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Abstract: Electrocardiograph (ECG) technology is vital for biometric security, and blood oxygen
is essential for human survival. In this study, ECG signals and blood oxygen levels are combined
to increase the accuracy and efficiency of human identification and verification. The proposed
scheme maps the combined biometric information to a matrix and quantifies it as a sparse matrix for
reorganizational purposes. Experimental results confirm a much better identification rate than in other
ECG-related identification studies. The literature shows no research in human identification using
the quantization sparse matrix method with ECG and blood oxygen data combined. We propose
a multi-dimensional approach that can improve the accuracy and reduce the complexity of the
recognition algorithm.
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1. Introduction

Human identification has become an important issue in many areas, with people more aware than
ever before of the need to protect data and prevent information from leakage, theft, or unauthorized
modification. Many widespread electronic techniques and approaches, such as fingerprinting and
iris scanning, are now used extensively in real-world applications. In medicine, electrocardiograms
(ECGs) and blood oxygen levels are widely accepted methods for monitoring heart disease. Recently,
ECGs have also been employed extensively in the field of security studies, particularly to verify human
identity for access control systems [1–4].

The ECG method, a technique for measuring and recording different electrical potentials in the
heart, is a powerful tool, but most recognition algorithms utilize ECG signals without other biometric
characteristics [5,6], ignoring potentially useful additional information. A comprehensive survey of
the literature revealed no studies combining ECGs and blood oxygen levels for identity verification.
In this research, we present a new identification system that uses an algorithm combining ECG signals
and blood oxygen levels, showing that they work together well to verify human identity. Further,
the requisite data are easily collected from a fingertip through a wearable device. Identification
using these biometrics is based on multidimensional analysis in which both data are mapped into
a two-dimensional coordinate system and the intervals between points are quantized by counting
their values. All entries in the quantized sparse matrix are used to find the correlation coefficient,
an index for determining the success or failure of the identification. We call the proposed algorithm
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the Quantization Sparse Matrix Identification (QSMI) algorithm, since it relies heavily on ideas of
quantization and the application of sparse matrices.

The previous method can be considered a two-dimensional algorithm. We can increase the number
of dimensions to improve recognition accuracy. The Multi-Dimensional Identification (MDI) algorithm
greatly increases the computational complexity, so we propose an improved algorithm combined with
the Dynamic Time Warping (DTW) algorithm, which can reduce the computational complexity by
effectively increasing the recognition rate, making multi-dimensional ECG recognition more feasible.
The rest of the paper is organized as follows. Past research in multi-dimensional algorithms is reviewed
in Section 2; the proposed algorithm is introduced in Section 3; experimental results and comparisons
with other models are presented in Section 4; lastly, a summary of our comparisons and a discussion
are provided in Section 5.

2. Related Work

No two individuals have exactly the same biological characteristics, so each person’s ECG signals
are unique [7]. ECGs are widely used in diagnostics [8,9], compression [10], watermarking [11,12],
and verification [3–6,8]. Numerous studies have sought to establish human identify using one-lead
ECG signals [13,14], but not much attention has been paid to employing ECGs with other forms of
biometric information. Yet identification requires strong reliability and high accuracy, so the use of
more biometric information typically results in a better identification rate.

In 2001, Masaki and Akihiko [15] improved an identification engine using multiple discrimination
analysis. Edward proposed blending standard 12-lead ECG signals for identification purposes [16].
Multi-dimensional analysis [17] is an informational method that examines many different relations
between data, each of which represents a dimension. Commonly used in statistics, economics,
and other related fields [18], this process groups data into two categories: dimension and measurement.
Michael [19] analyzed the effects of industry, region, and time on new business survival rates using a
multi-dimensional approach. The research in [20] focused on multiple dimensional analysis of stream
data and related this to time series analysis.

Blood oxygen level measures how much oxygen red blood cells contain [21]. A blood oxygen test
is usually performed to examine breathing disorders or other conditions that may cause decreased
oxygen levels in a human body. Jackson III [22] in 1998 invented a device to monitor infants’ blood
oxygen levels and to prevent sudden infant death syndrome. Blood oxygen levels have also been used
in disease diagnosis [23] and prognosis [24] studies. Past research shows that most human recognition
schemes rely only on feature extraction from ECGs without employing other forms of biometrics.
Vanni used ECG signals and blood pressure to detect acute hypertensive episodes and mean arterial
pressure dropping regimes [25]. Syeda and Varun [26] investigated sleep apnea with both ECG signals
and blood oxygen levels. However, no human identification research has employed both types of data.
In this study, we link ECG and blood oxygen to propose an algorithm for verifying human identity.

