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Abstract: This paper presents a Gaussian process based Bayesian inference system for the realization
of intelligent surface measurement on multi-sensor instruments. The system considers the surface
measurement as a time series data collection process, and the Gaussian process is used as
mathematical foundation to establish an inferring plausible model to aid the measurement process
via multi-feature classification and multi-dataset regression. Multi-feature classification extracts and
classifies the geometric features of the measured surfaces at different scales to design an appropriate
composite covariance kernel and corresponding initial sampling strategy. Multi-dataset regression
takes the designed covariance kernel as input to fuse the multi-sensor measured datasets with
Gaussian process model, which is further used to adaptively refine the initial sampling strategy by
taking the credibility of the fused model as the critical sampling criteria. Hence, intelligent sampling
can be realized with consecutive learning process with full Bayesian treatment. The statistical nature
of the Gaussian process model combined with various powerful covariance kernel functions offer the
system great flexibility for different kinds of complex surfaces.

Keywords: Surface measurement; multi-sensor measurement; surface modelling; data fusion;
Gaussian process

1. Introduction

Surface size, geometry and texture are some of the most influential subjects in the field of precision
engineering [1]. The development of advanced machining technologies allows vast application of
complex surfaces superimposing multiple scales of feature in mechanical and optical engineering for
their superior performance in terms size reduction and versatile functions [1–3]. There is a growing
awareness of the importance of these new types of surfaces in modern science and technologies [4].
To ensure the functionality of the components, these surfaces are required to be fabricated with high
precision in terms of form accuracy in sub-micron range and surface finishing at nanometric level.
However, the geometric complexity of these advanced surfaces requires multi-scale measurement and
characterization, which imposes a lot challenges for current precision surface metrology [5,6].

Extensive research has been conducted on developing various measurement instruments to fulfill
a wide range of metrological needs [7–10], such as high precision coordinate measuring machines [7,8],
micro topographical instruments [11], electron microscopy [12], optical interferometry [13–15], etc.
Although these instruments are capable of performing accurate and efficient measurement at specific
measurement range, few of them could realize high dynamic range multi-scale measurement with
high efficiency and accuracy. Integrating several complementary sensors into an instrument therefore
becomes a promising solution to address complicated measurement tasks. For instance, integrating

Sensors 2018, 18, 4069; doi:10.3390/s18114069 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8796-5355
https://orcid.org/0000-0002-6066-7419
https://orcid.org/0000-0002-5494-722X
http://www.mdpi.com/1424-8220/18/11/4069?type=check_update&version=1
http://dx.doi.org/10.3390/s18114069
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 4069 2 of 12

tactile or scanning probe with imaging sensors is an attractive solution for precision measurement of
large scale complex surfaces with high efficiency [16,17]. However, multi-sensor measurement also
brings many challenges, such as more sophisticated measurement strategy, effective multi-sensor data
fusion, and complex uncertainty propagation. The effectiveness of multi-sensor measurement largely
depends on appropriate measurement strategy so as to guide the process to perform cooperative
measurement [5]. Model-based methods have been considered as the effective solution for multi-sensor
measurement [18–21]. Unlike the conventional sampling strategy which is normally designed prior the
actual measurement, the model-based methods consider the measurement as a time-series optimization
process such that sampling plan is adaptively determined based on the model which are established
using prior measured dataset in each iteration. Obviously, the surface modelling forms the beating
heart of the model-based sampling strategy. Although there are a large amount of literature on this
topic [22–24], the surface modelling in multi-sensor system is still a challenging task since the measured
datasets are normally embedded in different coordinate frames with different resolutions and different
levels of uncertainties. This requires the surface modelling methods be capable of efficiently fusing
multi-sensor measured datasets and hopefully be capable of performing self-assessment so as to give
some hints to the sample distribution [25].

