Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers
Abstract
:1. Introduction
2. Fatigue Damage Detection Principle
2.1. Active Sensing Approach
2.2. Wavelet Packet-Based Energy Analysis
3. Experimental Investigation
3.1. Specimen Details
3.2. Experimental Setup and Procedures
4. Experimental Results and Discussions
4.1. Fatigue Damage Characteristics of the Specimen
4.2. Stiffness Characteristics of the Specimen
4.3. Time Domain Analysis
4.4. Wavelet Packet Energy Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ancich, E.J.; Chirgwin, G.J.; Brown, S.C. Dynamic anomalies in a modular bridge expansion joint. J. Bridg. Eng. 2006, 119, 541–554. [Google Scholar] [CrossRef]
- Guizani, L.; Bonnell, W.; Chaallal, O. Fatigue testing and performance of welded single-support bar modular bridge joints. J. Bridg. Eng. 2015, 20, 04014079. [Google Scholar] [CrossRef]
- Crocetti, R.; Bo, E. Fatigue performance of modular bridge expansion joints. J. Perform. Constr. Facil. 2003, 17, 167–176. [Google Scholar] [CrossRef]
- Roeder, C.W. Fatigue and dynamic load measurements on modular expansion joints. Constr. Build. Mater. 1998, 12, 143–150. [Google Scholar] [CrossRef]
- Stamatopoulos, G.N. Fatigue life of the bolted yoke connection in single support beam (SSB) modular bridge expansion joints. Int. J. Steel Struct. 2017, 17, 723–738. [Google Scholar] [CrossRef]
- Deng, Y.; Ding, Y.; Li, A.; Zhou, G. Fatigue reliability assessment for bridge welded details using long-term monitoring data. Sci. China Technol. Sci. 2011, 54, 3371–3381. [Google Scholar] [CrossRef]
- Guo, T.; Chen, Y.W. Fatigue reliability analysis of steel bridge details based on field-monitored data and linear elastic fracture mechanics. Struct. Infrastruct. Eng. 2013, 9, 496–505. [Google Scholar] [CrossRef]
- Tong, G.; Aiqun, L.; Jian, L. Fatigue life prediction of welded joints in orthotropic steel decks considering temperature effect and increasing traffic flow. Struct. Health Monit. 2008, 7, 189–202. [Google Scholar] [CrossRef]
- Palma, E.S.; Mansur, T.R.; Ferreira Silva, S., Jr.; Alvarenga, A., Jr. Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int. J. Fatigue 2005, 27, 659–665. [Google Scholar] [CrossRef]
- Karjalainen, L.P.; Moilanen, M. Detection of plastic deformation during fatigue of mild steel by the measurement of Barkhausen noise. NDT Int. 1979, 13, 51–55. [Google Scholar] [CrossRef]
- Tomita, Y.; Hashimoto, K.; Osawa, N. Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis. NDT E Int. 1993, 29, 275–280. [Google Scholar] [CrossRef]
- Lamontanara, J.; Chicois, J.; Fleischmann, P.; Fougères, R. Monitoring fatigue damage in industrial steel by Barkhausen noise. Nondestruct. Test. Eval. 2010, 8, 603–614. [Google Scholar] [CrossRef]
- Marrow, T.J.; Cetinel, H.; Al-Zalmah, M.; MacDonald, S.; Withers, P.J.; Walton, J. Fatigue crack nuclei in austempered ductile cast iron. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Marrow, T.J.; Buffiere, J.-Y.; Withers, P.J.; Johnson, G.; Engelberg, D. High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int. J. Fatigue 2004, 26, 717–725. [Google Scholar] [CrossRef]
- King, A.; Ludwig, W.; Herbig, M.; Buffiere, J.-Y.; Khan, A.A.; Stevens, N.; Marrow, T.J. Three-dimensional in situ observations of short fatigue crack growth in magnesium. Acta Mater. 2011, 59, 6761–6771. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.; Preuss, M. Fatigue and damage in structural materials studied by X-ray tomography. Annu. Rev. Mater. Res. 2012, 42, 81–103. [Google Scholar] [CrossRef]
- Ni, C.; Hua, L.; Wang, X. Crack propagation analysis and fatigue life prediction for structural alloy steel based on metal magnetic memory testing. J. Magn. Magn. Mater. 2018, 462, 144–152. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, J.; Wu, S.; Dai, H.; Liu, S. Characteristics of metal magnetic memory testing of 35crmo steel during fatigue loading. Metals 2018, 8, 119. [Google Scholar] [CrossRef]