3. Proposed Model

3.1. Basic Model

The study aims to enhance human identification accuracy based upon two types of biometric
information fed into the proposed QSMI algorithm. In our scheme, the x- and y-axes correspond to
the data we are relating, namely, ECG signal and blood oxygen level, respectively. Each ordered pair
in the two-dimensional coordinate system uniquely represents one individual’s characteristics at a
specific time. The flowchart of the QSMI algorithm is show in Figure 1.
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Figure 1. Flow of hybrid ECG and blood oxygen identification with QSMI algorithm.

Consider two sets of data, ECG signal and blood oxygen level, collected from an individual i.
We write

Ei =
{

ei(t1), ei(t2), · · · , ei(tk)
}

(1)

Bi =
{

bi(t1), bi(t2), · · · , bi(tk)
}

where ei(tk), bi(tk), k = 1, · · · , n denotes the ECG and blood oxygen sample values obtained from
the ith individual at a specific time tk. Describe the dataset using a two-dimensional coordinate
representation, namely, Mi

[
ei(tk), bi(tk)

]
. Without loss of generality, Mi is initially set to be 0.

According to the mapping rule, we have

Counting () : Mi[e(tk), b(tk)] = Mi[e(tk), b(tk)] + 1, ∀∃(e(tk), b(tk)) (2)

Set vi
k = Mi [e(tk), b(tk)]i f f Counting() = end

Let vi
k be the value at the element [ei(tk), bi(tk)] when counting processing is end; this is a counting

process to map two time series into a matrix.
After the mapping processing is finished, the combination of ECG signal and blood oxygen level

can be expressed in the format of a diagonal matrix M of size n× n. We now reduce the size of M
using the quantization method. Define a mask matrix M∗ of size m×m, where m is the dimension of
the mask matrix for quantization; M∗ is initially set as a zero matrix. m×m size is also an reduction
rating. First, kx is from 1 to n and ky from 1 to n of original matrix M, we use matrix M∗ to calculate
the sum of window m×m. The result store as the element of new reduction matrix RM[]. In this way,
we follow the rule:

RM
[

kx + m− 1
n

,
ky + m− 1

n

]
= (3)


0, M

[
kx : kx + m− 1, ky : ky + m− 1

]
+ M∗ ≤ a

1, b < M
[
kx : kx + m− 1, ky : ky + m− 1

]
+ M∗ ≤ c

2, c < M
[
kx : kx + m− 1, ky : ky + m− 1

]
+ M∗ ≤ d

3, d < M
[
kx : kx + m− 1, ky : ky + m− 1

]
+ M∗

The variables a, b, c, and d are the quantization levels we defined, as shown in Figure 2. In
addition, M

[
kx : kx + m− 1, ky : ky + m− 1

]
means the field of the horizontal ordinate X is from kx to

kx + m− 1. The same is true for the vertical ordinate Y.
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Figure 2. Procedure for 4 quantization levels with mask matrix M∗ of size 2× 2.

After reduction, RM[] is a matrix with high sparsity since most of its entries are zero. Sparse
data are easily compressed and use less storage space; it is beneficial and often necessary to store only
the non-zero entries. There are numerous representations for sparse storage; in this study, we use
the simplest and most flexible coordinate format (COO), which lists the row, column, and value as
a 3-tuple. For example, information in the reduced matrix RM[] in Table 1 can be stored as {(2, 2, 1),
(1, 3, 2), (2, 3, 2), (3, 3, 2), (1, 4, 2), (2, 4, 2), (1, 5, 1), (2, 5, 1)} as the elements of sparse matrix SM[].

Table 1. Reduce matrix.

1 2 3 4 5

1 0 0 2 2 1
2 0 1 2 2 1
3 0 0 2 0 0
4 0 0 0 0 0
5 0 0 0 0 0

After biometric data are collected from an individual, the information is transformed immediately
into a sparse matrix and is stored using COO without any pre-processing. A sparse matrix SM[], stores
the features of the data, and its entries are inputs to the correlation coefficient classifier. The correlation
coefficient between two SM[] will be calculated for future training and identification purposes, serving
as an index to train and test the accuracy of human verification with an appropriately selected threshold.
Correlation coefficients are widely applied in the sciences to determine how strongly units from the
same group resemble each other; Mathworks documentation (http://www.mathworks.com/help/
matlab/ref/corrcoef.html) describes this in detail.

