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Abstract: Clean-in-place (CIP) processes are extensively used to clean industrial equipment without
the need for disassembly. In food manufacturing, cleaning can account for up to 70% of water use
and is also a heavy user of energy and chemicals. Due to a current lack of real-time in-process
monitoring, the non-optimal control of the cleaning process parameters and durations result in
excessive resource consumption and periods of non-productivity. In this paper, an optical monitoring
system is designed and realized to assess the amount of fouling material remaining in process tanks,
and to predict the required cleaning time. An experimental campaign of CIP tests was carried out
utilizing white chocolate as fouling medium. During the experiments, an image acquisition system
endowed with a digital camera and ultraviolet light source was employed to collect digital images
from the process tank. Diverse image segmentation techniques were considered to develop an image
processing procedure with the aim of assessing the area of surface fouling and the fouling volume
throughout the cleaning process. An intelligent decision-making support system utilizing nonlinear
autoregressive models with exogenous inputs (NARX) Neural Network was configured, trained and
tested to predict the cleaning time based on the image processing results. Results are discussed in
terms of prediction accuracy and a comparative study on computation time against different image
resolutions is reported. The potential benefits of the system for resource and time efficiency in food
manufacturing are highlighted.

Keywords: monitoring; resource efficiency; fluorosensing; image processing; neural network

1. Introduction

Increasing concerns over hygiene in the food and pharmaceuticals processing industry, coupled
with high levels of risk aversion to cross contamination of foods (particularly allergens), emphasizes
the importance of system cleaning within the food production industry. Production systems regularly
contain a number of process tanks (e.g., for mixing, pasteurization, chilling) connected by many
meters of pipework, heat exchangers and pumps. Historically, such systems were cleaned manually,
requiring disassembly and scrubbing/rinsing, which was time consuming, introduced the potential
for contamination and increased the likelihood of damage to the system.

Modern systems rely on a technique called clean-in-place (CIP), which allows the cleaning of the
various sections of the production system without any disassembly [1]. Such systems may take on many
forms, but often utilize spray balls in the larger volume components (i.e., tanks) and high flow rates of

Sensors 2018, 18, 3742; doi:10.3390/s18113742 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8617-2721
https://orcid.org/0000-0002-5445-4687
http://www.mdpi.com/1424-8220/18/11/3742?type=check_update&version=1
http://dx.doi.org/10.3390/s18113742
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3742 2 of 21

fluid in the small internal volume components (i.e., pipework and heat exchangers), in combination
with various cleaning and sanitizing fluids (e.g., caustic soda) at elevated temperatures [2].

CIP systems are highly effective at removing system fouling and are suitable for automation:
consequently, they are employed extensively in the majority of modern food and pharma production
plants. Cleaning can account for as much as 70% of a food and beverage processer water use [3]. Such is
the prevalence and resource intensity of the technique, it is imperative that the process be controlled as
optimally as possible. Currently, there is a lack of real-time in-process monitoring that could enable
effective control of the cleaning process parameters and cleaning durations and hence reduce resource
consumption and increase the amount of time the production plant can spend producing.

The research reported in this paper is concerned with the design, implementation and data
processing of an optical monitoring system for tanks and other large volume components. Following
a review of current monitoring capabilities and fouling assessment techniques, a system of hardware
for detection of residual foodstuffs under non-ideal conditions is described. Laboratory scale results are
obtained from a purpose-built CIP test rig and an image processing procedure described. The results are
analyzed using neural networks to indicate how cleaning times could be reduced within an industrial
application. The paper concludes with a discussion of future developments of the technology and it’s
applicably to real industrial environments.

2. Literature Review

Certain molecular structures will, under excitation by appropriate high energy (short wavelength)
light, experience electronic excitation. Such excitation can lead to photoluminescence either as
fluorescence (‘immediate’ emission of photons) or phosphorescence (delayed emission of photons).
Strictly the differentiation between fluorescence and phosphorescence depends on whether the excited
electrons experience a change in spin [4]. In this paper, the term fluorescence to mean is used to mean
immediate emission of photons regardless of the excited electronic state.