- Ren, S.; Ou, Y.; Li, Y. Fatigue damage assessment for ferromagnetic items based on the metal magnetic memory technique. Insight-Non-Destr. Test. Cond. Monit. 2011, 53, 494–496. [Google Scholar]
- Xu, M.; Xu, M.; Li, J.; Leng, J.; Zhao, S. In service detection of 45 steel’s rotary bending fatigue damage based on metal magnetic memory technique. Adv. Mater. Res. 2010, 97, 4301–4304. [Google Scholar] [CrossRef]
- Zilberstein, V.; Grundy, D.; Weiss, V.; Goldfine, N.; Abramovici, E.; Newman, J.; Yentzer, T. Early detection and monitoring of fatigue in high strength steels with MWM-arrays. Int. J. Fatigue 2005, 27, 1644–1652. [Google Scholar] [CrossRef]
- Yu, J.; Ziehl, P.; Matta, F.; Pollock, A. Acoustic emission detection of fatigue damage in cruciform welded joints. J. Constr. Steel Res. 2013, 86, 85–91. [Google Scholar] [CrossRef]
- Nemati, N.; Metrovich, B.; Nanni, A. Acoustic emission assessment of fatigue crack growth from a transverse weld toe. J. Mater. Civ. Eng. 2016, 28, 04015103. [Google Scholar] [CrossRef]
- Mohammad, M.; Abdullah, S.; Jamaludin, N.; Innayatullah, O. Quantitative relationship between strain and acoustic emission response in monitoring fatigue damage. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 66, 43–47. [Google Scholar] [CrossRef]
- Amer, A.O.; Gloanec, A.L.; Courtin, S.; Touze, C. Characterization of fatigue damage in 304L steel by an acoustic emission method. Procedia Eng. 2013, 66, 651–660. [Google Scholar] [CrossRef]
- Gupta, S.; Ray, A.; Keller, E. Online fatigue damage monitoring by ultrasonic measurements: A symbolic dynamics approach. Int. J. Fatigue 2007, 29, 1100–1114. [Google Scholar] [CrossRef]
- Gang, T.; Wan, C.; Zhu, R.; Zhao, L. Evaluation of the fatigue life in aluminum alloy welded joint by nonlinear ultrasonic testing. Mater. Sci. Forum 2013, 762, 673–679. [Google Scholar] [CrossRef]
- Akanda, M.A.S.; Saka, M. Relationship between closure stress of small fatigue crack and ultrasonic response. J. Nondestruct. Eval. 2004, 23, 37–47. [Google Scholar] [CrossRef]
- Sagar, S.P.; Das, S.; Parida, N.; Bhattacharya, D.K. Non-linear ultrasonic technique to assess fatigue damage in structural steel. Scr. Mater. 2006, 55, 199–202. [Google Scholar]
- Sohn, H.; Lim, H.J.; Desimio, M.P.; Brown, K.; Derriso, M. Nonlinear ultrasonic wave modulation for online fatigue crack detection. J. Sound Vib. 2014, 333, 1473–1484. [Google Scholar] [CrossRef]
- Otegui, J.L.; Mohaupt, U.H.; Burns, D.J. A strain gauge technique for monitoring small fatigue cracks in welds. Eng. Fract. Mech. 1991, 40, 549–569. [Google Scholar] [CrossRef]
- Kharroub, S.; Laflamme, S.; Song, C.; Qiao, D.; Phares, B.; Li, J. Smart sensing skin for detection and localization of fatigue cracks. Smart Mater. Struct. 2015, 24, 065004. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Li, J.; Collins, W.; Bennett, C.; Laflamme, S.; Jo, H. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges. Smart Mater. Struct. 2017, 26, 085024. [Google Scholar] [CrossRef]
- Kwon, K.; Frangopol, D.M. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. Int. J. Fatigue 2010, 32, 1221–1232. [Google Scholar] [CrossRef]
- Ye, X.W.; Ni, Y.Q.; Wong, K.Y.; Ko, J.M. Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data. Eng. Struct. 2012, 45, 166–176. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Ye, X.W.; Ko, J.M. Monitoring-based fatigue reliability assessment of steel bridges: Analytical model and application. J. Struct. Eng. 2010, 136, 1563–1573. [Google Scholar] [CrossRef]
- Xu, K.; Ren, C.; Deng, Q.; Jin, Q.; Chen, X. Real-time monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing. Sensors 2018, 18, 2653. [Google Scholar] [CrossRef] [PubMed]