3.2. Advanced Model

The advanced model we propose is a combination of the reduced sparse matrix of MDI and DTW
methods. This method of mapping multi-lead signal data into multi-dimensional space and extracting
sparse features can achieve better matching results. With equipment used to measure ECG signals,
12-lead or 5-lead are the most commonly used methods, which are more suitable for MDI. The main
difference from basic model QSMI, MDI reduces input signal level at first; it can greatly reduce the
data complexity of high dimensional matrix.

Then, DTW can compute the similarity between two time series, especially for different lengths
and different rhythms of time series. DTW automatically warps distorted time series to make the two
sequences as consistent as possible and obtain the greatest possible similarity.

Although multi-dimensional data can represent more information, there will be redundant
information, so we need to reduce the dimensionality of the multi-dimensional data and enhance
the extraction of feature information. Our advanced model relies on an algorithm that fuses
multi-dimensional sparse matrix and DTW. For a large range of ECG data, in order to better aggregate
the expression of the data features we first reduce the data to a certain range, then map them to a
multi-dimensional space. There are two stages in our advanced model, as follows.

http://www.mathworks.com/help/matlab/ref/corrcoef.html
http://www.mathworks.com/help/matlab/ref/corrcoef.html
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In the MDI stage, it wants to map and reduce multiple lead signals into a reduced sparse matrix.
According to the multi-dimensional space algorithm mentioned above, we assume that sj

i(tk) is the
ith individual for sampling of the jth lead at time t of the sample point value. For reduced matrix
processing, we first map multiple time series points sj

i(tk) for each lead j at time t, and we map the

signal value to the j-dimensional coordinate point pi(tk) =
(

d1
i (tk), d2

i (tk) . . . , dj
i(tk)

)
according to the

following formula:

dj
i(tk) =


sj

i(tk)
R + ∆θ, else

1 , sj
i(tk)
R + ∆θ < 1

u, sj
i(tk)
R + ∆θ > u

(4)

where point pi(tk) is constructed by j dimensional reduction value dj
i(tk), R is a reduction level we

define, and ∆θ is an increment to prevent negative point values. The result of the second and third
lines is to marginalize the result and prevent the map from overflowing, where u is the maximum
point value of the space we map.

In this way, a multi-dimensional coordinate space is applied, then the multi-lead signal is mapped
to the space according to time tk; next, reduced sample point processing is performed, and finally
the spatial correlation coefficient is calculated to complete the recognition judgment. In the next
part, we will show the experimental evaluation results for this algorithm. Since high-dimensional
space occupies a large amount of memory, storage is inconvenient. We therefore need to build
a reduced sparse matrix to simplify the calculation and storage of the sample coordinates of the
multi-dimensional space.

After a reduced sparse matrix is constructed, we upgrade the idea of a two-dimensional sparse
matrix to a multi-dimensional coordinate space. For example, if the value of the j dimensional
coordinate point (d1

i (tk), d2
i (tk) . . . , dj

i(tk)) with value v, then the sparse element we store is

((d1
i (tk), d2

i (tk) . . . , dj
i(tk)), v) The subsequent correlation calculation no longer uses the correlation

coefficient between the matrices, because the correlation coefficient of the high-dimensional coordinate
space is calculated, the time and space complexity are too high to be practically applied, and we will
extract a series element of high-dimensional sparse matrix. The sparse matrix is used as the input
to the DTW for calculating the correlation between the two series. The algorithm for integrating our
multi-dimensional feature with DTW is described in detail below.

As mentioned, a training or test sample for each individual i is ultimately represented as a
representation of a series of sparse elements. Assume that the sth sample template of the ith individual
is stored as Xs

i , then the algorithm.

Xs
i = (ps

i (t1), ps
i (t2), . . . , ps

i (tk)) (5)

among them, the distance can be used as a metric:

D
[

Xs
i , Xs′

i′

]
(6)

Here is two high dimensional sequences, where s and s′ mean any two sample templates of two i
and i′ indiviuals. In the DTW stage, the two test templates are represented as Xs

i and Xs′
i′ . To calculate

the similarity between them, the smaller the distance, the higher the similarity between Xs
i and Xs′

i′ .
Let k and k′ be the sequence lengths of Xs

i and Xs′
i′ , respectively, so D[Xs

i , Xs′
i′ ] represents the distance

between these two sequences. If:

(1) D
[

Xs
i , Xs′

i′

]
; k = k′, directly calculate D

[
Xs

i , Xs′
i′

]
by Euclidean distance;

(2) k 6= k′, use dynamic programming to calculate the distance between them.

