Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. The Design and Installation of LFBG Sensors
2.1. Introduction of the LFBG Strain Sensor
2.2. Length Design of LFBG Sensor Installed on the Strand
2.3. Installation Procedure of the LFBG Sensor
- (1)
- Mark the corresponding region on the corrugated pipe. Then let the strands pass through the marked corrugated pipe.
- (2)
- Peel the marked region of the corrugated pipe to expose the inner tendon. Clean the surface of the exposed tendons.
- (3)
- Install the restraining blocks and tighten the bolts.
- (4)
- Attach the LFBG sensors on the surface of the strands. The attachment position of the sensor on each outer strand should be pointed at and close to the core strand.
- (5)
- Let the optical cable pass through a protective sleeve and connect to the sensors.
- (6)
- Connect the protective sleeve to the corrugated pipe and use epoxy resin to seal off the contact area. Then the protection sleeve inside which the optical cable is placed can be extended away from the corrugated pipe to the nearest vent hole or drain hole.
3. The Calculation Method for Itemized Prestress Losses Based on the LFBG Measurements
3.1. The Itemized Prestress Losses
3.2. The Case of Pre-Tensioning
3.3. The Case of Post-Tensioning
4. Verification for The Prestress Loss Monitoring Using LFBG Sensor: Experiment
4.1. Pre-Tensioning Test
4.1.1. Test Design
4.1.2. Results and Analysis
4.2. Post-Tensioning Test
4.2.1. Test Design
4.2.2. Results and Analysis
5. Verification for the Prestress Loss Monitoring Using LFBG: In-Site Monitoring
5.1. Member Fabrication and Sensor Placement
5.2. Results and Analysis
6. Conclusions
- (1)
- An appropriate gauge length for LFBG sensor is at least 25 cm for prestress loss monitoring in the strand because the gauge can obtain the average strain by covering the six helical wires.
- (2)
- Severe frictions between the strand and duct and the grout crack can bring accidental damage to LFBG sensor. The proposed installation method can prevent the LFBG sensor from these ruptures effectively occurring at not only tendon tensioning but also structure loading. The durability and stability of the LFBG sensor are proved to be better than those of traditional FSGs.
- (3)
- The proposed calculation method acquired the itemized prestress losses at different stages of applying pretension accurately. Our results from the experiments including the cases of pre-tensioning and post-tensioning showed that the losses calculated from the measured strains of the LFBG sensors were more precise compared to those calculated from traditional FSGs. Moreover, from the in-site monitoring, we obtained the uneven stress distribution in different strands, measured the immediate losses at tensioning, and traced the time-dependent losses for 90 days. Thus, this calculation method can be easy to apply in the itemized prestress losses monitoring.
- (4)
- Compared with the traditional electrical sensor, the LFBG sensor is proved to have better durability for long-term prestress loss monitoring in practice, especially in the case of grout cracking and aggressive environment.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nawy, E. Prestressed Concrete: A Fundamental Approach, 5th ed.; Pearson Education Asia Ltd.: Singapore; Chongqing University Press: Chongqing, China, 2006; pp. 59–81. [Google Scholar]
- Smith, J. Capacity of Prestressed Concrete Containment Vessels with Prestressing Loss; Sandia Report; Sandia National Laboratories: Albuquerque, NM, USA, 2001.
- Mo, Y.L.; Hwang, W.L. The effect of prestress losses on the seismic response of prestressed concrete frames. Comput. Struct. 1996, 59, 1013–1020. [Google Scholar] [CrossRef]
- Woodward, R.J.; Williams, F.W. Collapse of Ynys-y-Gwas Bridge, West Glamorgan. Proc. Inst. Civ. Eng. 1988, 84, 635–669. [Google Scholar] [CrossRef]
- Sumitro, S.; Jarosevic, A.; Wang, M.L. Elasto-magnetic sensor utilization on steel cable stress measurement. In Proceedings of the 1st Fib Congress, Osaka, Japan, 13–19 October 2002; pp. 13–19. [Google Scholar]
- Cho, K.; Park, S.Y.; Cho, J.R.; Kim, S.T.; Park, Y.H. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures. Sensors 2015, 15, 14079–14092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappello, C.; Zonta, D.; Laasri, H.A.; Glisic, B.; Wang, M. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring. Sensors 2018, 18, 466. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.L.; Wissawapaisal, K. Application of Wigner-Ville Transform to Evaluate Tensile Forces in Seven-Wire Prestressing Strands. J. Eng. Mech. 2001, 127, 1206–1214. [Google Scholar] [CrossRef]
- Chen, R.H.L.; Wissawapaisal, K. An ultrasonic method for measuring tensile forces in a seven-wire prestressing strand. AIP Conf. Proc. 2002, 615, 1295. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J. Vertical prestressing loss in the bos girder of long-span PC continuous bridges. China Civ. Eng. J. 2006, 39, 78–84. [Google Scholar]
- Xiao, Y.; Zhang, Y.; Lu, J.; Liu, Y.; Cheng, W. Experimental analysis on pre-stress friction loss of crushed limestone sand concrete beams. Appl. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Kim, J.T.; Yun, C.B.; Ryu, Y.S.; Cho, H.M. Identification of prestress-loss in PSC beams using modal information. Struct. Eng. Mech. 2004, 17, 467–482. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, J.H.; Hong, D.S.; Cho, H.M.; Na, W.B. Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges. Smart Struct. Syst. 2009, 5, 81–94. [Google Scholar] [CrossRef]
- Ho, D.D.; Kim, J.T.; Stubbs, N.; Park, W.S. Prestress-force estimation in PSC girder using modal parameters and system identification. Adv. Struct. Eng. 2012, 15, 997–1012. [Google Scholar] [CrossRef]
- Yang, Y.; Myers, J.J. Prestress loss measurements in Missouri’s first fully instrumented HPC bridge. In Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–13 January 2005; pp. 1–19. [Google Scholar]