- Her, S.C.; Lin, C.S. Vibration analysis of composite laminate plate excited by piezoelectric actuators. Sensors 2013, 13, 2997–3013. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, C.; Li, H.; Zhang, C.; Hao, J.; Fan, S. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers. Sensors 2018, 18, 1727. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wu, Q.; Wang, L.; Huo, L.; Song, G. Monitoring of bolt looseness-induced damage in steel truss arch structure using piezoceramic transducers. IEEE Sens. J. 2018, 18, 6677–6685. [Google Scholar] [CrossRef]
- Xu, J.; Hao, J.; Li, H.; Luo, M.; Guo, W.; Li, W. Experimental damage identification of a model reticulated shell. Appl. Sci. 2017, 7, 362. [Google Scholar] [CrossRef]
- Ihn, J.B.; Chang, F. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 2004, 13, 609–620. [Google Scholar] [CrossRef]
- Grondel, S.; Moulin, E.; Delebarre, C. Lamb wave assessment of fatigue damage in aluminum plates. In Proceedings of the Smart Structures and Materials 1999: Smart Structures and Integrated Systems, Newport Beach, CA, USA, 1–4 March 1999; pp. 371–381. [Google Scholar]
- Lim, S.I.; Cui, L.; Soh, C.K. Monitoring fatigue crack growth in narrow structural components using lamb wave technique. Sens. Smart Struct. Tech. Civil Mech. Aero. Syst. 2011, 7981, 346–351. [Google Scholar]
- Ryles, M.; Ngau, F.H.; Mcdonald, I.; Staszewski, W.J. Comparative study of nonlinear acoustic and lamb wave techniques for fatigue crack detection in metallic structures. Fatigue Fract. Eng. Mater. Struct. 2010, 31, 674–683. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Lee, B.C.; Traynor, R. Fatigue crack detection in metallic structures with lamb waves and 3D laser vibrometry. Meas. Sci. Technol. 2007, 18, 727–739. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Ou, J. PZT active health monitoring for fatigue accumulative damage of concrete beam containing nano-particles for pavement. In Proceedings of the Fundamental Problems of Optoelectronics and Microelectronics III, Harbin, China, 5 March 2007; p. 65952B. [Google Scholar]
- Soh, C.K.; Lim, Y.Y. Detection and characterization of fatigue induced damage using electromechanical impedance technique. Adv. Mater. Res. 2009, 79, 2031–2034. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Soh, C.K. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique. Smart Mater. Struct. 2011, 20, 125001. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Soh, C.K. Electro-mechanical impedance (EMI)-based incipient crack monitoring and critical crack identification of beam structures. Res. Nondestruct. Eval. 2014, 25, 82–98. [Google Scholar] [CrossRef]
- Fu, W. Fatigue damage detection using smart senor. Appl. Mech. Mater. 2014, 608, 844–849. [Google Scholar] [CrossRef]
- Li, J.; Luo, Z.; Lin, L.; Li, X.; Lei, M. Quantitative health monitoring of fatigue crack initiation and propagation in aluminum specimen based on electromechanical impedance technique. Insight-Non-Destr. Test. Cond. Monit. 2012, 54, 267–271. [Google Scholar] [CrossRef]
- Chaallal, O.; Sieprawski, G.; Guizani, L. Fatigue performance of modular expansion joints. Can. J. Civ. Eng. 2006, 33, 921–932. [Google Scholar] [CrossRef]
- Dexter, R.J.; Conor, R.J.; Kaczinski, M.R. Fatigue Design of Modular Bridge Expansion Joints. National Cooperative Highway Research Program (NCHRP), Report 402; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Zhang, J.; Li, Y.; Du, G.; Song, G. Damage detection of L-shaped concrete filled steel tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sensors 2018, 18, 2171. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, D.; Zhou, L.; Huo, L.; Ma, H.; Song, G. Evaluation of the effect of fly ash on hydration characterization in self-compacting concrete (SCC) at very early ages using piezoceramic transducers. Sensors 2018, 18, 2489. