, thus making it
easier to share and interchange spatiotemporal information.

3.2. Case Study: S-SOS Agent for Querying Air Quality and Health Implications

The monitoring functions of the sensors in the Hubei Province Monitoring Stations in China
are classified as ambient air monitoring, surface water environment monitoring, soil environment
monitoring, environmental noise monitoring, and ecology & biological environment monitoring.
The air monitoring sensors work with instruments such as the NO-NO2-NOx analyzer, the SO2 analyzer,
etc. Some citizen science applications are also implemented through websites and smart phones.

Automatic air monitoring sites were deployed in 17 cities in Hubei Province for daily air quality
assessment. Real-time data are published to public via web services, including SO2, NO2, PM10, CO,
O3, and PM2.5 hour values. The AQI of the sites, the primary pollutants, the levels of health concern,
health implications, and cautionary statements are also published through official websites, APIs,
and cellphone applications. The data are updated on an hourly frequency. AQI equals the maximum
value of the IAQIs. IAQI is the individual Air Quality Index, which can be calculated, as Table 2 shows.

Table 2. Conversion between pollutant concentrations and IAQI.

IAQI
SO2

(Averaged
over 24 h)

SO2
(Averaged
over 1 h)

NO2
(Averaged
over 24 h)

NO2
(Averaged
over 1 h)

PM10
(Averaged
over 24 h)

CO
(Averaged
over 24 h)

CO
(Averaged
over 1 h)

O3
(Averaged
over 1 h)

O3
(Averaged
over 8 h)

PM2.5
(Averaged
over 24 h)

50 50 1 150 40 100 50 2 5 160 100 35
100 150 500 80 200 150 4 10 200 160 75
150 475 650 180 700 250 14 35 300 215 115
200 800 800 280 1200 350 24 60 400 265 150
300 1600 - 565 2340 420 36 90 800 800 250
400 2100 - 750 3090 500 48 120 1000 - 350
500 2620 - 940 3840 600 60 150 1200 - 500

1 Pollutant concentrations unit (µg/m3), where CO units (mg/m3).

We developed a prototype of the Semantic Sensor Observation Service (S-SOS) to add annotations
to assist with obtaining health implications from air phenomena sensing. Semantically annotated air
quality data are collected from the automatic monitoring sites in Hubei province, which is related to
Location ontology, OWL-Time ontology, as well as HERO (see Figure 4). The rules between air quality
and health implications, which Hubei province uses to publish data to the public, follow Table 3.
According to the sensor data, the rules can deduce computational intelligence directly. Through
observing the pollutants SO2, NO2, PM10, CO, O3, and PM2.5, we may know the “potential” air quality
that AQI watched. The results and health suggestions will be published to the public automatically
through official websites and smartphone APIs (see Figure 9).

Table 3. Air Quality and Health Implications.

AQI Values AQI Levels
Levels of

Health
Concern

Colors Health Implications Cautionary Statements

0–50 1 Good Green
Air quality is considered
satisfactory, and air pollution
poses little or no risk.

None

51–100 2 Moderate Yellow

Air quality is acceptable; however,
for some pollutants there may be
a moderate health concern for a
very small number of people who
are unusually sensitive to
air pollution.

Unusually sensitive people
should consider limiting
prolonged outdoor exertion.

101–150 3
Unhealthy for

Sensitive
Groups

Orange

Members of sensitive groups may
experience health effects.
The general public is not likely to
be affected.

Active children and adults,
and people with respiratory
disease, such as asthma, should
limit prolonged outdoor exertion.
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Table 3. Cont.

AQI Values AQI Levels
Levels of

Health
Concern

Colors Health Implications Cautionary Statements

151–200 4 Unhealthy Red

Everyone may begin to experience
health effects; members of
sensitive groups may experience
more serious health effects

Active children and adults,
and people with respiratory
disease, such as asthma, should
avoid prolonged outdoor exertion;
everyone else, especially children,
should limit prolonged
outdoor exertion.

201–300 5 Very Unhealthy Purple
Health warnings of emergency
conditions. The entire population
is more likely to be affected.

Active children and adults,
and people with respiratory
disease, such as asthma, should
avoid all outdoor exertion;
everyone else, especially children,
should limit outdoor exertion.

>300 6 Hazardous Maroon
Health alert: everyone may
experience more serious
health effects

Everyone should avoid all
outdoor exertion.
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The ontology of a ground-sensing ambient air monitoring system is modeled for the case study.
Figure 10 illustrates the procedures of applying rule-based reasoning into the ontology to obtain health
implications. Snippet A of the OWL definition codes, mingled with RDF and RDFS, presents the
properties of the referred data types. Snippet B of SensorML codes initializes the ontology of the
ambient air quality. A skos:preLabel is created as the linked anchor, so that other components of the
ontology can utilize this anchor to claim the properties for monitored cities and pollutant (like PM2.5)
concentrations through the rdf:resource, http://sensorml.com/ont/swe/property. Since the ontology
is initialized, services can be applied to manufacture reasonable ratiocination on the existing facts, and
to derive new knowledge, and additional knowledge can be extracted by applying rule-based reasoning.
Snippet C describes the specification of time, in order to illustrate that the PM2.5 concentrations are
observed every hour. Snippet D is programmed as a rule-based reasoning example, based on an air
quality model named WRF-EMEP (http://hubei-aq.info). Our reasoning proxy needs to figure out the

http://sensorml.com/ont/swe/property
http://hubei-aq.info
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AQI level automatically for the daily announcement. The pollutant concentrations can be converted
to the IAQIs, of which AQI equals the maximum value. When the AQI is less or more than a certain
threshold, the reasoning proxy deduces the new ontological assertion of the AQI level, which can
guide health implications and cautionary statements. Through this method, referred websites or smart
phone apps can forecast the risks to the nearby people in time.
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3.3. Experiment and Evaluation

For evaluation purpose, we invited five health experts in Wuhan City, Hubei Province, to conduct
field assessments. We sent them the health-related events and information near their locations for
manual verification of the health events collected by the sensor networks. As a comparison, the S-SOS
agent in the HaEHMS is using the sensor observation data to verify the same health events, determining
whether to prolong outdoor excises in certain locations.