Fluorosensing, the sensing of fluorescence, is a useful technique to identify the presence of certain
chemicals within a sample, as it allows excitation by a narrow or broad range of wavelengths of light
and detection of light emission in another part of the spectrum. Typically, but not exclusively, excitation
occurs in the ultraviolet range of the spectrum whilst detection occurs within the visible wavelength
range (see Figure 1). This allows for a decoupling of excitation and detection systems to reduce false
positive signals.
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Fortuitously, many natural and synthetic chemical structures fluoresce under excitation by
an appropriate wavelength of UV light. Indeed it has been reported that dairy products contain many
important fluorophores which are utilizable for fluorescence spectroscopy [6]. These fluorophores
include the aromatic aminoacids—tryptophan, tyrosine and phenylalanine in proteins [7,8], vitamin A
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and B2, reduced nicotinamide adenine dinucleotide derivatives of pyridoxal and chlorophyll, some
nucleotides and various other compounds that may be found at a low levels of concentration in
food. Thus this phenomenon has found widespread application across many areas of research and
industry: agriculture, forensics, fraud prevention, process monitoring, entertainment, amongst many
others [9–11].

In the field of plant physiology excitation wavelength in the UV-A region (315–400 nm) are
typically used to excite certain species under investigation [12]. Fluorescence emissions are classified
as being in either the blue-green (400–630 nm) or red-far red (630–800 nm) regions and the intensity of
individual peaks can be attributed to the concentration of specific chemical components, indicating the
health of those plants. It is possible also to consider the ratio of intensities between individual peaks to
monitor the health of plants.

For applications where fluorescence intensity is low, where there is excessive external light,
or where partial reabsorption occurs (due to overlap of absorption and emission spectra) laser sources
can be used for excitation either as a focused or unfocused beam [13].

Within manufacturing, fluorosensing has been used for the detection of grease (conjugated double
bond hydrocarbons (alkenes)) on mechanical components during cleaning processes [14]. Issues arise
when trying to monitor the amount of fouling remaining since there is a saturation of signal above
certain thicknesses, making it difficult to determine the volume of fouling remaining.

2.1. Image Processing

In order to enhance imaging (spatial assessment of specimens) a range of filters have been
implemented to better differentiate between the different emission spectra from various chemical
structures present [15], although this has the requirement of a mechanical filter change which extends
sensing time. A more simple method of image analysis has been described which utilises the red,
green and blue (RGB) components of a color image captured by either a Complimentary Metal Oxide
Semiconductor (CMOS) or Charged Coupled Device (CCD) sensor [16,17].

Nedbal et al. [18] developed an image processing technique to detect variations in Chl fluorescence
parameters over the surface of a lemon fruit for predicting areas that will eventually exhibit
visible damage. Wan et al. applied deconvolution technique to fluorescence images to retrieve the
high-precision plant fluorescence lifetime of single pixel point in plant continuous fluorescence images [19].
Segmentation based image processing techniques were utilized by Shrivastava et al. for the detection
of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed
liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles [20].

Image processing techniques have been widely utilized to generate input features for prediction
tasks via neural networks.

Lin et al. [21] applied artificial neural network (ANN) to multi-spectral data analysis and
modelling of airborne laser fluorosensor in order to differentiate between classes of oil on water
surface. Peleato et al. [22] investigated the use of fluorescence data coupled with neural networks for
improved predictability of drinking water disinfection by-products (DBPs).

Cancilla et al. carried out a fluorescence study using various light sources at 400 nm and ANNs to
assess the concentration of ionic liquid aqueous solutions in a wide range of concentrations [23].

Huang et al. proposed a concentration–synchronous–matrix–fluorescence (CSMF) spectroscopy
combined with 2D wavelet packet and probabilistic neural network (PNN) for source recognition of
crude oil and petroleum products samples [24].

With reference to plant disease detection, a comprehensive, Golhani et al. [25] reviewed advanced
Neural Network (NN) techniques available to process imaging and non-imaging hyperspectral data.

2.2. Applications in Food Processing

Fluorosensing has been investigated for use in food safety applications notably for the detection
of fecal residues on fresh produce [26,27] and for tumors on chicken carcasses [28]. A review of the
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technology is provided in [29]. There has also been some previous activity within the quality assurance
in the dairy industry, with the authors of [30] showing that front-face fluorescence (FFFS) can be used
to track the Mailliard reaction during the processing of milk. Similarly fluorosensing has been used to
monitor the effect of both packaging and exposure to light on the oxidation of yogurt [31] monitoring
the presence of both tryptophan and riboflavin. A review of FFFS for monitoring dairy based food
products in provided in [6].

Alternatively, UV light detection methods, are particularly used for the detection of residual cells
and soiling on industrial surfaces [32].