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Kong, Q.; Qian, H.; Patil, D.; Lim, I.; Li, M.; Liu, D.; Song, G. Study of impact damage in PVA-ECC beam under low-velocity impact loading using piezoceramic transducers and PVDF thin-film transducers. Sensors 2018, 18, 671. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Zhou, H.; Gu, H. Multiple cracks detection in pipeline using damage index matrix based on piezoceramic transducer-enabled stress wave propagation. Sensors 2017, 17, 1812. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assessment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Venugopal, V.P.; Wang, G. Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 2015, 26, 1679–1698. [Google Scholar] [CrossRef]
- Li, J.; Hao, H.; Xia, Y.; Zhu, H.P. Damage detection of shear connectors in bridge structures with transmissibility in frequency domain. Int. J. Struct. Stab. Dyn. 2014, 14, 1350061. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, X.; Alexander, L.; Zhang, Y.; Rajamani, R.; Garg, N. Piezoelectric active sensing system for crack detection in concrete structure. J. Civ. Struct. Health Monit. 2016, 6, 129–139. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.L.; Fink, M.A. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1996, 43, 1122–1129. [Google Scholar] [CrossRef]
- Fink, M.; Prada, C. Acoustic time-reversal mirrors. Inverse Probl. 2001, 17, R1. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Wu, F.; Ruan, J.; Song, G. An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror. Smart Mater. Struct. 2016, 25, 037002. [Google Scholar] [CrossRef]
- Gangadharan, R.; Murthy, C.R.L.; Gopalakrishnan, S.; Bhat, M.R. Time reversal technique for health monitoring of metallic structure using Lamb waves. Ultrasonics 2009, 49, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Parvasi, S.M.; Ho, S.C.M.; Kong, Q.; Mousavi, R.; Song, G. Real time bolt preload monitoring using piezoceramic transducers and time reversal technique-a numerical study with experimental verification. Smart Mater. Struct. 2016, 25, 085015. [Google Scholar] [CrossRef]
- Wang, C.H.; Rose, J.T.; Chang, F.K. A synthetic time-reversal imaging method for structural health monitoring. Smart Mater. Struct. 2004, 13, 415. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. Structural Health Monitoring (SHM) of Civil Structures. Appl. Sci. 2017, 7, 789. [Google Scholar] [CrossRef]
Young’s Modulus (GPa) | Shear Modulus (GPa) | Yield Stress (MPa) | Ultimate Stress (MPa) | Density (kg·m3) | Poisson Ratio |
---|---|---|---|---|---|
200 | 76.9 | 350 | 450 | 7850 | 0.3 |
No. | Joint | Weld Side | Actuator | Sensor |
---|---|---|---|---|
1 | CB/SB1 | South | PZT1 | PZT2 |
2 | CB/SB1 | North | PZT3 | PZT4 |
3 | CB/SB2 | South | PZT5 | PZT6 |
4 | CB/SB2 | North | PZT7 | PZT8 |
5 | CB/SB3 | South | PZT9 | PZT10 |
6 | CB/SB3 | North | PZT11 | PZT12 |
7 | CB/SB4 | South | PZT13 | PZT14 |
8 | CB/SB4 | North | PZT15 | PZT16 |
Static Test | Fatigue Test | ||||||
---|---|---|---|---|---|---|---|
Initial Load (kN) | Maximum Load (kN) | Increment of Each Load (kN) | Average Load (kN) | Load Amplitude (kN) | Minimum Load (kN) | Maximum Load (kN) | Frequency (Hz) |
0.0 | 120 | 10 | 66 | ±54 | 12 | 120 | 2.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Zhang, Y.; Wang, L.; Zhang, L.; Song, G. Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers. Sensors 2018, 18, 3973. https://doi.org/10.3390/s18113973
Jiang T, Zhang Y, Wang L, Zhang L, Song G. Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers. Sensors. 2018; 18(11):3973. https://doi.org/10.3390/s18113973
Chicago/Turabian StyleJiang, Tianyong, Yaowen Zhang, Lei Wang, Liang Zhang, and Gangbing Song. 2018. "Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers" Sensors 18, no. 11: 3973. https://doi.org/10.3390/s18113973
APA StyleJiang, T., Zhang, Y., Wang, L., Zhang, L., & Song, G. (2018). Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers. Sensors, 18(11), 3973. https://doi.org/10.3390/s18113973