DTW is described in detail in [27]. We only need to apply this idea to the minimum distance to
find two different sequences, which will not be described here. Multi-dimensional DTW is calculated
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in a similar way to DTW for single-dimensional time series, except that we redefine D
[

Xs
i , Xs′

i′

]
as the

cumulative squared Euclidean distances of multiple data points instead of the single data point used
in the more familiar one-dimensional case. For details, please refer to [28].

4. Experiments and Evaluations

A reliable biometric identification system is capable of handling five basic elements: data
collection, transmission, signal processing, storage, and decision making. Past research has shown that
even with ECG or other biometric-based verification algorithms, no practical solutions have been found
to cut the cost of implementation. To overcome this obstacle, we implement a portable device, as shown
in Figure 3, so the identification process can be done efficiently and less expensively. This board uses a
TI AFE4900 chip, and the AFE4900 device is an analog front-end (AFE) for synchronized ECG and
photoplethysmogram (PPG) signal acquisition. The device can also be used for optical bio-sensing
applications, such as monitoring heart rate and measuring the saturation level of peripheral capillary
oxygen (SpO2).
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Figure 3. ECG and blood oxygen collection equipment.

ECG signals and blood oxygen level data can be collected by placing this small sensor on a thin
area of an individual’s body, usually a fingertip; signals are then transmitted to the user’s mobile
phone via Bluetooth and stored directly in its memory card. This equipment provides a low-cost,
effortless way to gather and handle biometric information necessary for human recognition. Given the
popularity of wearable monitoring devices [29,30], we believe that our equipment has the potential for
wide application.

4.1. Experiment for QSMI Algorithm

For our verification experiment, data were collected from 18 individuals. This raw dataset contains
a sequence of point values at certain times. For each individual, two sets of data were collected, one for
training purposes and the other for testing the proposed algorithm.

We have two training set for ECG and blood oxygen signals data; the rest of the set is for the test
samples data. In the training stage, each set of one individual should be a template matrix compared
to every other set, including set of different individuals. In the training stage, we use the training
data set of all 18 individuals to evaluate the correlation coefficients. To verify the efficiency of this
algorithm, we train the sparse matrix containing a segment of sample data points and get thresholds
for each individual.

Numerous metrics have been used to assess the performance of a biometric factor. The most
common performance metrics—false acceptance (FA) and false rejection (FR) rates—are employed to
evaluate the QSMI algorithm. The FA rate, which is the probability that a biometric system will accept
an incorrect input as a positive match, is obtained by testing known biometric templates against a
large data collection. By contrast, the FR rate represents the probability that a biometric system will
incorrectly reject an input as a negative match. FA and FR rates usually show an inverse relationship
with one another. We define the accuracy rate, Acc, as
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Acc = 1− FA + FR
2

(7)

The purpose of a threshold is to determine how close to a template the input data must be for
it to be considered a match. The threshold for FA+FR

2 will be obtained from the training set; this
procedure will be discussed in detail later. Figure 4 illustrates the relationship between FA+FR

2 and δ

for the classification procedure. It shows that FA+FR
2 lies between 0.0686 and 0.2059 in template T1,

and between 0.1830 and 0.2386 in template T2. A better Acc rate can be attained using an iterative
approach to reach a suitable threshold δ.
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As we can see from (5), a smaller FA+FR
2 value yields a higher Acc. Figure 4 shows that template

T1 has a better accuracy rate, so only T1 will be used for discussion. Acc is maximized as FA+FR
2 reaches

its minimum, when δ = 0.019, so the appropriate threshold δ for multiple subject classification is set at
0.019. Figure 5 shows detailed rate information for template T1 as δ increases from 0.001 to 0.03, clearly
showing that FA+FR

2 reaches its minimum when δ = 0.019.
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The FA rates of all 18 individuals in T1 when δ = 0.019 are shown in Figure 6. Since FR equals 0
for all individuals, it is not displayed.

