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Abstract: The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses
of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term
Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices
are mainly based on narrowband applications. Standards like LTE-A might not provide efficient
spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate
node before transmission can answer the issues of spectral efficiency. The objective of this work is
to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into
5G network by multiplexing data packets at the RN before transmission to the Base Station (BS)
in the form of large multiplexed packets. Frequency resource blocks can be shared among several
devices with this method. An analytical model for this scheme, developed as an r-stage Coxian
process, determines the radio resource utilization and system gain achieved. The model is validated
by comparing the obtained results with simulation results.
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1. Introduction

Internet of Things (IoT) communication has gained significant popularity in recent years. Existing
IoT communication is reliant on present-day mobile networks. The current networks are meeting the
requirements of existing IoT devices sufficiently to date. However, the massive growth of IoT data
traffic means that the existing mobile communication systems (3G, 4G, etc.) might not be capable
of coping with substantial future data traffic. IoT traffic is usually dissimilar to regular traffic such
as conversational video or file transfer. IoT data are mostly generated by a large number of IoT
devices in the form of small packets. IoT communication is mostly based on narrowband applications.
Conversely, the human-generated normal data traffic appears from small number of mobile phones in
the shape of large sized packets. Meanwhile, 5G is now being considered as a strong candidate for
serving the massive future IoT traffic. Rollouts of 5G networks are expected in the near future.

The 3rd Generation Partnership Project (3GPP) standard, Long Term Evolution-Advanced (LTE-A)
has been developed for broadband applications. With narrowband applications, LTE-A is not capable
of achieving efficiency in terms of bandwidth usage and cost. Incorporation of the narrowband
IoT data traffic into LTE-A system requires revision in the design of such networks. Otherwise,
considerable degradation of the overall network performance can be faced. Therefore, achieving
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high spectral efficiency in air interface requires intelligent use of scarce radio resources. Regular
human-based broadband traffic in LTE-A can efficiently utilize radio resources with transmission
of large messages via a single resource block of frequency. However, these resource blocks may be
underutilized while serving narrowband IoT applications due to the transmission of small-sized
messages with transmission gaps. As per 3GPP specifications, each device must use at least one
resource block for transmission of a message without sharing the block with other devices.

Instead of allowing IoT devices to access the Base Station (BS) directly, a Relay Node (RN)
could be used to accumulate data packets transmitted by IoT devices. RN is deployable without
adding infrastructure for backhaul connection and can be connected wirelessly to the BS. This work
investigates a framework for aggregating IoT data from a group of IoT devices and then multiplexing
the traffic at RN before sending to the BS. Thus, rather than demanding frequency resources from the
BS for singular IoT devices, resource requests are executed by RN for groups of IoT devices collectively.
BS would consider a resource demand for aggregated data as a solitary request. The effectiveness of
the method is established with the help of an analytical model.

2. Literature Survey

The literature available on RN indicates that research work in this field is mostly focused on
implementation aspects and improving system performance [1–4]. Performance of relaying in mobile
networks has been studied by several researchers. In [5], algorithms for energy efficiency enhancement
and optimum node placement are proposed. In [6], challenges related to mobile communication in
high-speed trains such as attenuation and high Doppler spread are addressed. In [7], power control
mechanisms are investigated for enhancing the outage performance of relaying scheme via centralized
and distributed power adjustment schemes. Performance evaluation of relaying systems for the
end-to-end delay is studied with the help of semi-Markov processes in [8]. The derivation of analytical
results for the expected packet end-to-end delay is also explored in [8]. An investigation of connectivity
and service interruption time before reconnecting to RN in 4G networks for handhelds and relays
is carried out in [9]. Data security issues during handover in mobile networks are addressed in [10]
using mobile relaying. Deployment of an unmanned aerial vehicle as a relaying node in wireless
communication is explored in [11].