Considering the characteristics of the multi-sensor measurement, the modelling process can
generally be divided into two steps, including data registration and fusion [26]. In the first step,
data registration algorithm is used to register all the measured dataset to a common coordinate
frame via matching process. Although there are several mature data registration algorithms, such
as iterative closest point algorithm [27], the results would inevitably include systematic errors due
to the existence of measurement errors, which is seldom considered in the measurement of complex
surfaces. In the second step, the overlapped datasets are fused to construct a unique surface model.
Advanced fusion algorithm should be capable of using the redundant data to deduce a fused result
with reduced measurement uncertainty. Data fusion have widely been studied in fields like signal
processing, computer vision, and control, and some of the fusion techniques have started to be
used in coordinate metrology. A review of current data fusion in coordinate metrology have been
presented by Wang et al. and categorized the existing methods into four groups, including repeated
measurements, stitching, range image fusion, and 3D data fusion [28]. Repeated measurement and
stitching techniques are widely used in optical interferometry for enlarging the measurement range.
The fusion is relatively simple since the datasets are obtained from same sensors and should have save
level of uncertainties. Range image and 3D data fusion is however difficult, which normally involves
six degree of registration and sophisticated data fusion process. Several data fusion methods have
been presented, such as weighted least square based fusion and scale-decomposition based fusion [28].
However, these methods are either suspicious to the geometry being modelled or difficult to perform
self-assessment of the fused result, which makes it ineffective to be served as a modelling algorithms
to perform automatic and intelligent sampling of the surface during the measurement.

Recently, Gaussian process (GP) has been used to address the multi-sensor data fusion problem [29].
GP is kind of a non-parametric Bayesian inference model which has been proved a powerful mathematical
tool to model various complex surfaces in terms of spatial covariance functions [30–32]. The statistic
nature of GP makes it capable of incorporating the measurement errors into the modelling process
and assigning credibility to the constructed model. Taking these advantages, this paper presents
a GP based Bayesian inference system for the realization of intelligent surface measurement on
multi-sensor system. The system is responsible for multi-feature classification and multi-dataset
regression. Multi-feature classification is capable of performing automatic extraction and classification
of the features of the measured surfaces so as to design appropriate covariance kernel functions and
corresponding initial sampling strategy. Multi-dataset regression is capable of optimizing the sampling
strategy via multi-sensor data fusion and on-line sampling adaptation by taking the uncertainty of
the Gaussian process model as critical sampling criteria. Hence, automatic measurement setup and
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intelligent sampling strategy can be realized with consecutive learning process with full Bayesian
treatment. Experiments are conducted to verify the effectiveness of the proposed study.

The remaining sections are outlined as follows. Section 2 states the idea that how a surface
measurement can be treated as a regression problem by taking GP as mathematical foundation.
The GP-based Bayesian inference system is then presented in Section 3 with detailed introduction
of the two main parts of the inference system, i.e., the multi-feature classification and multi-dataset
regression. Experimental work is given in Section 4 to verify the effectiveness of the proposed method,
and a conclusion is made in Section 5.

2. Preliminary

Due to the limited resolution and the error of a measurement instrument, surface measurement
can generally be formulated as a regression problem of the form, where S(x) and εx are the measured
data and the associated measurement error at x, f (x) is the evaluated surface model which is used to
give prediction to the unmeasured area of the surface. Since f (x) is generally an unknown function for
a manufactured surface, its prediction is inevitably uncertain. Considering the statistic nature of the
surface measurement, Gaussian process (GP) [31], a non-parametric Bayesian inference model, is used
to address this problem.

GP is basically a collection of random variables, any finite subset of which obeys joint Gaussian
distribution. It is generally be defined by a mean function µ(X) and a covariance matrix K(X, X) [31]

GP(X) ∼ N(µ(X), K(X, X)) (1)

where X = [x1, x2, . . . , xn] is the locations of the measured data S. In present study, the mean function
is set to be zero-offset by scaling the data appropriately such that it has an empirical mean of zero.
The covariance matrix K(X, X) is generally formulated by covariance kernel function k(xi, xj) in the
form as given by Equation (2) where (xi, xj) are the locations of arbitrary two points on the GP model.

K(X, X) =


k(x1, x1) k(x1, x2) k(x1, x3) · · · k(x1, xn)

k(x2, x1) k(x2, x2) k(x2, x3) · · · k(x2, xn)

k(x3, x1) k(x3, x2) k(x3, x3) · · · k(x3, xn)
...

...
...