- Guo, X.; Liu, D.; Huang, P.; Zheng, X. Prestress loss of CFL in a prestressing process for strengthening RC beams. Int. J. Polym. Sci. 2017, 2017, 3832468. [Google Scholar] [CrossRef]
- Bartoli, I.; Salamone, S.; Phillips, R.; Scalea, F.L.; Sikorsky, C.S. Use of interwire ultrasonic leakage to quantify loss of prestress in multiwire tendons. J. Eng. Mech. 2011, 137, 324–333. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Xi, P.S. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System. Sensors 2018, 18, 491. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, G.S.; Hulsey, J.L. Monitoring Bridge Dynamic Responses Using Fiber Bragg Grating Tiltmeters. Sensors 2017, 17, 2390. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.T.; Guo, Y.X.; Chen, X.F.; Zhang, C.R. Cable Force Health Monitoring of Tongwamen Bridge Based on Fiber Bragg Grating. Appl. Sci. 2017, 7, 384. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Song, G.; Zhu, Z.; Du, J. Scour monitoring system for subsea pipeline based on active thermometry: Numerical and experimental studies. Sensors 2013, 13, 1490–1509. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Ho, S.C.M.; Song, G.; Cai, C.S. Scour Monitoring System Using Fiber Bragg Grating Sensors and Water-Swellable Polymers. ASCE J. Bridge Eng. 2017, 22, 04017029. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Song, G. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe. Smart Mater. Struct. 2016, 25, 045017. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Ren, L.; Jiao, W.; Zou, P.; Song, G. An improved negative pressure wave method for natural gas pipeline leak location using FBG based strain sensor and wavelet transform. Math. Probl. Eng. 2013, 2013, 278794. [Google Scholar] [CrossRef]
- Ho, S.C.M.; Ren, L.; Li, H.N.; Song, G. A fiber Bragg grating sensor for detection of liquid water in concrete structures. Smart Mater. Struct. 2013, 22, 055012. [Google Scholar] [CrossRef]
- Hou, Q.; Jiao, W.; Ren, L.; Cao, H.; Song, G. Experimental study of leakage detection of natural gas pipeline using FBG based strain sensor and least square support vector machine. J. Loss Prev. Process. Ind. 2014, 32, 144–151. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, H.W.; Park, Y.H.; Yang, I.H.; Kim, Y.S. FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon. Adv. Struct. Eng. 2012, 15, 907–917. [Google Scholar] [CrossRef]
- Kim, S.T.; Park, Y.H.; Park, S.Y.; Cho, K.; Cho, J.R. A Sensor-Type PC Strand with an Embedded FBG Sensor for Monitoring Prestress Forces. Sensors 2015, 15, 1060–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Kim, S.T.; Cho, J.R.; Park, Y.H. Estimation of tendon force distribution in prestressed concrete girders using smart strand. Appl. Sci. 2017, 7, 1319. [Google Scholar] [CrossRef]
- Shin, K.J.; Lee, S.C.; Kim, Y.Y.; Kim, J.M.; Park, S. Construction condition and damage monitoring of post-Tensioned PSC girders using embedded sensors. Sensors 2017, 17, 1843. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, C.M.; Choi, S.Y.; Lee, B.Y. Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands. Sensors 2017, 17, 1654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; He, J.; Chen, G.; Ou, J. A smart steel strand for the evaluation of prestress loss distribution in post-tensioned concrete structures. J. Intell. Mater. Syst. Struct. 2009, 20, 1901–1912. [Google Scholar] [CrossRef]
- Lan, C.; Zhou, Z.; Ou, J. Full-scale prestress loss monitoring of damaged RC structures using distributed optical fiber sensing technology. Sensors 2012, 12, 5380–5394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, Z.S. Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring. Struct. Health Monit. 2008, 7, 143–156. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.S. Performance Evaluation of PPP-BOTDA-Based Distributed Optical Fiber Sensors. Int. J. Distrib. Sens. Netw. 2012, 2012, 414692. [Google Scholar] [CrossRef]
- Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors. Smart Mater. Struct. 2016, 25, 095051. [Google Scholar] [CrossRef]
- Perry, M.; Yan, Z.; Sun, Z.; Zhang, L.; Niewczas, P.; Johnston, M. High Stress monitoring of prestressing tendons in nuclear concrete vessels using fiber optic sensors. Nucl. Eng. Des. 2014, 268, 35–40. [Google Scholar] [CrossRef]
- Majda, P.; Skrodzewicz, J. A modified creep model of epoxy adhesive at ambient temperature. Int. J. Adhes. Adhes. 2009, 29, 396–404. [Google Scholar] [CrossRef]
- Li, E.; Xi, J.; Chicharo, J.F.; Liu, T.; Li, X.; Jiang, J.; Li, L.; Wang, Y.; Zhang, Y. The Experimental evaluation of FBG sensor for strain measurement of prestressed steel strand. In SPIE Smart Structures, Devices, and Systems II; SPIE: Bellingham, WA, USA, 2005; Volume 5649, pp. 463–469. [Google Scholar]
- Li, S.; Wu, Z. Development of distributed long-gage fiber optic sensing system for structural health monitoring. Struct. Health Monit. 2007, 6, 133–145. [Google Scholar] [CrossRef]
- Wu, Z. Durability Study of Fiber Bragg Grating Strain Sensor Packaged with Fiber in Structural Health Monitoring. Master’s Thesis, Southeast University, Nanjing, China, 27 May 2013. [Google Scholar]
- Hong, W.; Wu, Z.S.; Yang, C.Q.; Wan, C.; Wu, G. Investigation on the damage identification of bridges using distributed long-gauge dynamic macrostrain response under ambient excitation. J. Intell. Mater. Syst. Struct. 2012, 23, 85–103. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.S. Dynamic displacement monitoring of flexural structures with distributed long-gage macro-strain sensors. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.S.; Ren, Z.D. Dynamic Method of Neutral Axis Position Determination and Damage Identification with Distributed Long-Gauge FBG Sensors. Sensors 2017, 17, 411. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for Design of Prestressed Concrete Structures; China Architecture & Building Press: Beijing, China, 2016.