Research work available on packet multiplexing is mostly based on 4G and previous mobile
communication systems. Statistical multiplexer’s performance for the determination of packet delay
arising in voice traffic is studied in [12] using Markov modulated Poisson process. The authors of [13]
discuss an end-to-end packet delay performance of data encapsulation as well as packet aggregation
technique with arrivals having Poisson distribution and service time with phase-type distribution.
As of multiplexed flows, approximation methods for finding probability distribution function for
packet waiting time are presented in [14]. In [15], the authors present a scheme for packet aggregation to
handle M2M data traffic having small-sized messages by sharing radio resources of LTE-A in downlink;
however, uplink M2M traffic is not considered. In [16], an analysis of aggregation delay for packets
from multiple sensors with on-off type of data traffic in Wireless Body Area Networks is presented.
In [17], the authors present a framework for dimensioning of the 5G access network by utilizing G/G/1
queuing models for delay percentiles. In [18], capacity development for packet-based radio access
technologies through multiplexing gain is investigated. The authors conclude that multiplexing gain is
achievable for traffic with variable bit rate but not for traffic with constant bit rate. A Software Defined
Network (SDN)-based approach to packet aggregation and then disaggregation after transmission is
presented in [19].

The Asynchronous Transfer Mode (ATM) Adaptation Layer 2 (AAL2) represents a technique for
multiplexing of packets in networks such as 3G. In this technique, several small packets are fitted into
large ATM cells. In [20], the authors present a probabilistic model of AAL2 for the 3G core network.
In [21], a queuing model for the evaluation of AAL2 packet multiplexer performance modelled as
batch Markovian arrivals having timer mechanism is presented. Extension of [21] presented in [22] is
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for modelling of multiplexing buffer. Authors of [23] present a mathematical model for evaluation
of AAL2 type multiplexer’s performance parameters like expected sojourn time, mean queue length,
and the probability of delay violation. Authors of [24] analyze the AAL2 multiplexer by modelling
the multiplexer departure process as an r-stage Coxian process. The authors of [25] present the
performance evaluation of voice traffic in mobile radio networks with Coxian distributed channel
holding time. The authors of [26] propose a method of performance analysis for a continuous time
Markovian arrival process at the ATM Adaptation Layer 2 (AAL2), where the Common Part Sublayer
(CPS) packets get multiplexed at the AAL2 buffer before being sent to transmission buffer. Both the
buffers are modelled as queues.

3. Air Interface of 5G

The primary motivation behind the development of new standards for 5G mobile systems is
innovations in support of IoT traffic. 5G applications for IoT are expected to increase market space and
open new profitable avenues for operators. Furthermore, improvement in customer experience would
also generate sizeable returns. The requirements laid out for 5G performance include enhancing the
capacity by 1000 times, data rate by 100 times, a latency of less than a millisecond and 1000 times lower
energy consumption. These requirements imply that significant challenges in the design of network
architecture and air interface lie ahead.

In mobile communications, air interface is the crux of all the novelty undertaken in the
development of a system. The progression in designing air interface schemes for 5G systems has
taken considerable time over the years. Currently, filtered-OFDM (f-OFDM), which facilitates flexible
waveform configuration, has been tipped as the 5G air interface scheme [27]. Under normal OFDM as
in LTE-A, a specific numerology is used for the whole bandwidth, which results in limited spectral
efficiency [28]. Under f-OFDM, the bandwidth is divided into several subbands for various types of
services with appropriate numerology, resulting in enhanced utilization of spectrum (Figure 1).
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4. Relay Node Design and Scheduling Scheme

The RN has been introduced by 3GPP in Release 10 documentation [29]. RN is designed for
extending the cell coverage area. The RN appears as a low-power BS to the mobile device. The RN is
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wirelessly linked to devices and the BS. The cost of deploying RN is less than deploying femto- and
picocells, as no additional infrastructure is needed for connecting RN to the BS. RN improves coverage
when placed at positions with weak channel conditions or dead spots in the coverage area.

In this work, a wireless, fixed, inband, layer 3 type RN is proposed as the data aggregation and
multiplexing node. This type of RN can be designed to aggregate and multiplex data packets from a
large number of IoT devices. The proposed inband RN operates on the same radio frequency band
that is specified to the BS by the network service provider. For accomplishing effective incorporation
of IoT traffic in the 5G system, functionality of RN is modified slightly in this work.

Additionally, an RN Medium Access Control (MAC) packet scheduler [30] is used in this work
to allocate frequency resources to IoT devices for RN access. The scheduler is capable of allocating
resources to devices with various Quality-of-Service (QoS) traffic classes. In this work, the scheduling
scheme used is blind equal throughput. This scheduler works in addition to the MAC layer scheduler
placed at the BS for allocating resources to mobile devices and RNs connected to BS. It is also assumed in
this work that all the IoT devices are having similar QoS requirements, therefore service differentiation
is not performed. The BS scheduler in [31] is also employed in this work at the BS.