UV induced fluorescence has been used for the detection of residual cells and soiling on
industrial surfaces [33] with little change in findings when microorganisms are present. The molecular
configuration of organic material allows some organic residues to fluoresce when illuminated by UV
light [33]). Thus, UV light may be used to detect residual soil when work surfaces are illuminated by an
appropriate wavelength; highlighting areas in an industrial plant that need be cleaned more intensively.

Fluorosensing is evidently a highly versatile technique for detecting the presence of certain
chemical components, and can even be used to determine different states of the same fluorophores.
The application of fluorosensing within CIP systems provides a number of challenges, which are
detailed in the remainder of this manuscript.

3. Materials and Methods

In this section, an experimental two tank CIP system is described endowed with a UV illumination
source and CMOS camera alongside sample preparation and image processing procedures. The system
is designed to simulate an industrial food processing and CIP system. In this investigation, images
were captured in real-time and were later post-processed.

3.1. Two Tank System

An industrial grade two tank stainless steel system was constructed, incorporating one process
tank and one CIP tank and interconnected by two centrifugal pump driven circuits as shown in
Figure 2. Each tank has a 600 mm internal diameter, with 315 mm height and a 50 mm insulated wall
and dished base with a centrally located anti-vortex drainage hole. The process tank was fitted with
an 18 mm Tanko S30 dynamic spray ball located centrally in the lid. Piping for the system was SWG
25.4 × 1.6 mm fitted with manually operated butterfly valves.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 22 

 

assurance in the dairy industry, with the authors of [30] showing that front-face fluorescence (FFFS) 
can be used to track the Mailliard reaction during the processing of milk. Similarly fluorosensing has 
been used to monitor the effect of both packaging and exposure to light on the oxidation of yogurt 
[31] monitoring the presence of both tryptophan and riboflavin. A review of FFFS for monitoring 
dairy based food products in provided in [6].  

Alternatively, UV light detection methods, are particularly used for the detection of residual 
cells and soiling on industrial surfaces [32]. 

UV induced fluorescence has been used for the detection of residual cells and soiling on 
industrial surfaces [33] with little change in findings when microorganisms are present. The 
molecular configuration of organic material allows some organic residues to fluoresce when 
illuminated by UV light [33]). Thus, UV light may be used to detect residual soil when work surfaces 
are illuminated by an appropriate wavelength; highlighting areas in an industrial plant that need be 
cleaned more intensively. 

Fluorosensing is evidently a highly versatile technique for detecting the presence of certain 
chemical components, and can even be used to determine different states of the same fluorophores. 
The application of fluorosensing within CIP systems provides a number of challenges, which are 
detailed in the remainder of this manuscript. 

3. Materials and Methods 

In this section, an experimental two tank CIP system is described endowed with a UV 
illumination source and CMOS camera alongside sample preparation and image processing 
procedures. The system is designed to simulate an industrial food processing and CIP system. In this 
investigation,images were captured in real-time and were later post-processed. 

3.1. Two Tank System 

An industrial grade two tank stainless steel system was constructed, incorporating one process 
tank and one CIP tank and interconnected by two centrifugal pump driven circuits as shown in 
Figure 2. Each tank has a 600 mm internal diameter, with 315 mm height and a 50 mm insulated wall 
and dished base with a centrally located anti-vortex drainage hole. The process tank was fitted with 
an 18 mm Tanko S30 dynamic spray ball located centrally in the lid. Piping for the system was SWG 
25.4 × 1.6 mm fitted with manually operated butterfly valves. 

In order to improve visibility in the process tank (for the optical detection system) an ‘air knife’ 
was fabricated to blow compressed air laminar to the exposed camera lens (see Figures 2–4), and an 
extractor fan (50 L s−1) installed to remove some proportion of steam and vapor from the tank whilst 
the spray ball was in operation. 

 
Figure 2. Experimental rig scheme. Figure 2. Experimental rig scheme.

In order to improve visibility in the process tank (for the optical detection system) an ‘air knife’ was
fabricated to blow compressed air laminar to the exposed camera lens (see Figures 2–4), and an extractor
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fan (50 L s−1) installed to remove some proportion of steam and vapor from the tank whilst the spray
ball was in operation.
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3.2. Optical System

The process tank was optically isolated from the surrounding laboratory to reduce unwanted
signal during monitoring. Sample excitation was provided by a dual 18 W 370 nm (nominal) fluorescent
lamp installed toward the rear of the lid. A spectral emission for the lamp is shown in Figure 5.
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Images were acquired using a Nikon D330 DSLR and a 10–20 mm F4-5.6 EX DC HSM wide
angle zoom to maximize the visual field. The camera was mounted using an adaptor which kept
the front of the lens flush with the upper surface of the process tank lid. The zoom was manually
adjusted to optimize image clarity and then fixed for the duration of the experimental investigation.
Other photographic parameters, established experimentally to provide a high-quality image, were also
kept constant:

• ISO sensitivity: 12,800
• F-Stop: F/4
• Exposure time: 1/100 s

A remote shutter control was used to prevent misalignment of the camera during image capture.