. . .
...

k(xn, x1) k(xn, x2) k(xn, x3) · · · k(xn, xn)

 (2)

Hence, according to the Bayesian theory, a prediction of f ∗ at an arbitrary location x∗ on
unmeasured region of the model can be evaluated by the joint distribution of f ∗ with measured
data S as follows: [

S
f ∗

]
∼ N

(
0,

[
K(X, X) + σ2

ε I K(X, x∗)
K(X, x∗) K(x∗, x∗)

] )
(3)

where I is the identity matrix; σε is a hyperparameter representing the variance of the random part of
the measurement error. The covariance cov and the mean m∗ of the f ∗ can then be obtained by the
marginal distribution of f ∗ as given by Equations (4) and (5).

m∗ = K(x∗, X)(K(X, X) + σ2
ε I)
−1

Z (4)

cov( f ∗) = K(x∗, x∗)− K(x∗, X)(K(X, X) + σ2
ε I)
−1

K(X, x∗) (5)

It is seen that the GP inference is determined by the covariance forms which represents the
covariance of the points on the model. Hence the construction of appropriate covariance kernel
function is the core of GP modelling. Figure 1 shows an example of GP modelling and prediction.
The crosses are the measured points, in which x is the locations and y is the corresponding measured
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value. The line is the established GP model by taking the measured point as training data. Two
predictions are made at unmeasured location x1 and x2. µ1 and µ2 are the predictions, and the σ1 and
σ2 are their evaluated uncertainties.
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Figure 1. An example of GP modelling and prediction.

3. Gaussian Process Based Bayesian Inference System

3.1. System Configuration

Figure 2 shows the schematic diagram of the GP based Bayesian inference system (GP-BIS),
which is mainly composed of four modules, including preprocessing, multi-feature classification,
multi-dataset regression, and surface characterization. In preprocessing, the characteristics of the
involved measurement sensors are analyzed and calibrated, including measurement range, resolution,
speed, errors, etc. The designed models of the measured surfaces are transformed to a unified format
and the properties of the measured parts such as hard and soft materials, and the required specifications,
e.g., form accuracy and roughness, are loaded.
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Taking the information of the preprocessing as input, multi-feature classification module
extracts and classifies the geometric features of the designed models so as to design an appropriate
covariance kernel functions for GP modelling. An initial measurement strategy is also loaded from
a pre-established class database. The class database is responsible for collecting appropriate class of
measurement strategies for specific tasks with respect to certain types of surface features based on
the prior knowledge. If the contained surface features and the required specifications are successfully
classified, the measurement strategy will be automatically loaded. Otherwise, manual design of the
sampling strategy is required and a new class will be uploaded to the database so that they can be
successfully classified in future. A certain class in the database would contain necessary information
for the setup of the measurement instruments, including the types of the sensors and the associated
parameters which will be used during measurement. For contact types of sensors, such as trigger
probe, the initial sampling patterns may be also included for further optimization in GP modelling
process. It is emphasized that the sampling strategies produced in this stage are only initial plans
which require further optimization. Multi-dataset regression module is responsible further optimizing
the initial measurement strategy. This is carried in two steps. Firstly, taking the designed covariance
kernel function as input, GP model is established to fuse the datasets obtained from different sensors
to obtain a unique measured surface. Secondly, both the bias and the uncertainty of the fused surface
model is used to qualify the reliability of the measured surface, and is served as critical sampling
criteria to perform adaptive sampling until reaching desired reliability. During the process, a virtual
instrument simulator [33] can also be developed to analyze the error distribution of each measured
data by taking the sensor characteristics and the adopted sampling strategy as input. The analyzed
error distribution of each measured data can be used to aid the surface modelling and uncertainty
analysis. At the end, the accepted surface model is then used to perform scale-decomposition, feature
segmentation, or pattern analysis to fully characterize the quality of the machined surface in different
scales [2].