A multiplexing algorithm at RN is developed for aggregation of IoT traffic from different devices
where packets are multiplexed before transmission to the BS. The multiplexing algorithm works
collaboratively with the scheduler at RN to ensure that the size of multiplexed data is in accordance
with the capacity of available radio resources (Figure 2).
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Thus, rather than demanding frequency resources from the BS for distinct IoT devices, resources
are demanded by the RN for a bunch of IoT nodes. The IoT packets are aggregated and multiplexed at
the RN. This multiplexing is achieved by, firstly, aggregating packets from several IoT devices and
then multiplexing them into one large packet. On the BS side, a resource demand for the multiplexed
large packet would be considered as one distinct radio resource demand. Therefore, sharing of radio
resources among several devices would result in the enhancement of spectral efficiency. The capacity
of the network would also increase, resulting in minimization of chances of network failure.



Sensors 2018, 18, 3966 5 of 16

5. Data Aggregation and Scheme for Multiplexing

In this work, the design of a fixed RN is presented for 5G networks. IoT data traffic from devices
located near RN is aggregated at the RN. In this paper, it is supposed that the RN antennas for the
access link (interface with devices) and the backhaul link (interface with BS) are well separated and that
self-interference can be totally avoided. For example, consider the case of deploying the access antenna
inside some building while the backhaul antenna is deployed outdoors. In such cases, the inband
operation of RN can be ensured without any time division mechanism. At the MAC layer of the BS,
a channel and service aware scheduler [31] is implemented for scheduling the RN as well as mobile
user devices with regular data traffic. The scheduler consists of time and frequency domain uplink
scheduling schemes.

An aggregation buffer is used at the RN for aggregating IoT data having a size that matches the
size of instantaneously achievable Transport Block Size (TBS) offered by the air interface. The maximum
buffer size denoted by nmax corresponds to instantaneously available TBS, which depends on channel
conditions. However, the multiplexed data forming a large packet can have a maximum size of
nmax − overhead (from lower layers). The overhead of LTE-A lower layers is assumed to be 352 bits [32].
The multiplexed large packet is transmitted to the BS via the backhaul link. This approach can bring
significant improvement in the radio resource utilization, as discussed later. Conversely, this approach
also can introduce problems due to constraints related to latency requirements associated with high
priority data traffic, for example the delay sensitive emergency warnings. The small packets from
IoT devices must wait until the buffer size reaches nmax − overhead. In case of a highly loaded traffic
scenarios, this issue may not occur, as the arrival rate is high and filling the buffer with packets would
not take long. The issue arises in scenarios having low traffic load, where large interarrival times
can cause longer waiting times greater delays in stuffing the buffer. As a result, the performance of
delay sensitive IoT applications is compromised. This issue is dealt with by deploying a timer in the
scheme. The timer is set to a certain time Tmax, which is the maximum waiting time of the first packet
arriving since the empty buffer (Figure 3). Thus, the buffer multiplexes the aggregated packets until a
duration Tmax of the first arrival. Once waiting time of a packet reaches the timer expiry duration Tmax,
the process of packet multiplexing is triggered, and the large multiplexed packet is sent to the BS. The
original small packets from the IoT devices are then sent from the BS to the core network.
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6. Analytical Model

The small IoT data packets from IoT devices arrive at the RN multiplexer. The first packet arrival
at the multiplexer activates the timer. Due to the timer activation, the first packet would stay in the
buffer for a duration not more than Tmax. During this time, arrival of additional packets would result
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in improvement of multiplexing gain. Once the packet waiting duration reaches the timer expiration
threshold Tmax, the course of packet multiplexing is triggered. The large multiplexed packet is then
transmitted to the BS. Nmax is the maximum number of resource blocks available for RN to use in
a single Transmission Time Interval (TTI). If some or all of the Nmax radio resource block are not
needed in a TTI for RN traffic, the unallocated blocks are made available for regular mobile users
waiting for radio resources from the BS. Alternately, if the timer expiry time Tmax has not been reached,
but the total size of small packets arrived at the multiplexing buffer reaches the size of nmax − overhead;
the large multiplexed packet is formed then and sent to BS before the timer expires. The size of nmax