3.3. Fouling Preparation

For this experimental campaign, white chocolate was utilized as fouling medium as using the
described two tank system. This particular medium was selected as it had a sufficiently long cleaning
time within the experimental rig such that a series of high-quality images could be captured for fouling
level analysis. The white chocolate is also representative of many types of food fouling that occur in
food processing industries having both high fat and sugar content. For the brand of chocolate used,
the nutritional composition is reported in Table 1.

Table 1. White chocolate composition.

Typical Values Per 100 g

Fat 33 g
of which saturates 20.2 g

Carbohydrate 61.5 g
of which sugars 61.5 g

Fibre 0.5 g
Protein 4.7 g

Salt 0.2 g

Before each fouling application, the process tank was manually scrubbed using a detergent and
then thoroughly rinsed to ensure no fouling residues remained. The fouling was prepared by first
gently heating 0.15 kg of white chocolate to melting point in a small receptacle before being manually
spread by hand over the full inner surface of the dished base of the process tank (see Figure 6). Partial
solidification of the fouling occurred due to contact with the cool tank wall.
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3.4. Washing Cycles

The type of wash utilized in this investigation to remove the fouling from the process tank
consisted in a hot wash using mains heated water (nominally 55 ◦C) held in the CIP tank and then
pumped through the spray ball into the process tank and drained to the main sewer (H).

The cleaning cycle was operated until the tank was visibly clean. If the CIP tank emptied before
the process tank was clean, the procedure was paused, and the CIP tank refilled before resuming the
cleaning cycle.

Three experimental tests of fouling wash were carried out by repeating three times the
above-mentioned procedure, generating three experimental datasets, D1, D2 and D3 respectively.

3.5. Image Acquisition

A baseline image for a clean tank illuminated by the UV lamp was recorded before each fouling
application. Digital images where acquired during the cleaning cycles at 5 s intervals using a remote
trigger. The image resolution adopted for this experimental campaign was 2000 × 2992 pixels
corresponding to 6 MP images.

3.6. Image Processing

The image processing procedure outline is reported in Figure 7.
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Thresholding algorithm

Green channel extraction

Baseline subtraction

Image upload

Baseline upload
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The software utilized for the image processing was Matlab®. The procedure starts by uploading
the digital image to the software. The raw image appears as a 2000 × 2992 × 3 elements matrix, where
the first two dimensions (2000 × 2992) represent the image resolution, and the third dimension (3) is
represented by the three colors channels; red, green and blue (RGB) respectively. An example of the
raw image is reported in Figure 8.
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3.6.1. Baseline Upload and Subtraction

An image of the clean tank was acquired prior to the fouling application and used as a baseline
(example shown in Figure 9).
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In order to remove background signal from unfouled areas of the tank an image subtraction [34,35]
operation was then carried out, by subtracting the baseline image from the raw image. The resulting
image can be visualized in Figure 10.
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Figure 10. Subtracted image.

The background subtracted image still contains the three component RGB channels. Performing
a channel separation operation to the image reported in Figure 11 it is apparent that most of the
information on the fouling is contained within the green channel as is expected [12]. There is a danger
that the blue channel could contain false positive signal from the emission of the UV lamp as the
response of the camera overlaps with the emission spectra (as can be seen in Figure 11), whilst the red
channel provides little signal. Thus, in order to simplify processing and reduce the potential for false
positive signal the remaining image processing steps were performed using only the green channel
image, essentially filtering out the blue and red wavelength ranges.
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Once the green channel has been isolated, thresholding must be carried out to determine which
signal can be classed as fouling and which can be regarded as a ‘clean’ area of the tank. A range of
thresholding techniques are discussed and their suitability evaluated.

3.6.2. Otsu Method

The Otsu thresholding algorithm [36,37] aims at dividing pixels of an image into two segments
S0 and S1 (e.g., objects and background) at intensity level T. Let σ2

W , σ2
B and σ2

T be the within-class
variance, between-class variance, and the total variance, respectively. Optimal threshold is obtained by
minimizing σ2

W . Following is the relation between different class variances.