Region | F/kN | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 156 | 149.8 |
---|---|---|---|---|---|---|---|---|---|---|
R1 | E11 | 817 | 1487 | 2189 | 2879 | 3540 | 4201 | 4791 | 5246 | 5053 |
E12 | 520 | 1042 | 1656 | 2331 | 3045 | 3734 | 4400 | 5013 | 4708 | |
E13 | 720 | 1314 | 1971 | 2670 | 3336 | 3978 | 4583 | 5124 | 4936 | |
E14 | 671 | 1291 | 1979 | 2682 | 3381 | 4055 | 4692 | 5244 | 5080 | |
E15 | 795 | 1576 | 2305 | 3014 | 3707 | 4374 | 5006 | 5550 | 5271 | |
E16 | 716 | 1348 | 2028 | 2714 | 3393 | 4044 | 4665 | 5214 | 5095 | |
Average strain(FSG) * | 707 | 1343 | 2021 | 2715 | 3400 | 4064 | 4689 | 5232 | 5024 | |
S1 | 713 | 1426 | 2129 | 2808 | 3524 | 4237 | 4940 | 5482 | 5270 | |
R2 | E21 | 695 | 1353 | 2013 | 2674 | 3356 | 3991 | 4593 | 5156 | 4929 |
E22 | 616 | 1254 | 1903 | 2553 | 3231 | 3857 | 4452 | 5004 | 4725 | |
E23 | 753 | 1420 | 2076 | 2728 | 3410 | 4035 | 4631 | 5184 | 4976 | |
E24 | 616 | 1211 | 1825 | 2456 | 3136 | 3753 | 4349 | 4892 | 4684 | |
E25 | 705 | 1385 | 2062 | 2740 | 3460 | 4105 | 4727 | 5279 | 5149 | |
E26 | 687 | 1329 | 1973 | 2616 | 3302 | 3911 | 4500 | 5031 | 4828 | |
Average strain(FSG) | 678 | 1325 | 1975 | 2628 | 3316 | 3942 | 4542 | 5091 | 4882 | |
S2 | 685 | 1388 | 2035 | 2776 | 3425 | 4077 | 4814 | 5238 | 5028 | |
R3 | E31 | 707 | 1382 | 2080 | 2760 | 3384 | 4060 | 4716 | 5236 | 5014 |
E32 | 683 | 1359 | 2063 | 2756 | 3391 | 4073 | 4739 | 5265 | 5044 | |
E33 | 705 | 1318 | 1959 | 2592 | 3187 | 3824 | 4456 | 4946 | 4826 | |
E34 | 737 | 1425 | 2129 | 2820 | 3465 | 4135 | 4801 | 5308 | 4986 | |
E35 | 621 | 1298 | 2004 | 2698 | 3350 | 4020 | 4690 | 5202 | 4979 | |
E36 | 694 | 1379 | 2090 | 2788 | 3447 | 4120 | 4800 | 5307 | 5082 | |
Average strain(FSG) | 691 | 1360 | 2054 | 2736 | 3371 | 4039 | 4700 | 5211 | 4989 | |
S3 | 711 | 1407 | 2064 | 2764 | 3500 | 4186 | 4900 | 5356 | 5128 |
F/kN | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 156 | 149.8 | |
---|---|---|---|---|---|---|---|---|---|---|
True Stress/MPa | 143.0 | 285.7 | 428.6 | 571.4 | 714.3 | 857.1 | 1000.0 | 1114.3 | 1070.0 | |
R1 | Stress(FSG) */MPa | 141.4 | 268.6 | 404.2 | 543.0 | 680.0 | 812.8 | 937.8 | 1046.4 | 1004.8 |
Error/% | −1.1 | −6.0 | −5.7 | −4.8 | −4.6 | −6.2 | −5.9 | −6.1 | −6.1 | |
Stress(LFBG) **/MPa | 142.6 | 285.2 | 425.8 | 561.6 | 704.8 | 847.4 | 988.0 | 1096.4 | 1054.0 | |
Error/% | −0.3 | −0.2 | −0.7 | −1.7 | −1.3 | −1.1 | −1.2 | −1.6 | −1.5 | |
R2 | Stress(FSG)/MPa | 135.6 | 265.0 | 395.0 | 525.6 | 663.2 | 788.4 | 908.4 | 1018.2 | 976.4 |
Error/% | −5.0 | −7.3 | −7.8 | −8.0 | −7.2 | −8.0 | −9.2 | −8.6 | −8.7 | |
Stress(LFBG)/MPa | 137.0 | 277.6 | 407.0 | 555.2 | 685.0 | 815.4 | 962.8 | 1047.6 | 1005.6 | |
Error/% | −4.0 | −2.8 | −5.0 | −2.8 | −4.1 | −4.9 | −3.7 | −6.0 | −6.0 | |
R3 | Stress(FSG)/MPa | 138.2 | 272.0 | 410.8 | 547.2 | 674.2 | 807.8 | 940.0 | 1042.2 | 997.8 |
Error/% | −3.5 | −4.8 | −4.2 | −4.2 | −5.6 | −5.8 | −6.0 | −6.5 | −6.7 | |