depends on the available TBS, which in return is dependent on backhaul air interface radio channel
conditions. At most, r packets can be aggregated into a single large packet and r is expressed as:

r =
nmax − overhead

l
(1)

where l describes the fixed size of the arriving packets in bits. Consider x as the actual number of
packets in the RN buffer. As long as the waiting time does not reach Tmax or the buffer size does not
reach nmax − overhead, x remains in the interval 1 ≤ x < r. Packet arrival rate from IoT devices, λ is
considered to be exponentially distributed. It can be shown that the total waiting time of xth packet is
Erlangian [24]. Therefore, the probability of subsequent arrival of packet prior to multiplexing with x
packets already in the buffer is denoted as ax and given as:

ax =


1, x = 0

1−
(

x−1
∑

i=0

e−λTmax (λTmax)
i

i!

)
, 1 ≤ x < r

0, x ≥ r

(2)

The probability of initiating the multiplexing after x arrivals is bx where bx = 1 − ax.
This multiplexer now emulates an r-stage Coxian process (Figure 4). The probability of an arrival with
empty buffer, a0 is 1 as the packet multiplexing starting without a single packet in the buffer is not
possible. For triggering the multiplexing process, a single packet must arrive at the multiplexing buffer.
Consequently, b0 would always be 0. Upon arrival of the first packet from IoT device, the multiplexing
system goes to stage 1 of the Coxian process with a total of r stages. Stage 1 illustrates that one packet
has arrived in the buffer. During the first stage, two cases are possible. It is likely that the second
packet also arrives into the multiplexing buffer ahead of timer expiry. The probability of this case
is denoted as a1. But the converse case can also happen where no packet arrivals occur after the
first one until timer expiry and the packet multiplexing is initiated with a single packet in the buffer.
The probability of this case is expressed as b1. Now, if the second packet arrival occurs before the
timer expires, the process is said to have entered stage 2. After entering stage 2, again two cases are
possible. Either the third packet arrival occurs, which is considered to have a probability a2. Or the
timer expires after the second arrival with a likelihood of b2. These probabilities ax and bx in each
stage could happen only until x becomes equal to r, i.e., r packets arrive. As discussed earlier, r is
the highest possible number of small packets that the buffer holds until starting the multiplexing
process. Upon entering stage r, the sole probable event that can happen then is that the process of
packet multiplexing begins immediately, and no more packet arrivals are awaited. At stage r, ar = 0
while br = 1.
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The packet multiplexing process modelling is particularly useful in cases of data traffic where
packet arrivals occur in bursts in between relatively silent periods. The generation of traffic at IoT
devices is statistically independent. Thus, the traffic arriving at RN would be like bursts followed by
periods of comparative silence. The goal of multiplexing is to combine the incoming packets at RN
and make large blocks of data rather than sending isolated packets. This arrangement can reduce the
number of blocks sent to BS considerably. The number of resource blocks needed for each stage can be
determined by checking the TBS value for different resource block allocations and Modulation and
Coding Scheme (MCS) combinations. Thus, the resource blocks required for different buffer sizes at
the time of multiplexing is derived from the TBS table of 3GPP. The TBS values for M = 16 (as per
3GPP specifications [33]) and the buffer capacity in terms of data without overhead (352 bits) are given
in Table 1 below.

Table 1. TBS capacity for resource block values with M = 16.

Number of Resource Blocks 1 2 3 4 5

TBS (bits) 328 632 968 1288 1608
Capacity without overhead (bits) 0 280 616 936 1256

At stage 1, the buffer size in bits can reach l bits, where l is the fixed size of the arriving packets in
bits. In this way, at stage x, the size of buffer would become x× l bits. The number of resource blocks
needed for each stage x is denoted as Nx,M, which relies on stage x and MCS M. The values of Nx,M
for M = 16 and l = 232 bits are given as in Table 2 below.

Table 2. Resource blocks required for stages with M = 16 and l = 232 bits.