3.2. Design of Covariance Kernel via Multi-Feature Classification

Covariance kernel is a function used to describe the spatial correlation of a geometric feature in GP
modelling, and hence the design of a covariance kernel should be in accordance to the characteristics of
the measured surface. For a machined surface with known CAD model, the characteristics of the surface
topography, such as smoothness, roughness, and periodicity can be specified and classified easily.
In GP-BIS, such knowledge is the key to design covariance kernel functions and would significantly
improve the measurement efficiency and accuracy. There already exists various covariance kernel
functions which possess variety of geometric characteristics [31,34]. Table 1 summarizes currently
widely used kernel functions and their characteristics, including white noise (WN), linear (LIN), square
exponential (SE), periodic (PER), Matérn class (MC), rational quadratic (RQ), neural network (NN),
and piecewise polynomial (PP). Different kernel functions can be selected to study different kinds of
surfaces in accordance with the characteristics. Currently, the basic kernel functions are pre-assigned
to different types of topographies based on the characteristics as listed in Table 1. For instance, SE is
infinitely differentiable and hence is suitable in studying smooth surface, while PER would be a good
choice for the surfaces possessing periodic features.

For some surfaces containing multiple features at different scales, a single covariance kernel may
not be flexible enough to describe the spatial correlation. In such case, the listed kernel functions can
be served as base functions to form various composite kernel functions by combining them together.
Figure 3 shows the design of the composite kernel functions. It starts from decomposing the geometric
feature of a surface in different scales. Appropriate kernels are selected for the decomposed features
in each scale and then a composite kernel function can be formed by simply combining the selected
kernels. For instance, if a smooth surface is superimposed by periodic micro-structures, a combination
of SE and PER can be designed to model two types of features simultaneously. For some scenario, even
the decomposed feature in a scale may be complex that cannot be appropriately described by a single
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kernel. In such case, besides summation, multiplication among the kernels can also be performed to
further enhance the flexibility of the model. Kernel summation can be used to simultaneously model
different types of spatial correlation while kernel multiplication can be used enhance the flexibility of a
kernel for modelling a complex spatial correlation. The fitness of the designed kernel function should
well balance the model fitness and complexity which can be qualified by the Bayesian information
criterion [34]. This offers GP a great flexibility in modelling different types of complex surfaces by
combining kernel summation and multiplication.

Table 1. Geometric characteristics of 8 base kernel functions.

Geometric Characteristic Base Function Gp Prior

WN White noise
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ଵܺ  and ܺଶ  are the locations of the measured datasets ܼଵ  and ܼଶ  from two different sensors, ܭ( ଵܺ, ଵܺ) and ܭ(ܺଶ, ܺଶ) are the auto-covariances of ଵܺ and ܺଶ respectively, ܭ( ଵܺ, ܺଶ) is the cross-
covariance between the  ଵܺ and ܺଶ, ߪఌଵ and ߪఌଶ are the hyperparameters representing the variance 
of the random part of the ଵܺ and ܺଶ respectively.  

One of immediate advantage of above multi-dataset regression is that it preserves the full 
Bayesian inference during the fusion process so that credibility can still be assigned to the fused 
model using the covariance of the established GP model as given in Equation(7). Hence, the 
measurement process can generally be considered as a time-series learning process that the credibility 
of the fused model can be served as critical sampling criterion to perform on-line sampling 
adaptation. As shown in Figure 2, it starts from extracting a set of data from the surface using the 
initial sampling strategy obtained in multi-feature classification module, and multi-dataset 
regression is then performed to establish a fused GP from the measured datasets and evaluate the 
covariance of the model. If the covariance exceeds a pre-specified threshold, it is considered that the 
sampling is insufficient to lean the surface geometry accurately and more data are sampled at the 
regions where the maximum covariance is located. By such a consecutive learning and adaptive 
sampling process, a measured surface model with acceptable reliability can be obtained efficiently.  