α =
σ2

B
σ2

W
(1)

Thus, the optimal threshold T is obtained by maximizing α and can be defined as

T = maxα
t

(2)

where:
σ2

W = ω0σ2
0 + ω1σ2

1 (3)

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2 (4)

σ2
T =

L

∑
i=1

(1− µT)
2Pi (5)

ω0 =
t

∑
i=0

Pi, ω1 = 1−ω0, µ1 =
µT − µt

1− µ0
, µ0 =

µt

ω0
(6)

µt =
t

∑
i=0

iPi, µT =
L−1

∑
i=0

iPi, G = {0, 1, 2, . . . , L− 1} (7)

where ni is the total number of pixels with grey-level, i and n is the total number of pixels in the given
image defined as n = ∑L−1

i=0 ni. Probability of grey-level Pi is defined as Pi =
ni
n .

3.6.3. Iteration Method

The iteration method [38] is made of a series of iterative steps and it is initialized by selecting
an initial threshold value computed using the above-mentioned Otsu’s method. The iterative steps are
reported below:

(a) Choose an initial estimate threshold value T obtained by Otsu’s method [36].
(b) Compute the minimum and maximum grey values of the digital image, respectively min and max.

Use T1 = 0.5 × (min + T) to perform an image segmentation into two sets of pixels, specifically
G1 (including pixels whose values are lower than T1 and G2 (made of pixels higher than T1 but
lower than T).

(c) Calculate the average brightness g1 of G1, and the average brightness g1 of G2

(d) Calculate T1 where T1 = 0.5 × (g1 + g2).
(e) Repeat step (b) to step (d) until difference between the current T1 and the previous one is less

than 0.5.
(f) Use T2 = 0.5 × (T1 + max) to perform an image segmentation into two sets of pixels, specifically

G3 (including pixels whose values are lower than T2 but higher than T1 and G4 (made of pixels
higher than T2 but lower than max).

(g) Calculate the average brightness g3 of G3, and the average brightness g4 of G4

(h) Calculate T2, where T2 = 0.5 × (g3 + g4).
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(i) Repeat step (f) to step (h) until difference between the current T2 and the previous one is less than 0.5.
(j) T1 and T2 are the final threshold values to be used for the image segmentation.

3.6.4. Maximum Entropy 1D

The Maximum Entropy 1D approach [39] is utilized to select a threshold such that the information
available in the two grey-level distributions of the foreground and the background is maximized.
The information is measured by the entropy. The appropriate steps are explained below:

Let f1, f2, . . . , fm represent the observed grey-level frequencies (histogram). The expression for
the probabilities (percentage of occurrence of a specific grey level), pi, becomes:

pij =
fij

N2 ,
m

∑
i=1

fi = N2, i = 1, 2, . . . m (8)

where N2 is the total number of pixels in the image and m is the number of grey levels in the histogram.
It is reasonable to assume that only foreground values make up clusters and the background values
consist of noise. Setting the grey levels above a threshold value (s) equal to 1 and the rest equal to
0, results in a binary image. By maximizing the entropy criterion, with respect to s, the threshold is
obtained. The entropy criterion, ψ(s), is defined by:

T = max
s

(
lnPs(1− Ps) +

Hs

Ps
+

(Hm − Hs)

(1− Ps)

)
, (9)

where

Hs = −
s

∑
i=1

(pi ln pi) (10)

Ps =
s

∑
i=1

pi (11)

Hm = −
m

∑
i=1

(pi ln pi) (12)

Pm =
m

∑
i=1

pi (13)

3.6.5. Maximum Entropy 2D

The first step in the Maximum Entropy 2D procedure [40] is to divide the grey level and its
average into m values. The algorithm computes the average grey-level value of the neighborhood for
each pixel. In this way a pair is obtained, made of the pixel grey level and the neighborhood average.
Each pair is assigned to a 2-dimensional bin. The total number of bins results to be m×m and the total
number of pixels to be tested is N × N. Subsequently, the algorithm calculates the joint probability
mass function, pij as the ratio of the frequency fij, of a pair (i, j) and the total number of pixels, N2:

pij =
fij

N2 i, j = 1, . . . , m (14)