Stress(LFBG)/MPa | 142.2 | 281.4 | 412.8 | 552.8 | 700 | 837.2 | 980.0 | 1071.2 | 1025.6 | |
Error/% | −0.6 | −1.5 | −3.7 | −3.3 | −2.3 | −1.9 | −2.0 | −3.9 | −4.1 |
Time/Hour | 0 | 1 | 2 | 3 | 12 | 24 | 48 | |
---|---|---|---|---|---|---|---|---|
F/KN | 149.8 | 149.55 | 149.35 | 149.24 | 149.1 | 148.95 | 148.9 | |
R1 | E11 | 5053 | 5046 | 5040 | 5038 | 5032 | 5015 | 5009 |
E12 | 4708 | 4697 | 4689 | 4685 | 4674 | 4662 | 4656 | |
E13 | 4936 | 4928 | 4921 | 4920 | 4918 | - | - | |
E14 | 5080 | 5066 | 5061 | 5058 | 5044 | 5027 | 5022 | |
E15 | 5271 | 5265 | 5261 | 5257 | 5249 | 5234 | 5226 | |
E16 | 5095 | 5087 | 5081 | 5077 | 5068 | 5052 | 5044 | |
Average strain of E11–E16 | 5024 | 5015 | 5009 | 5006 | 4998 | 4998 | 4991 | |
S1 | 5270 | 5260 | 5253 | 5249 | 5242 | 5238 | 5234 | |
R2 | E21 | 4929 | 4918 | 4909 | 4904 | 4893 | 4880 | 4865 |
E22 | 4725 | 4720 | 4717 | 4715 | 4709 | - | ||
E23 | 4976 | 4967 | 4960 | 4958 | 4951 | 4931 | 4909 | |
E24 | 4684 | 4673 | 4666 | 4662 | 4657 | 4633 | 4624 | |
E25 | 5149 | 5143 | 5138 | 5135 | 5130 | 5113 | 5094 | |
E26 | 4828 | 4820 | 4814 | 4810 | 4801 | 4777 | 4764 | |
Average strain of E21–E26 | 4882 | 4874 | 4867 | 4864 | 4857 | 4867 | 4851 | |
S2 | 5028 | 5019 | 5013 | 5009 | 5003 | 4997 | 4995 | |
R3 | E31 | 5014 | 5005 | 4997 | 4993 | 4989 | 4983 | 4980 |
E32 | 5044 | 5033 | 5025 | 5018 | 5008 | 5005 | 5002 | |
E33 | 4826 | 4817 | 4810 | 4808 | 4801 | 4799 | 4795 | |
E34 | 4986 | 4978 | 4972 | 4970 | 4967 | 4957 | 4951 | |
E35 | 4979 | 4971 | 4964 | 4961 | 4957 | 4952 | - | |
E36 | 5082 | 5070 | 5063 | 5058 | 5054 | 5048 | 5044 | |
Average strain of E31–E36 | 4989 | 4979 | 4972 | 4968 | 4963 | 4957 | 4954 | |
S3 | 5128 | 5117 | 5112 | 5108 | 5103 | 5097 | 5094 |
Time/Hour | 1 | 2 | 3 | 12 | 24 | 48 | |
---|---|---|---|---|---|---|---|
True stress/MPa | 1.78 | 3.2 | 4.0 | 5.0 | 6.07 | 6.43 | |
R1 | Stress(FSG)/MPa | 1.8 | 3 | 3.6 | 5.2 | 5.2 | 6.6 |
Error/% | 1.1 | −6.3 | −10.0 | 4.0 | 4.0 | 2.6 | |
Stress(LFBG)/MPa | 2 | 3.4 | 4.2 | 5.6 | 6.4 | 7.2 | |
Error/% | 12.4 | 6.3 | 5.0 | 12.0 | 5.4 | 12.0 | |
R2 | Stress(FSG)/MPa | 1.6 | 3 | 3.6 | 5 | 3 | 6.2 |
Error/% | −10.1 | −6.3 | −10.0 | 0 | 50.5 | −3.6 | |
Stress(LFBG)/MPa | 1.8 | 3 | 3.8 | 5 | 6.2 | 6.6 | |
Error/% | 1.1 | −6.3 | −5.0 | 0 | 2.1 | 2.6 | |
R3 | Stress(FSG)/MPa | 2 | 3.4 | 4.2 | 5.2 | 6.4 | 7 |
Error/% | 12.4 | 6.3 | 5.0 | 4.0 | 5.4 | 8.9 | |
Stress(LFBG)/MPa | 2.2 | 3.2 | 4 | 5 | 6.2 | 6.8 | |
Error/% | 23.6 | 0 | 0 | 0 | 2.1 | 5.8 |
P/kN | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
---|---|---|---|---|---|---|---|---|---|
F/kN | 0.6 | 2.2 | 5.8 | 10.1 | 15.1 | 20.8 | 26.7 | 32.7 | |
R1 | E11 | 14 | 46 | 89 | 145 | 230 | 318 | - | - |
E12 | 16 | 63 | 105 | 155 | 258 | 376 | 516 | 682 | |
E13 | - | - | - | - | - | - | - | - | |
E14 | 6 | 34 | 73 | 123 | - | - | - | - | |
E15 | 14 | 48 | 103 | - | - | - | - | - | |