4. Experimental Study 

4.1. Computer Simulation on Surface Modelling 

The proposed GP-BIS has been implemented in MATLAB 2018a (from The MathWorks, Natick, 
USA) and tested on several surfaces with variety of complexities. Firstly, case studies have been 
conducted on multiple features enriched complex surfaces to study the capability of the GP 
modelling. A set of 121 × 121 grid points are extracted from the designed surface in each case study, 
and are added Gaussian noise with 2 μm standard deviation to simulate the measurement error. Table 
2 shows complex surfaces which are made of a parabola and different scales of sinusoidal waves. It 
starts from a simple parabola given by Equation(10). Since the surface is generally a simple smooth 
surface, GP-BIS selects the SE as the covariance kernel functions. It is clearly seen from the residual 
map that the surface has been accurately modelled and the contained random errors has been 
successfully rejected. This can be explained from the principle of the GP which is basically a process 
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One of immediate advantage of above multi-dataset regression is that it preserves the full 
Bayesian inference during the fusion process so that credibility can still be assigned to the fused 
model using the covariance of the established GP model as given in Equation(7). Hence, the 
measurement process can generally be considered as a time-series learning process that the credibility 
of the fused model can be served as critical sampling criterion to perform on-line sampling 
adaptation. As shown in Figure 2, it starts from extracting a set of data from the surface using the 
initial sampling strategy obtained in multi-feature classification module, and multi-dataset 
regression is then performed to establish a fused GP from the measured datasets and evaluate the 
covariance of the model. If the covariance exceeds a pre-specified threshold, it is considered that the 
sampling is insufficient to lean the surface geometry accurately and more data are sampled at the 
regions where the maximum covariance is located. By such a consecutive learning and adaptive 
sampling process, a measured surface model with acceptable reliability can be obtained efficiently.  

4. Experimental Study 

4.1. Computer Simulation on Surface Modelling 

The proposed GP-BIS has been implemented in MATLAB 2018a (from The MathWorks, Natick, 
USA) and tested on several surfaces with variety of complexities. Firstly, case studies have been 
conducted on multiple features enriched complex surfaces to study the capability of the GP 
modelling. A set of 121 × 121 grid points are extracted from the designed surface in each case study, 
and are added Gaussian noise with 2 μm standard deviation to simulate the measurement error. Table 
2 shows complex surfaces which are made of a parabola and different scales of sinusoidal waves. It 
starts from a simple parabola given by Equation(10). Since the surface is generally a simple smooth 
surface, GP-BIS selects the SE as the covariance kernel functions. It is clearly seen from the residual 
map that the surface has been accurately modelled and the contained random errors has been 
successfully rejected. This can be explained from the principle of the GP which is basically a process 
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3.3. Sampling Strategy Adaptation via Multi-Dataset Regression

One of the important technical merits of multi-sensor measurement is capability in improving
the quality of the measurement results via data fusion process. Considering that all the measured
datasets are from a common surface, they should be inherently correlated. Hence, besides the spatial
correlation within each dataset, the correlation across the datasets should also be taken into account.
In GP modelling, this can be formulated by modelling the auto-covariances and cross-covariances
among the measured datasets [34]. For arbitrary two given dataset, the mean and the covariance can
be given by Equations (6) and (7).

m∗ = [K(x∗, X1), K(x∗, X2)]K(X12, X12)[Z1, Z2]
T (6)

cov( f ∗) = K(x∗, x∗)− [K(x∗, X1), K(x∗, X2)]K(X12, X12)
−1[K(X1, x∗), K(X2, x∗)] (7)

where

K(X12, X12) =

[
K(X1, X1) + σ2

ε1I K(X1, X2)

K(X1, X2) K(X2, X2) + σ2
ε2I

]
(8)

X1 and X2 are the locations of the measured datasets Z1 and Z2 from two different sensors, K(X1, X1)

and K(X2, X2) are the auto-covariances of X1 and X2 respectively, K(X1, X2) is the cross-covariance
between the X1 and X2, σε1 and σε2 are the hyperparameters representing the variance of the random
part of the X1 and X2 respectively.

One of immediate advantage of above multi-dataset regression is that it preserves the full Bayesian
inference during the fusion process so that credibility can still be assigned to the fused model using the
covariance of the established GP model as given in Equation (7). Hence, the measurement process can
generally be considered as a time-series learning process that the credibility of the fused model can be
served as critical sampling criterion to perform on-line sampling adaptation. As shown in Figure 2,
it starts from extracting a set of data from the surface using the initial sampling strategy obtained
in multi-feature classification module, and multi-dataset regression is then performed to establish a
fused GP from the measured datasets and evaluate the covariance of the model. If the covariance
exceeds a pre-specified threshold, it is considered that the sampling is insufficient to lean the surface
geometry accurately and more data are sampled at the regions where the maximum covariance is
located. By such a consecutive learning and adaptive sampling process, a measured surface model
with acceptable reliability can be obtained efficiently.