Stage Number 1 2 3 4 5 6

Size of buffer (bits) 232 464 696 928 1160 1392
Resource blocks 2 3 4 4 5 5

To evaluate the performance of the proposed mechanism analytically, a discrete Random Variable
(RV) X is defined, which denotes the number of packets fitted into a single multiplexed packet. The RV
X can have possible values x = 1, 2, 3, . . . , r. Here, r can also be defined as the maximum number
of IoT data packets inside a single multiplexed large packet. P[X = x] denotes the probability mass
function of RV X. The likelihood of having more than x packets multiplexed into a large packet is ax.
So ax is now defined in another manner. The probability ax represents the chance of having a value
of X greater than x. This implies that the chance of getting more than x IoT data packets inside a
multiplexed large packet is ax, which is given in the form of P[X > x] for 1 ≤ x < r as:

P[X > x] = 1−
(

x−1
∑

i=0

e−λTmax
i! (λTmax)

i
)

f or 1 ≤ x < r
(3)
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This is illustrated with an example. Consider that a1 = 0.6, which implies that 60% of the
multiplexed large packets should be having a size greater than one small packet, which indicates
that P[X > 1] = 0.6. Now the likelihood of X > 0 with x having value of 0 must always be 1,
i.e., P[X > 0] = 1. This is due to the fact that multiplexing requires a minimum of one packet in the
multiplexing buffer, which means that the value of X must be above 0 if multiplexing has to occur.
Now by setting x = 0 in Equation (3), P[X > 0] turns out to be 1. In this fashion, the chance of X
greater than or equal to r, i.e., P[X ≥ r] is always 0.

Since, X is a RV of discrete values, the likelihood P[X = x] is established as:

P[X = x] = P[X > x− 1]− P[X > x] (4)

This gives P[X = x] as:

P[X = x] = 1−
x−2

∑
i=0

e−λTmax

i!
(λTmax)

i −
(

1−
x−1

∑
i=0

e−λTmax

i!
(λTmax)

i

)
(5)

⇒ P[X = x] = −
x−2

∑
i=0

e−λTmax

i!
(λTmax)

i +
x−1

∑
i=0

e−λTmax

i!
(λTmax)

i (6)

=⇒ P[X = x] = −
x−2

∑
i=0

e−λTmax

i!
(λTmax)

i +
x−2

∑
i=0

e−λTmax

i!
(λTmax)

i +
e−λTmax

(x− 1)!
(λTmax)

x−1 (7)

=⇒ P[X = x] =
e−λTmax

(x− 1)!
(λTmax)

x−1 (8)

7. Spectrum Utilization

Using Nx,M from Table 2 and P[X = x] from Equation (8), the average resource blocks used in
each multiplexing process or the average resource blocks consumed by a large packet is denoted by k,
and determined as:

k =
r

∑
x=1

Nx,M × P[X = x] (9)

The mean number of resource blocks consumed by a single multiplexed large packet, k is dissimilar
from the parameter, mean number of blocks utilized per TTI. The mean number of resource blocks
per TTI are considerably decreased by employing the multiplexing scheme along with the timer.
However, k increases with usage of packet multiplexing scheme. The greater the value of k, the better
the resource utilization. The multiplexing of packets happens if a duration Tmax has elapsed. If the
packet aggregation scheme is not used at the RN and packets are sent to BS without multiplexing,
then the arriving packets would be sent to BS immediately at the beginning of the next TTI, instead
of waiting for the timer to expire. For this reason, the average number of resource blocks for each
large packet would increase in case of multiplexing with the timer. As a result, the total number of
multiplexed packets sent from RN to BS would be reduced considerably. The lesser the number of
multiplexed packets, the higher the value of k and the lesser the overhead data.

8. Multiplexing Gain

Multiplexing gain is achieved by increasing the resource block utilization in every multiplexing
process. For determining the multiplexing gain, the average resource block usage k without
multiplexing (represented by kno_mux) as well as with multiplexing (represented by kmux) are
determined in accordance with Equation (9). Multiplexing gain in percentage is given as:

G = 100−
(

kno_mux

kmux
× 100

)
(10)
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9. Simulation Model

The analytical results of the derived model for resource block utilization are compared with
simulation results for resource block usage. The simulation results in this paper are generated under
simulation parameters given in Table 3. The evaluation underlines the case of relaying without
multiplexing and the impact of relaying with multiplexing as well as timer mechanism. The two cases
are compared to determine the multiplexing gain achieved both in analytical and simulation models.

Table 3. Simulation parameters.