Considering the foreground and background groups, respectively A and B with two different
probability mass functions (PMF), if the threshold is located at the pair (s, t), then the total area
under pij(i = 1, . . . , s and j = 1, . . . , t) is equal to one, being pij in this region the conditional PMF.
After a normalization process it is possible to compute the modified entropy for group A, H(A),
defined as:

H(A) = −
s

∑
i=1

t

∑
j=1

( pij

Pst

)
ln
( pij

Pst

)
(15)
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where

Pst = −
s

∑
i=1

t

∑
j=1

pij (16)

H(B) = −
s

∑
i=1

t

∑
j=1

[ pij

(1− Pst)

]
ln
[ pij

(1− Pst)

]
(17)

T = max
s,t

H(A) + H(B) (18)

Figure 12 shows a comparison of the four thresholding methodologies for three sample images,
acquired at the initial, middle and final stage of the washing cycle respectively.
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Taking into account the Signal to Noise ratio (S/N) [34] computed throughout the washing cycle,
and considering the average thresholding computation time, the Maximum Entropy 2D thresholding
method was adopted in this work to estimate the surface fouling and fouling volume as detailed in the
following sections.
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3.7. Surface Fouling Computation

Once the image processing procedure is completed, it is possible to compute the surface and the
volume of fouling in each image.

The surface fouling in each image was computed by summing all the white pixels resulted from
the thresholding operation, precisely:

SF =
n·m
∑
i=1

pixeli, pixel = 1 (19)

where n and m are the digital image dimensions, and 1 represents the normalized value for white
pixels. The surface fouling chart vs. time is reported in Figure 13 for all the datasets.
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Figure 13. Surface fouling chart.

From the chart, it is possible to observe fluctuations in the decreasing trend of surface fouling,
due to the water spray force, which spreads the chocolate lumps on a wider surface before they can be
drained out.

3.8. Thickness and Volume Estimation

Previous works by the authors demonstrated that the fouling thickness is proportional to the
pixel intensity within the digital image [16].

A fouling volume indicator can be calculated as the sum of white pixels multiplied by the pixel
intensity of the corresponding pixel in the green channel.

V =
n·m
∑
i=1

pixeli ×Green Intensityi, pixel = 1 (20)

The fouling volume indicator chart vs. time is reported in Figure 14 for all the datasets.
The fluctuations in the fouling volume indicator chart are due to the proportionality of the fouling

thickness to the pixel intensity, which is increasing until a certain value and then asymptotically
floating [14,16] as schematically reported in Figure 15.
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4. Intelligent Decision Making on Cleaning Time Prediction

In this section, a neural network-based decision-making support system was built with the aim
of predicting the required cleaning time based on the fouling volume indicator estimation results
obtained using the image processing and thresholding technique described in the previous sections.

The fouling volume indicator over time was used as input to train different configurations of time
series prediction neural networks, subsequently, the trained system was tested to each dataset to assess
the cleaning time accuracy in terms of mean squared error and output element response.

A discussion on neural network architecture performance is reported to determine the best
configuration in terms of training dataset and hidden layer nodes.

4.1. NARX Network

Nonlinear autoregressive models with exogenous inputs (NARX) are recurrent neural
architectures [41,42], in which the feedback architectures come only from the output neuron instead of
from hidden neurons.
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NARX is an important class of discrete-time nonlinear systems that can be mathematically
represented as:

y(n + 1) = f [y(n), . . . , y(n− dy + 1); x(n− k), x(n− k− 1), . . . , x(n− k− du + 1)] (21)

where x(n), y(n) ∈ < denote, respectively, the input and output of the model at discrete time step
n, while du ≥ 1, dy ≥ 1 and du ≤ dy, are the input-memory and output-memory orders, respectively.
The parameter k (k ≥ 0) is a delay term, known as the process dead-time [43].

The nonlinear mapping f (·) is general unknown and can be approximated, for example,
by a standard multilayer perceptron (MLP) network. The resulting connectionist architecture is
then called a NARX network, a powerful class of dynamical models which has been shown to be
computationally equivalent to Turing machines [44].

4.2. Architecture

Different training datasets were used, consisting of single datasets (D1, D2, D3), double datasets
(D1 + D2, D1 + D3 and D2 + D3) and a triple dataset (D1 + D2 + D3). Five different hidden layer nodes
configurations were used, consisting of 3, 6, 10, 15 and 20 hidden layer nodes respectively. The delay
term was set to 2 samples for all the configurations.