4. Experimental Study

4.1. Computer Simulation on Surface Modelling

The proposed GP-BIS has been implemented in MATLAB 2018a (from The MathWorks, Natick,
USA) and tested on several surfaces with variety of complexities. Firstly, case studies have been
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conducted on multiple features enriched complex surfaces to study the capability of the GP modelling.
A set of 121 × 121 grid points are extracted from the designed surface in each case study, and are
added Gaussian noise with 2 µm standard deviation to simulate the measurement error. Table 2 shows
complex surfaces which are made of a parabola and different scales of sinusoidal waves. It starts
from a simple parabola given by Equation (10). Since the surface is generally a simple smooth surface,
GP-BIS selects the SE as the covariance kernel functions. It is clearly seen from the residual map
that the surface has been accurately modelled and the contained random errors has been successfully
rejected. This can be explained from the principle of the GP which is basically a process to find a
correlation that best explains the spatial distribution of the sampled points. Hence, the uncorrelated
part, i.e., the added random errors will be considered as measurement errors, which is incorporated
in the modelling process by σεI in Equation (3). In experiment, σε has been evaluated to be 1.99 µm
which is very close to the true value.

z = −0.3(0.0625x2 + 0.0625y2)x, y ∈ [−10, 10] mm (9)

Table 2. GP modelling of various complex surfaces.

Designed Complex Surfaces Covariance Kernel Functions Residual Maps
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accuracy of the established GP model. Intuitively, considering the prior knowledge of three different 
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Table 2 show that SE + PER + PER also achieved reasonably good result while it is still not compatible 
with SE + PER + MC. This is due to the reason that, after the use of SE + PER, the scale of the remaining 
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Then, a sinusoidal wave with amplitude 0.4 mm and period 5 mm in both two X and Y directions 
is superimposed to the parabola to make the surface more complex. The designed surface now has 
two radically different topographies in two different scales. Hence, in the multi-classification process, 
the GP-BIS identifies two different types of topographies and a new composite kernel functions has 
been designed using SE and PER (see Table 1). The measurement component ߪఌ has been identified 
to be 2.18 μm and hence the surface has also been accurately modelled. To further improve the 
complexity of the surface, another sinusoidal wave with amplitude 0.2 mm and period 1 mm in both 
two X and Y directions is further superimposed to the surface designed in second case study. GP-BIS 
identifies the third different topographies, and a three level of composite kernel SE + PER + MC has 
been designed. The measurement error part is identified to be 2.23 μm, which further verifies the 
accuracy of the established GP model. Intuitively, considering the prior knowledge of three different 
features, SE + PER + PER seems also a good choice for the surface. The results, i.e. the last row of 
Table 2 show that SE + PER + PER also achieved reasonably good result while it is still not compatible 
with SE + PER + MC. This is due to the reason that, after the use of SE + PER, the scale of the remaining 
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Then, a sinusoidal wave with amplitude 0.4 mm and period 5 mm in both two X and Y directions
is superimposed to the parabola to make the surface more complex. The designed surface now has
two radically different topographies in two different scales. Hence, in the multi-classification process,
the GP-BIS identifies two different types of topographies and a new composite kernel functions has
been designed using SE and PER (see Table 1). The measurement component σε has been identified to
be 2.18 µm and hence the surface has also been accurately modelled. To further improve the complexity
of the surface, another sinusoidal wave with amplitude 0.2 mm and period 1 mm in both two X and
Y directions is further superimposed to the surface designed in second case study. GP-BIS identifies
the third different topographies, and a three level of composite kernel SE + PER + MC has been
designed. The measurement error part is identified to be 2.23 µm, which further verifies the accuracy
of the established GP model. Intuitively, considering the prior knowledge of three different features,
SE + PER + PER seems also a good choice for the surface. The results, i.e., the last row of Table 2
show that SE + PER + PER also achieved reasonably good result while it is still not compatible with
SE + PER + MC. This is due to the reason that, after the use of SE + PER, the scale of the remaining
feature may be affected by the modelling residual. Hence more flexible MC would be better choice in
modelling the remaining part which is a combination of the third scales of feature and the modelling
residual of the two larger scales of features.