E16 | 8 | 42 | 88 | 153 | 233 | - | - | - | |
Average strain(FSG) | 12 | 47 | 92 | 144 | 240 | 347 | 516 | 682 | |
S1 | 12 | 47 | 97 | 155 | 252 | 367 | 508 | 662 | |
R2 | E21 | 6 | 32 | 75 | 130 | 195 | 279 | 379 | 482 |
E22 | - | - | - | - | - | - | - | - | |
E23 | 11 | 49 | 95 | 150 | 231 | 315 | - | - | |
E24 | 11 | 43 | 92 | 141 | 221 | 312 | 425 | 551 | |
E25 | 19 | 59 | 118 | 172 | - | - | - | - | |
E26 | 22 | 66 | 116 | 174 | 260 | 365 | - | - | |
Average strain(FSG) | 14 | 50 | 99 | 153 | 227 | 318 | 402 | 517 | |
S2 | 11 | 47 | 93 | 149 | 234 | 335 | 456 | 578 | |
R3 | E31 | 8 | 44 | 91 | 141 | 206 | 275 | 373 | 480 |
E32 | 14 | 50 | 98 | 157 | 236 | - | - | - | |
E33 | 9 | 42 | 81 | 122 | - | - | - | - | |
E34 | 19 | 61 | - | - | - | - | - | - | |
E35 | - | - | - | - | - | - | - | - | |
E36 | 6 | 33 | 74 | 124 | 196 | 273 | 384 | - | |
Average strain(FSG) | 11 | 46 | 86 | 136 | 213 | 274 | 379 | 480 | |
S3 | 12 | 42 | 89 | 141 | 211 | 297 | 396 | 500 |
Itemized Prestress Loss | σl1 + σl2, II | σl2, I | σl3 | σl4 | σl5 | σl6 | σl7 | Total Loss | |
---|---|---|---|---|---|---|---|---|---|
True loss/MPa | 44.3 | - * | 0 | 6.4 | 0 ** | - | 0 | 50.7 | |
Loss(FSG) | Value/MPa | 41.6 | - | 0 | 6.6 | 0 | - | 0 | 48.2 |
Error/% | −6.1 | - | 0 | 3.1 | 0 | - | 0 | −4.9 | |
Loss(LFBG) | Value/MPa | 42.4 | - | 0 | 6.9 | 0 | - | 0 | 49.3 |
Error/% | −4.3 | - | 0 | 7.8 | 0 | - | 0 | −2.8 |
F/kN | 120 | 240 | 360 | 480 | 540 | 555 | 426.6 | |
---|---|---|---|---|---|---|---|---|
R1 | E11 | 1371 | 2775 | 4193 | 5682 | 6368 | 6471 | 5214 |
E12 | 1336 | 2704 | 4111 | 5532 | 6218 | 6343 | 5111 | |
E13 | 1300 | 2625 | 3993 | 5368 | 6046 | 6171 | 4807 | |
E14 | 1257 | 2543 | 3786 | 5250 | 5846 | 5954 | 4968 | |
E15 | 1325 | 2689 | 4161 | 5504 | 6243 | 6368 | 5125 | |
E16 | 1382 | 2800 | 4229 | 5686 | 6371 | 6494 | 5227 | |
Average strain(FSG) | 1329 | 2689 | 4079 | 5504 | 6182 | 6300 | 5075 | |
S1 | 1321 | 2689 | 4089 | 5529 | 6200 | 6336 | 5211 | |
R2 | E21 | 1357 | 2729 | 4179 | 5589 | 6289 | 6421 | 5546 |
E22 | 1318 | 2657 | 4079 | 5471 | 6132 | 6264 | 5439 | |
E23 | 1264 | 2554 | 3896 | 5250 | 5932 | 6075 | 5271 | |
E24 | 1236 | 2504 | 3807 | 5154 | 5825 | 5936 | 5154 | |
E25 | 1289 | 2606 | 4006 | 5392 | 6079 | 6232 | 5451 | |
E26 | 1361 | 2721 | 4204 | 5500 | 6236 | 6396 | 5496 | |
Average strain(FSG) | 1304 | 2629 | 4029 | 5393 | 6082 | 6221 | 5393 | |
S2 | 1314 | 2657 | 4046 | 5461 | 6111 | 6250 | 5439 | |
R3 | E31 | 1321 | 2693 | 4125 | 5461 | 6150 | 6261 | 5461 |
E32 | 1296 | 2639 | 4046 | 5354 | 6036 | 6146 | 5375 | |
E33 | 1254 | 2579 | 3893 | 5200 | 5896 | 6000 | 5246 | |
E34 | 1229 | 2475 | 3829 | 5161 | 5686 | 5871 | 5164 | |
E35 | 1243 | 2575 | 3950 | 5236 | 5875 | 5979 | 5229 | |
E36 | 1351 | 2707 | 4115 | 5456 | 6142 | 6261 | 5432 | |
Average strain(FSG) | 1282 | 2611 | 3993 | 5311 | 5964 | 6086 | 5318 | |
S3 | 1279 | 2607 | 3975 | 5307 | 5957 | 6061 | 5343 | |