The training algorithm adopted was the Bayesian Regularization [45], which minimizes a linear
combination of squared errors and weights. It also modifies the linear combination so that at the end
of training the resulting network has good generalization qualities.

The predicted output consists in the cleaning time, i.e., the time in which the fouling volume = 0.
Figure 16 reports a NARX neural network scheme for a single dataset training and 10 hidden

layer nodes as an example.
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5. Results

Table 2 shows the results of the trained NARX networks tested on D1, D2 and D3. As a measure
of NN performance, the Mean-Squared Error (MSE) [46] was considered. The results in bold represent
the best configurations in terms of hidden layer nodes for each testing dataset.

In all the tests, the correlation coefficient was equal to 1, demonstrating a perfect fitting suitability.
Figure 17 shows a better performance (lower MSE) for smaller hidden layer nodes numbers,

i.e., 3 and 6. Such result suggests that for this application a high number of hidden layer nodes leads
to overfitting phenomena [47].
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Table 2. Nonlinear autoregressive models with exogenous inputs (NARX) Network results.

Training
Dataset

Testing
Dataset

MSE

3HLN 6HLN 10 HLN 15 HLN 20 HLN

D2

D1

9.37 × 10−3 4.34 × 10−4 3.70 × 10−3 2.90 × 10−2 5.80 × 10−3

D3 1.24 × 10−5 7.87 × 10−7 2.72 × 10−7 1.00 × 10−3 1.72 × 10−1

D1 + D2 5.67 × 10−3 1.29 × 10−3 1.28 × 10−1 1.88 × 10−2 6.64 × 10−2

D1 + D3 1.11 × 10−6 1.36 × 10−5 1.40 × 10−3 1.55 × 10−4 3.40 × 10−3

D2 + D3 2.44 × 10−2 2.57 × 10−3 3.70 × 10−3 2.30 × 10−3 5.41 × 10−1

D1 + D2 + D3 5.66 × 10−3 1.81 × 10−2 8.33 × 10−5 1.56 × 10−2 1.73 × 10−1

D1

D2

1.74 × 10−2 6.07 × 10−3 2.85 × 10−4 4.22 × 10−2 3.63 × 10−1

D3 4.41 × 10−2 5.72 × 10−2 1.24 × 10−1 8.71 × 10−1 8.29 × 10−1

D1 + D2 4.19 × 10−2 2.38 × 10−3 9.02 × 10−1 2.48 × 10−1 1.02 × 10−1

D1 + D3 8.05 × 10−2 8.79 × 10−2 1.44 × 10−1 7.29 × 10−2 6.15 × 10−2

D2 + D3 4.56 × 10−2 4.17 × 10−2 1.14 × 10−2 3.77 × 10−2 4.62
D1 + D2 + D3 7.96 × 10−2 6.83 × 10−2 1.07 × 10−2 5.60 × 10−1 3.93

D1

D3

3.44 × 10−8 4.38 × 10−8 1.03 × 10−8 1.44 × 10−7 4.27 × 10−5

D2 3.39 × 10−3 1.95 × 10−4 4.45 × 10−4 1.55 × 10−5 3.07 × 10−5

D1 + D2 2.12 × 10−3 1.57 × 10−4 1.46 × 10−1 1.05 × 10−2 3.31 × 10−2

D1 + D3 1.58 × 10−8 3.64 × 10−7 1.44 × 10−7 4.38 × 10−6 2.04 × 10−5

D2 + D3 3.73 × 10−3 5.75 × 10−4 3.60 × 10−3 1.00 × 10−3 2.34 × 10−1

D1 + D2 + D3 1.96 × 10−3 4.80 × 10−3 5.71 × 10−5 2.06 × 10−2 1.63 × 10−1
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Figure 17. NARX Neural Network performance vs. hidden layer nodes.

Figure 18a–c shows the NARX Neural Network response (Cleaning Time) comparing the target
(actual) to the output (predicted) for various configurations. In the initial phase, due to the limited
number of samples, the prediction errors are slightly higher. Then, as the number of time series samples
increases, the NARX response becomes more accurate and the prediction error decreases significantly.
The extremely low error ranges (10−1 to 10−4 s) show a great suitability for industrial applications.
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Computation Time vs. Resolution

An important aspect in the design and implementation of a monitoring system is represented the
computation and response time, which needs to be considerably lower than the data sampling time.

In this study, an acquisition rate of one image every five seconds was adopted with 6 MB resolution
images. For an industrial application this rate may be not adequate, and, on the other hand, such high
resolution can result redundant and therefore costly.