Parameter Value/Setting

Cell layout 7 BSs, 1 RN connected to central BS
System bandwidth 5 MHz

Adjacent BS distance 500 m
Max IoT device power 23 dBm

Path loss 128.1 + 37.6 log10(R)
Slow Fading Log-normal shadowing, mean 0 dB, standard deviation 10 dB, correlation 1
Fast Fading Jakes’ model

Noise per resource block −120.447 dBm
Noise floor 9 dB

Power Control Fractional, α = 0.6, P0 = −58 dBm
Timer expiry Tmax 9 ms
IoT message size Constant (29) bytes including upper layers overhead

Message inter-transmission time 1 s (exponential)

The OPNET simulation environment (Figure 5) is used for determination of resource block
usage and multiplexing gain. The OPNET model developed in this work emulates the impact of
fast fading, slow fading, path loss, and noise on transmitted signal. It also models the interference
from neighboring BSs. Channel models and interference models are developed according to [34].
The frequency reuse factor is 1. Therefore, devices transmitting uplink signals over certain resource
blocks would cause interference in the transmission of devices of the neighboring BSs using the same
resource blocks.
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European Telecommunications Standards Institute (ETSI) based path loss models for different
environments are used for research purposes. ETSI vehicular test environment model has been used in
this work for modelling of path loss.

L = 128.1 + 37.6 log10(R) (11)

where L is path loss in dB and R is the distance between receiver and transmitter in km.
For slow fading, the log-normal model with standard deviation of 10 dB, mean 0 and correlation

of 1 over distance is used. For fast fading, a time-dependent random function known as Jakes’ model
is used. Thus, maps for coverage areas (cells) are generated using models in [34] and traces of these
maps are fed into our OPNET simulation model. Noise and noise figure are modelled as per 3GPP
specifications. Interference is modelled with in such a way that signals arriving from neighboring cells
after reduction of power due to path loss, slow fading, and fast fading cause interference.

The RN OPNET model for relaying node is implemented to feature two radio interfaces, the Uu
and the Un interfaces (Figure 6). The corresponding protocol stacks are implemented as per 3GPP
end-user protocols. The relaying scheduler is implemented in the MAC layer of RN Uu interface.
The proposed packet aggregation and multiplexing scheme is implemented at the Packet Data
Convergence Protocol (PDCP) layer of RN Uu interface. The GPRS (General Packet Radio Services)
Tunneling Protocol (GTP) is also implemented where packet are tunneled at the RN and detunneling
is performed at BS.
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In the simulation model, the multiplexing transition probabilities are figured out by using a
method of packet counting where ax is the likelihood of (x + 1) th packet arrival prior to the start
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of packet multiplexing such that x packets are already present in the buffer and 1 ≤ x < r. In the
simulation model, for determining the values of ax, r is considered as the maximum number of small
data packets in the buffer multiplexed to form a large packet. So x could get a value in the range
1 ≤ x < r.

The analytical probability, ax is defined in (12). To find the a-posteriori probability ax for simulation
model, a record of the occurrences of a certain number of IoT packets packed inside a large packet is
kept. For this purpose, a counter is deployed for recording arrivals at every stage of the aggregation
buffer x. This means that a record of the number of instances where the Coxian process goes into a
specific stage x is maintained. The counters designed for this purpose are denoted as cx for 1 ≤ x < r
stages and defined in such a way that cx counts the number of times the large aggregated and
multiplexed packet contained x packets or more. Thus cx is also the frequency instances that a
particular stage x has been reached by the Coxian process.

Probability of ax is found with the help of value at counter cx. For example, to determine the
probability a1, the value at counter c2 is considered. This figures out the likelihood of arrival of second
packet with respect to value at counter c1 (i.e., the total number of arrivals). So, ax is calculated as:

ax =


1, x = 0
cx+1

cx
, 1 ≤ x < r

0, x ≥ r
(12)

10. Results and Analysis

In terms of kno_mux and kmux, comparison of analytical and simulation results for various traffic
load scenarios are performed. The evaluation highlights the case of relaying without multiplexing and
the impact of relaying with multiplexing plus timer mechanism. The performance of the multiplexing
scheme is evaluated for scenarios with 100, 200, . . . , 900 up to 1000 IoT devices connected to the RN.
These scenarios offer traffic load of less than 0.1. The reason for evaluating performance only in low
load scenarios is that the expiry of timer rarely occurs in high load scenarios. The multiplexing process
would almost always start before the timer expiry. The maximum load in the simulated scenarios is
0.07 for 1000 IoT devices in the RN coverage area.