R4 | E41 | 1282 | 2646 | 4025 | 5321 | 5986 | 6082 | 5404 |
E42 | 1279 | 2629 | 4036 | 5318 | 6007 | 6107 | 5421 | |
E43 | 1204 | 2536 | 3793 | 5039 | 5646 | 5796 | 5129 | |
E44 | 1189 | 2414 | 3743 | 5036 | 5579 | 5654 | 5079 | |
E45 | 1218 | 2568 | 3871 | 5161 | 5807 | 5889 | 5275 | |
E46 | 1329 | 2721 | 4057 | 5432 | 6114 | 6215 | 5575 | |
Average strain(FSG) | 1250 | 2586 | 3921 | 5218 | 5857 | 5957 | 5314 | |
S4 | 1243 | 2571 | 3893 | 5182 | 5821 | 5911 | 5304 | |
R5 | E51 | 1236 | 2389 | 3861 | 5246 | 5814 | 5971 | 5689 |
E52 | 1246 | 2550 | 3936 | 5150 | 5761 | 5864 | 5618 | |
E53 | 1186 | 2525 | 3900 | 5089 | 5721 | 5861 | 5518 | |
E54 | 1182 | 2507 | 3789 | 5029 | 5650 | 5789 | 5554 | |
E55 | 1150 | 2404 | 3257 | 4618 | 5193 | 5261 | 5018 | |
E56 | 1286 | 2689 | 4097 | 5254 | 5975 | 6096 | 5731 | |
Average strain(FSG) | 1214 | 2511 | 3807 | 5064 | 5686 | 5807 | 5521 | |
S5 | 1221 | 2525 | 3825 | 5079 | 5729 | 5829 | 5557 |
Itemized Losses | σl2 | σl1 | |||||
---|---|---|---|---|---|---|---|
P/kN | 120 | 240 | 360 | 480 | 540 | 555 | 426.6 |
0 * | - | - | - | - | - | - | 305.7 |
R1 | 20.8 | 32.2 | 37.2 | 34.2 | 45.0 | 53.8 | 225.0 |
R2 | 22.2 | 38.6 | 45.8 | 47.8 | 62.8 | 71.0 | 162.2 |
R3 | 29.2 | 48.6 | 60.0 | 78.6 | 93.6 | 108.8 | 143.6 |
R4 | 36.4 | 55.8 | 76.4 | 103.6 | 120.8 | 138.8 | 121.4 |
R5 | 40.8 | 65.0 | 90.0 | 124.2 | 139.2 | 155.2 | 54.4 |
Time/Hour | 1 | 2 | 3 | 12 | 24 | 48 | 72 | |
---|---|---|---|---|---|---|---|---|
RR1 | E11 | 5130 | 5111 | 5102 | 5052 | 5033 | 4999 | 4976 |
E12 | 5016 | 4988 | 4976 | 4923 | 4895 | 4862 | 4853 | |
E13 | 4713 | 4687 | 4672 | 4609 | 4570 | 4544 | 4542 | |
E14 | 4888 | 4868 | 4853 | 4790 | 4777 | 4752 | 4738 | |
E15 | 5038 | 5012 | 5005 | 4955 | 4927 | 4899 | 4876 | |
E16 | 5129 | 5097 | 5090 | 5021 | 4993 | 4955 | 4949 | |
Average strain(FSG) | 4985 | 4960 | 4949 | 4891 | 4865 | 4835 | 4822 | |
S1 | 5141 | 5121 | 5113 | 5056 | 5026 | 4987 | 4970 | |
RR2 | E21 | 5450 | 5423 | 5411 | 5338 | 5329 | 5302 | 5275 |
E22 | 5348 | 5322 | 5309 | 5256 | 5231 | 5202 | 5183 | |
E23 | 5182 | 5156 | 5137 | 5085 | 5057 | 5030 | 5006 | |
E24 | 5068 | 5048 | 5039 | 4980 | 4963 | 4932 | 4905 | |
E25 | 5362 | 5332 | 5317 | 5272 | 5256 | 5218 | 5197 | |
E26 | 5402 | 5382 | 5377 | 5313 | 5293 | 5252 | 5248 | |
Average strain of E21–E26 | 5302 | 5277 | 5266 | 5208 | 5189 | 5156 | 5136 | |
S2 | 5366 | 5340 | 5324 | 5251 | 5223 | 5198 | 5184 | |
RR3 | E31 | 5407 | 5390 | 5377 | 5319 | 5310 | 5282 | - |
E32 | 5319 | 5295 | 5276 | 5245 | 5209 | 5180 | 5166 | |
E33 | 5184 | 5162 | 5143 | 5097 | 5076 | 5044 | 5022 | |
E34 | 5114 | 5097 | 5091 | 5041 | 5017 | 4986 | - | |
E35 | 5175 | 5154 | 5144 | 5100 | 5082 | 5049 | 5029 | |
E36 | 5377 | 5358 | 5350 | 5298 | 5287 | 5266 | 5246 | |
Average strain of E31–E36 | 5263 | 5243 | 5230 | 5183 | 5164 | 5135 | 5116 | |
S3 | 5266 | 5241 | 5231 | 5167 | 5155 | 5131 | 5118 | |