With the traditional approach, we usually obtain the observation data of the pollutants from
certain monitoring sites that is nearest to the event location, and assess the AQI result of that location.

With the proposed methodology, as described in Section 3.1.2, the Spatiotemporal Querying Agent
can run with the HERO to execute the query, “Return the case records of the monitoring sites that are
within a distance to the expert’s location (for instance within a 10km radius).” Each record contained
the sensor data of air quality at that site during the 20 days period. As shown in Figure 11, reasoning
about air quality and health implications by using HERO allows a reasoner to infer “Location” and
“Time“, as an assessment is performed. The ontology models in A-BOX work as the classes for
representing the continuous monitoring objects at intervals from B-BOX. Furthermore, an Agent’s
intent can also be captured (boxes with “int” namespace in Figure 11). In this example, the agent has a
constraint that it can only use AQI value data with a minimum consistency score of 0.5.

In this example, the observation describes the AQI value of Wuhan city where the average of the
high and low values in May is 93. If the observation has an AQI value of 23, it is annotated with a
consistency score of 0.2473 (=23/93).
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Figure 11. Ontology-case statements for querying air quality and health implications.

The evaluation was done in two stages:

(1) AQI calculation and inference through the HaEHMS: As described in Section 3.2, the resulted
system outcome in each case record included AQI values, AQI levels, levels of health concern, health
implications, and cautionary statements.

(2) Manual verification by the health experts in field: Results of the case record were sent to
the experts. The experts manually collected the same set of information as collected by the sensors
installed at this site and compared the outcomes of two different sets of information:

Accuracy =
∑{Sensor outcome is identical to the expert f ield observation}

Total records at the site

The accuracy is the ratio of the number of identical results (between the sensor system outcome
and the expert field evaluation) over the total number of cases (the sensor observation records).
The sensor system collected information is very close to the manual observation by the field experts
(see Table 4).

We found differences in some columns. After a joint review by the researchers, it was found
that the reasons were related to weather conditions. The fluctuation of weather conditions was an
important interference factor, which caused the differences. However, for the cases without the weather
condition interference, the inference outcomes of the HaEHMS and the experts were identical.

Table 4. Comparison of Different Verification Types.

Verification Type

Estimated Levels of Health Concern

Good (%) Moderate (%) Unhealthy for
Sensitive Groups (%) Unhealthy (%)

Prolong Outdoor
Excises

Limit Prolong
Outdoor Excises Limit Outdoor Excises Avoid Outdoor

Excises

Manual verification
by health experts 87.5 90 95 100

4. Discussion and Conclusions

As the sensor web has developed rapidly, people have begun to realize that there exists a lack
of uniform operations for resource reallocation, resource sharing and standard representation for
sensor data. A sensor data management structure should be developed to address the problem of a
lack of mutual operability between sensor data. The OGC SWE norms make all kinds of sensors and
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sensor data attainable, searchable and workable for creators through the internet by clarifying service
connectors that allow for the mutual and functional use of sensor data.

The contribution of this study focuses on the ontology-driven approach for integrating intelligence
to manage human and ecological health risks in the GSW. Firstly, we proposed the SWMF on the
basis of the SWE services, to conceal the heterogeneity of its bottom sensor networks, and to facilitate
the communication between its corresponding particulars and all equipment parts. Thus, the SWMF
makes application developments under its framework an easier job. The sustainable environmental
sensing in this paper not only utilizes observation data from the natural environment, but also citizen
science data from crowdsourcing applications. Environmental computing can also be interfaced with
the SWMF. Encoding sensor and sensor networks illustrations and monitoring data with semantic
web languages allows for more meaningful expression, superior visits, and the official analysis of
sensor resources. Moreover, the HERO ontology that we designed based on the SSNO template,
is not just for sustainable environmental sensing, but also provides a robust means of describing the
processes including the methodology. Then, we developed a software agent for pervasive sustainable
environmental sensing and computing through using HERO models. The S-SOS agent could offer
various kinds of observation data, and more often, daily routine environmental monitoring data from
different sites. The ontology reasoning in the S-SOS agent also plays the intent modeling role in
deriving the data. Finally, we developed the HaEMHS, which is also an application and prototype
based on the SWMF to integrate the existing monitoring data, models and processes in the context of
environmental risk monitoring. In our prototype implementation, we used the Amazon cloud service
architecture to solve the problem brought about by the complex calculation of big-data and models.
The steps of automatically reasoning the air quality forecast are also illustrated.

In short, this work makes a vital step towards the creation of an exoteric, broad, mutually
operable, and smart sensor web for public environmental supervising. Our future work will focus
on: (1) the reliability of the result of the data processing and analysis over a multi-layer sensor web;
(2) the integration of an architecture with an emergency response, which contains video on mobile
devices running operating systems; and (3) addressing management issues, such as how to involve
policy-makers, ‘stakeholders’, and other end-users, which are vital to the standard of corresponding
decision-making matters and the evolution of useful interactive sustainable instruments.
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