Results are depicted using spider web charts. Such a chart is used to illustrate outcomes
of multiple load scenarios in a single figure. Each chart axis represents one of 10 scenarios
(i.e., 100, 200, . . . , 1000 users). Each axis signifies a scale of 1 to 5 (Figure 7) for resource block
utilization and 1 to 50 (Figure 8) for multiplexing gain percentage.

Figure 7 illustrates two aspects. First, the comparison of results for relaying with as well as without
multiplexing depicts that the utilization of frequency resources is considerably improved. In the no
multiplexing case, the average resource usage k is low. This shows that the total of multiplexed packets
sent to BS from RN would be quite large. Therefore, the overhead data would grow significantly.
The results for multiplexing with timer scenarios show that since packets are multiplexed into larger
blocks, overheads needed for transmission blocks are significantly reduced. The second aspect is that
the analytical results and simulation results agree with each other quite well. This conformity between
analytical and simulation results indicate the validity of models. Simulation models are developed
on the basis of artificial Random Number Generators (RNGs) for generation of random sequences of
random values. Hence, simulation runs with various seeds for RNGs are performed to get results from
varying random sequences. The 95% confidence intervals for simulation results are provided here
in Table 4.
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Table 4. 95% confidence intervals for simulation results in Figure 7.

Number of Devices 100 200 300 400 500
Without multiplexing 0.0012 0.0007 0.0008 0.0012 0.0010
Number of Devices 600 700 800 900 1000

Without multiplexing 0.0017 0.00127 0.00097 0.00077 0.0011

Number of Devices 100 200 300 400 500
With multiplexing 0.0031 0.0026 0.0020 0.0015 0.0022

Number of Devices 600 700 800 900 1000
With multiplexing 0.0011 0.0008 0.0007 0.0005 0.0003

The achieved multiplexing gain G for all the traffic load scenarios is shown in Figure 8. Significant
gains are achieved in all scenarios. Thus, it can be concluded that the framework provides better
spectral utilization when IoT data traffic is sent over the network. It can also be noticed that the results
for both simulation and analytical model agree with each other in Figure 8.

The M2M data traffic aggregation and multiplexing scheme introduces relaying delay to the
uplink data packets. The evaluation of relaying delay is achieved by considering 3GPP MCS
index 26, which implies relatively good channel conditions. The simulations are performed for
two categories of environment settings. In one category, the simulations are performed without
relaying and in the second category, simulations runs are carried out with RN for aggregation and
multiplexing. The simulation parameters in addition to Table 3 parameters are provided here in Table 5.
The simulations are performed for 15 scenarios, where the traffic load in each scenario varies from
1000 IoT devices up to 15,000 IoT devices. In the first scenario, the number of M2M devices is 1000.
In each successive scenario, the IoT devices are increased by 1000.

Table 5. Simulation parameters.

Parameter Value/Setting

MCS 26
Maximum RN resource blocks 5

Number of IoT devices 1000, 2000, 3000, . . . , 15,000

The load of data traffic, which is the ratio of arrival rate and service rate, is given in Table 6 for
each scenario with various number of M2M devices.

Table 6. Simulation parameters.

IoT Devices Traffic Load

1000 0.07
2000 0.14
3000 0.2
4000 0.27
5000 0.34
6000 0.41
7000 0.47
8000 0.54
9000 0.61

10,000 0.68
11,000 0.74
12,000 0.81
13,000 0.88
14,000 0.95
15,000 1.01
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The packet delay performance of the system in both categories is compared in Figure 9. Error bars
in the figure depict standard deviation. In low load scenarios, the delay performance without relaying
is better than with relaying. The logic behind this behavior is that RN has to wait until arrival of
nmax − overhead bytes at RN, while no such waiting time is required if there is no relaying. However,
once the traffic load increases, the environment without relaying fails to handle the load and large
average delays (that do not fit to the scale used in Figure 9) are observed. In the scenario of 7000 IoT
devices, this notion is clearly illustrated. However, in the environment with relaying, the traffic load of
even up to 14,000 IoT devices is efficiently handled.Sensors 2018, 18, x FOR PEER REVIEW  14 of 16 
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