4.2. Actual Application on Multi-Sensor Instrument

The proposed GP-BIS has applied to an instrument equipped with a touch trigger probe and a
laser scanner. Trigger probe is one of typical sensors which can achieve high accurate measurement
with generally very low efficiency. The laser scanner, on the other hand, is capable of realizing high
efficient measurement while with relatively low accuracy. For the measurement of complex surfaces,
more intelligent multi-sensor measurement strategy is required to achieve both high accurate and high
efficient measurement. The probing error and the linearity of the laser scanner are identified to be
0.9 µm (1σ, normal) and 15.2 µm (uniform).

Measurement has been conducted on a machined workpiece which is designed by a peak function
defined by Equation (10).

z = 6
(
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)2 · exp
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16
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3 exp

(
−
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16 + 1
)2 −

( y
16
)2
)

, x, y ∈ [−40, 40]
(10)

Figure 4a shows the machined workpiece. The measurement has been conducted in four steps.
In the first step, touch trigger probe is used to extract a set of dense points, i.e., 6456 points with
uniform spacing over the entire surface. The results are considered sufficiently accurate and is served
as benchmarking to verify other more efficient measurement. Secondly, the laser scanner is used to
measure the surface with high density. The measurement is very fast while the accuracy would be low.
Thirdly, touch trigger probe is used to perform adaptive sampling based on multi-dataset regression
module. Since there is only a single data source, the multi-dataset regression becomes a single GP
modelling. It has been noted in published literature [18,32] that GP based adaptive sampling has
superior performance than other sampling methods in sampling complex surfaces. Hence, the results
are also used as benchmarking to examine the efficiency of the proposed GP-BIS. Fourthly, by taking
the measurement result of the laser scanner as input, adaptive sampling is conducted using touch
trigger probe. Hence, in the multi-dataset regression, the datasets obtained by the laser scanner and the
trigger probe should be fused to establish a GP model in each adaptation. Hence, the GP-BIS becomes
producing multi-sensor measurement strategy in the forth experiment.

Figure 4b,c shows the evaluated results of benchmarking and multi-sensor fused dataset by using
best fitting method [35] which is one of the typical methods in form characterization of complex
surfaces. It performs the form characterization of the measured dataset by best fitting the dataset to
the corresponding designed surface via rigid body transformation, and the error of the dataset can
be evaluated by projecting it onto the designed surface. The measured number of points and the
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root-mean-square (RMS) of the height error are used to characterize the efficiency and accuracy of
different measurement methods. A summary of the results is given in Table 3.

Although laser scanner has extremely good measurement efficiency, the accuracy is very low
comparing with touch trigger probe. With the aid of the GP-BIS, the trigger probe can perform adaptive
sampling, and the efficiency has been dramatically improved and the accuracy has been preserved at
the same time. With the aid of the laser scanner, multi-dataset regression is used to further improve
the measurement efficiency around 40% comparing with pure triggering measurement. The results
demonstrated the capability of the proposed GP-BIS in enhancing the performance of the multi-sensor
instrument in measuring complex surfaces.
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Table 3. A summary of the actual measurement result.

Measurement Strategy Number of Points RMS (µm)

Trigger probe dense measurement 6456 5.9
Laser scanner dense measurement more than 40,000 11.2

Trigger probe adaptive measurement 493 5.7
Multi-sensor adaptive measurement 281 5.5

5. Conclusions

This paper presented a GP-BIS for realizing automatic and intelligent surface measurement on
multi-sensor instruments. The system considers the surface measurement as a consecutive learning
process and makes use of Gaussian process to model the process based on two key modules including
multi-feature classification and multi-dataset regression. The system has been implemented and
applied to produce multi-sensor measurement strategy for an instrument which is equipped with
a trigger probe and a laser scanner. The results shows that the performance of the multi-sensor
instrument has been dramatically improved around 40% in terms of measurement efficiency while
maintains the measurement accuracy at the save level. The proposed study should provide new insight
for the realization of intelligent measurement of complex surfaces. One of the problem of GP modelling
is the high computation complexity which would lead huge time for the computation when large
number of data is involved in the inference process. Future work considers the implementation of
approximated GP inference with the aid of graphics processing unit (GPU) for the practical use of the
proposed method especially in manipulating vision based measurement dataset.
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