RR4 | E41 | 5309 | 5283 | 5270 | 5210 | 5174 | 5151 | 5126 |
E42 | 5321 | 5290 | 5281 | 5218 | 5181 | 5155 | 5121 | |
E43 | 5035 | 5011 | 5004 | 4946 | 4907 | 4883 | 4848 | |
E44 | 4991 | 4977 | 4964 | 4909 | 4876 | 4851 | 4825 | |
E45 | 5184 | 5152 | - | - | - | - | - | |
E46 | 5484 | 5454 | 5431 | 5371 | 5346 | 5319 | 5271 | |
Average strain of E41–E46 | 5221 | 5195 | 5190 | 5131 | 5097 | 5072 | 5038 | |
S4 | 5215 | 5191 | 5180 | 5108 | 5070 | 5021 | 4999 | |
RR5 | E51 | 5580 | 5544 | 5529 | 5451 | 5430 | 5392 | 5375 |
E52 | 5519 | 5507 | 5491 | 5447 | 5411 | 5380 | 5345 | |
E53 | 5422 | 5406 | 5387 | 5310 | 5281 | 5252 | - | |
E54 | 5454 | 5423 | - | - | - | - | - | |
E55 | 4914 | 4878 | 4869 | 4808 | 4771 | 4736 | 4712 | |
E56 | 5631 | 5592 | 5565 | 5562 | 5544 | 5504 | 5479 | |
Average strain of E51–E56 | 5420 | 5392 | 5368 | 5316 | 5287 | 5253 | 5228 | |
S5 | 5459 | 5432 | 5407 | 5363 | 5323 | 5271 | 5239 |
Itemized Losses | σl4+ σl5 | ||||||
---|---|---|---|---|---|---|---|
Time/hour | 1 | 2 | 3 | 12 | 24 | 48 | 72 |
0 * | 17.3 | 21.7 | 26.1 | 35.7 | 42.1 | 45.3 | 46.3 |
R1 | 14.0 | 18.0 | 19.6 | 31.0 | 37.0 | 44.8 | 48.2 |
R2 | 14.6 | 19.8 | 23.0 | 37.6 | 43.2 | 48.2 | 51.0 |
R3 | 15.4 | 20.4 | 22.4 | 35.2 | 37.6 | 42.4 | 45.0 |
R4 | 17.8 | 22.6 | 24.8 | 39.2 | 46.8 | 56.6 | 61.0 |
R5 | 19.6 | 25.0 | 30.0 | 38.8 | 46.8 | 57.2 | 63.6 |
Applied Stress/MPa | 358.4 | 728.0 | 1023.7 | 862.3 | |
---|---|---|---|---|---|
R1 | S11 | 2456 | 4938 | 6755 | 6196 |
S12 | 1320 | 3067 | 4254 | 3606 | |
S13 | 1428 | 2941 | 4325 | 3972 | |
S14 | 1621 | 3461 | 4988 | 4298 | |
S15 | 1913 | 3911 | 5495 | 4805 | |
S16 | 2066 | 3638 | 5091 | 4611 | |
Average strain of S11–S16 | 1801 | 3659 | 5151 | 4581 | |
R2 | S21 | 2361 | 4705 | 6568 | 6561 |
S22 | 1074 | 2532 | 3643 | 3628 | |
S23 | 759 | 1771 | 3003 | 2977 | |
S24 | 1945 | 3832 | 5162 | 5151 | |
S25 | 1888 | 3609 | 5152 | 5134 | |
S26 | 2027 | 3898 | 4949 | 4931 | |
Average strain of S21–S26 | 1676 | 3391 | 4746 | 4730 |
Itemized Prestress Losses | σl2 | σl1 | |||
---|---|---|---|---|---|
Applied stress | 358.4 | 728.0 | 1023.7 | 862.3 | |
R1 | w1 | −120.5 | −234.9 | −293.5 | 109 |
w2 | 101.0 | 129.9 | 194.2 | 126.3 | |
w3 | 79.9 | 154.5 | 180.3 | 68.9 | |
w4 | 42.3 | 53.1 | 51.0 | 134.6 | |
w5 | −14.6 | −34.6 | −47.8 | 134.5 | |
w6 | −44.5 | 18.4 | 31.0 | 93.6 | |
Average(LFBG) * | 7.3 | 14.4 | 19.2 | 111.2 | |
Prediction(Code) ** | 7.9 | 16.0 | 22.5 | 108.4 | |
R2 | w1 | −102.0 | −189.5 | −257.1 | 1.4 |
w2 | 149.0 | 234.3 | 313.3 | 2.9 | |
w3 | 210.4 | 382.7 | 438.1 | 5.1 | |
w4 | −20.9 | −19.2 | 17.1 | 2.2 | |
w5 | −9.8 | 24.2 | 19.1 | 3.5 | |
w6 | −36.9 | −32.1 | 58.6 | 3.6 | |
Average(LFBG) * | 31.6 | 66.7 | 98.2 | 3.1 | |
Prediction(Code) ** | 29.4 | 59.7 | 83.9 | 0 |
Time | R1 | R2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | Average | W1 | W2 | W3 | W4 | W5 | W6 | Average | |