For these reasons, a comparative study is proposed here to evaluate the computation time
for various image resolutions, and the related image processing accuracy is assessed in terms of
determination coefficient as compared to the original resolution.

Four different image resolutions were used for this comparative study.

• L = Original resolution = 2000 × 2992 px
• M = 1500 × 2244 px
• S = 1000 × 1496 px
• XS = 500 × 748 px

The elapsed time to carry out the full image processing methodology reported in Figure 19 was
recorded for all the image resolutions considered. The average computation time per image resolution
is reported below.

• L = 2.1498 s
• M = 1.2953 s
• S = 0.6962 s
• XS = 0.3518 s
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Figure 19. Computation time vs. image resolutions for D2 dataset.

Considering the sampling frequency, the proposed image processing methodology is suitable for
the clean-in-place monitoring system for all the resolutions range.

In order to evaluate the system accuracy for the different image resolutions, a comparison was
carried out using the linear regression coefficient computed between the surface fouling results
obtained with the target dataset, i.e., large resolution (L: 2000 × 2992 px) and the output datasets,
i.e., the ones obtained with the other resolutions.

The coefficient of determination of a linear regression model is the quotient of the variances of the
target values and output values of the dependent variable [48].
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Denoting yi as the observed values of the dependent variable, ŷ as its mean, and ŷi as the target
value, then the coefficient of determination is:

R =

√√√√∑(ŷi − ŷ)2

∑(yi − ŷ)2 (22)

The results are plotted in Figure 20.
For M and S resolutions, results show a very strong linear correlation with the original resolution,

which means that the fouling detection can be carried out using a lower resolution without any
significant loss in detection performances. A lower linear correlation coefficient was found for the XS
resolution, indicating a worse performance.
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6. Concluding Discussion

Fluorosensing is a well-recognized technique for assessing the condition of biological matter.
In this research it has been investigated with regard its applicability to monitor cleaning processes
within the food manufacturing industry

The use of purpose-built stainless steel two tank system enables the simulation of industrial
cleaning processes that provided suitable data for further analysis. The experimental procedure
described, relying on UV induced fluorescence, allows for the capture of images representative of
those which might be obtained from an industrial application which can then be post processed.

An image processing procedure was developed which essentially isolated the green channel from
the RGB images, as this channel was considered to contain the highest levels of true positive signal for
the white chocolate samples investigated. It may be the case that other types of fouling sample may
have different emission spectra and so, utilizing an RGB camera, the different (or a combination) of
channels might be more suitable for analysis.

As part of the image processing procedure, a range of thresholding methodologies were
investigated with Max Entropy 2D found to be the most successful (best S/N) of those investigated.
The processing procedure as established was then applied to a number of sets of images throughout
the entire cleaning cycles executed on the test rig. In this way, it was possible to consider disturbance
factors, such as the false positive occurring due to the fouling fluorescence reflection on the steel bottom
and side surfaces, throughout the entire washing cycle. In addition to this, the randomization of the
initial manual fouling application, along with three experiments repetitions guarantee the robustness
and repeatability of the described process analysis, as confirmed by the small variability in terms of
surface fouling and fouling volume trends as shown in Figures 13 and 14.
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An image processing procedure has therefore been developed that successfully enables the
analysis of a state of fouling of food production vessel. This in itself would be useful within industrial
applications allowing for an additional mechanism to assess and validate the cleanliness of production
equipment. However, the sensor architecture described has demonstrated the ability capture and
process images in near-real time, which would enable the continuous monitoring of cleaning processes.
The technique therefore allows an assessment of fouling during cleaning and can alert on operator
to a situation where a sufficient level of cleaning has been achieved or where cleaning is insufficient
in a given time. The first of these options has the potential to shorten cleaning times (and associated
resource consumption) while the latter has the potential to improve food safety.

A further capability is described in this research. The implementation of neural networks has
been demonstrated to allow the prediction of the point in time when a ‘clean’ state will be achieved.
The capability is important as it allows manufacturers to further capitalize on the benefits of the system
by preparing the follow-on production batch to be ready for the point at which the system reaches its
clean state.

The research presented has been demonstrated at the laboratory scale. There is a need to develop
the optical hardware into a system that is satisfactory for industrial scale applications (e.g., size
and robustness) and to develop a control system that is compatible with existing CIP installations.
However, this critical evaluation stage has shown the suitability of the use of fluorosensing for
enhancing clean-in-place monitoring for industrial applications.
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