0 | 6196 | 3606 | 3972 | 4298 | 4805 | 4611 | 4581 | 6561 | 3628 | 2977 | 5151 | 5134 | 4931 | 4730 |
12 h | 6052 | 3461 | 3875 | 4137 | 4681 | 4409 | 4436 | 6343 | 3454 | 2833 | 4961 | 4990 | 4800 | 4564 |
24 h | 6031 | 3443 | 3857 | 4121 | 4663 | 4387 | 4417 | 6329 | 3436 | 2815 | 4950 | 4973 | 4782 | 4548 |
36 h | 6020 | 3434 | 3838 | 4116 | 4654 | 4363 | 4404 | 6321 | 3427 | 2806 | 4937 | 4964 | 4771 | 4538 |
48 h | 6011 | 3425 | 3819 | 4112 | 4645 | 4344 | 4393 | 6315 | 3418 | 2797 | 4923 | 4955 | 4766 | 4529 |
9 days | 5959 | 3356 | 3780 | 4069 | 4582 | 4280 | 4338 | 6252 | 3353 | 2749 | 4876 | 4904 | 4714 | 4475 |
30 days | 5862 | 3225 | 3717 | 3983 | 4496 | 4183 | 4244 | 6154 | 3236 | 2636 | 4776 | 4813 | 4626 | 4374 |
51 days | 5810 | 3163 | 3695 | 3953 | 4459 | 4164 | 4207 | 6119 | 3209 | 2606 | 4718 | 4773 | 4599 | 4337 |
72 days | 5794 | 3151 | 3686 | 3933 | 4433 | 4152 | 4192 | 6104 | 3194 | 2593 | 4694 | 4760 | 4582 | 4321 |
90 days | 5784 | 3143 | 3683 | 3923 | 4422 | 4146 | 4183 | 6098 | 3181 | 2589 | 4681 | 4758 | 4570 | 4313 |
Time | R1 | R2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | Average | W1 | W2 | W3 | W4 | W5 | W6 | Average | |
12 h | 28.1 | 28.3 | 18.9 | 31.4 | 24.2 | 39.4 | 28.4 | 42.5 | 33.9 | 28.1 | 37.1 | 28.1 | 25.5 | 32.5 |
24 h | 32.2 | 31.8 | 22.4 | 34.5 | 27.7 | 43.7 | 32.1 | 45.2 | 37.4 | 31.6 | 39.2 | 31.4 | 29.1 | 35.7 |
36 h | 34.3 | 33.5 | 26.1 | 35.5 | 29.4 | 48.4 | 34.5 | 46.8 | 39.2 | 33.3 | 41.7 | 33.2 | 31.2 | 37.6 |
48 h | 36.1 | 35.3 | 29.8 | 36.3 | 31.2 | 52.1 | 36.8 | 48.0 | 41.0 | 35.1 | 44.5 | 34.9 | 32.2 | 39.3 |
9 days | 46.2 | 48.8 | 37.4 | 44.7 | 43.5 | 64.5 | 47.5 | 60.3 | 53.6 | 44.5 | 53.6 | 44.9 | 42.3 | 49.9 |
30 days | 65.1 | 74.3 | 49.7 | 61.4 | 60.3 | 83.5 | 65.7 | 79.4 | 76.4 | 66.5 | 73.1 | 62.6 | 59.5 | 69.6 |
51 days | 75.3 | 86.4 | 54 | 67.3 | 67.5 | 87.2 | 73.0 | 86.2 | 81.7 | 72.3 | 84.4 | 70.4 | 64.7 | 76.6 |
72 days | 78.4 | 88.7 | 55.8 | 71.2 | 72.5 | 89.5 | 76.0 | 89.1 | 84.6 | 74.9 | 89.1 | 72.9 | 68.1 | 79.8 |
90 days | 80.3 | 90.3 | 56.4 | 73.1 | 74.7 | 90.7 | 77.6 | 90.3 | 87.2 | 75.7 | 91.7 | 73.3 | 70.4 | 81.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Wang, Y.; Ma, S.-L.; Huang, D.; Wu, Z.-H.; Guo, X. Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors. Sensors 2018, 18, 4106. https://doi.org/10.3390/s18124106
Shen S, Wang Y, Ma S-L, Huang D, Wu Z-H, Guo X. Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors. Sensors. 2018; 18(12):4106. https://doi.org/10.3390/s18124106
Chicago/Turabian StyleShen, Sheng, Yao Wang, Sheng-Lan Ma, Di Huang, Zhi-Hong Wu, and Xiao Guo. 2018. "Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors" Sensors 18, no. 12: 4106. https://doi.org/10.3390/s18124106
APA StyleShen, S., Wang, Y., Ma, S. -L., Huang, D., Wu, Z. -H., & Guo, X. (2018). Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors. Sensors, 18(12), 4106. https://doi.org/10.3390/s18124106