Since the sample size of our ECG and blood oxygen data is small, it is highly possible to have the
data map to the same point. To take advantage of this feature point, mapping rule (2) is employed to
define the quantization interval. To achieve optimal results, various quantization intervals are assessed,
and the experimental results of the improved algorithms are shown in Figure 7. Since all FR rates are 0
for all quantization intervals, only FA and FA+FR

2 are presented.
As can be seen in Figure 7, the FA+FR

2 rate is 0.1193 when no quantization is carried out and
reaches its minimum, 0.0686, when a three-level (0, 1, 2) quantization procedure is performed for data
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points reduction. More specifically, implementing the proposed QSMI algorithm raises the Acc rate for
identification from 0.8807 to 0.9314, an approximately 5% enhancement.Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 
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4.2. Experiment for MDI Algorithm

First, to prove the correctness of our multi-dimensional algorithm, we slowly and incrementally
use the same evaluation method for the PTB data (see, for example, the PTB database at www.physionet.
org/physiobank/database/ptbdb/), from the double-lead ECG sensor, obtaining the results shown in
Figure 8.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 

 

 
Figure 6. FA rate of each individual in T1. 

 
Figure 7. Comparison of different quantization intervals; three-level (0, 1, 2) quantization has the best 
performance with the lowest ୊୅ା୊ୖଶ  rate at 0.1193. 

4.2. Experiment for MDI Algorithm 

First, to prove the correctness of our multi-dimensional algorithm, we slowly and incrementally 
use the same evaluation method for the PTB data (see, for example, the PTB database at 
www.physionet.org/physiobank/database/ptbdb/), from the double-lead ECG sensor, obtaining the 
results shown in Figure 8. 

 
Figure 8. FA/FR rates from 2D to 5D. Figure 8. FA/FR rates from 2D to 5D.

www.physionet.org/physiobank/database/ptbdb/
www.physionet.org/physiobank/database/ptbdb/


Sensors 2018, 18, 4138 9 of 16

It can be seen from Figure 8 that when the lead dimension is increased, FA+FR
2 is smaller, that is,

the accuracy is higher. When the dimension reaches 5, FA+FR
2 is 0.013. At this point, the error rejection

rate is 0, and Acc is up to 98.7%, proving that our multi-dimensional feature algorithm is feasible when
mapping multi-dimensional feature data to space.

In the description of the MDI algorithm, we introduce the reduction remapping first, and the
variation in the reduced parameter variable ∆θ affects the recognition rate. Figure 9 shows the change
in ∆θ with the FA+FR

2 curve.
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From Figure 9 we see that the FA/FR rate of the recognition result changes as ∆θ changes. When
∆θ = 20, FA+FR

2 reaches 0.0133, which is the best result for 5D, as shown in Figure 8. Of course, the 2D
to 4D ∆θ in Figure 8 are the best values given under our experiment, and the chart description is no
longer listed here.

According to our previous charts, when the number of leads is 5—that is, the computational space
is 5 dimensions—the experiment achieves good results but takes up a lot of memory. Hence, we need
to find a new algorithm to optimize the data. To do so, we introduce the method of using DTW and
sparse combination to solve the similarity calculation problem of different sequence lengths. Figure 10
presents the experimental results using DTW and sparse combination in a 5-dimensional space.
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In Figure 10, Num_n_Red_m on the abscissa indicates that the size of the window space of size
m is reduced when the space size is n. It can be concluded from the figure that when the 5-lead ECG
signal is mapped to a 5-dimensional space of 32 and the window is reduced by 2, the recognition result
FA+FR

2 is the smallest, 0.0115, slightly higher than the multi-dimensional feature recognition (baseline)
does not combine with DTW sparse algorithm, which will generate experimental result of 0.0133.
We evaluate the spatial and temporal efficiencies of several of the above-mentioned algorithms using a
number of experimental data and averaging the methods to evaluate them fairly. Table 2 compares
the average memory space occupied by the DTW and the sparse algorithm, and the average memory
space of the baseline algorithm.

Table 2. Comparison of Memory Efficiency of DTW Combined Sparse Optimization Algorithm.

Memory (bytes)
Item

Num_32_Red_2 Num_32_Red_4 Num_50_Red_10 Baseline

Average (bytes) 2737 1307 675 25,000
Min 40 40 40 25,000
Max 13,920 7240 2640 25,000

When MDI is combined with the DTW sparse optimization algorithm, because the number of
sparse eigenvalues of each template sample is inconsistent, the memory space they occupy is also
different. Table 2 lists all the samples with their average, minimum, and maximum memory space,
but the occupied memory space of each sample is no longer listed. As can be seen, when MDI is
combined with the DTW sparse algorithm, the average memory space for all the samples is much
smaller than for the baseline algorithm. In actual applications, the maximum memory space required
is an obvious factor. The original DTW uses the most memory. In comparison, the memory required
for the new method is much smaller than for DTW and much smaller than for the baseline, so an
identification system with this algorithm could be used in an embedded system or on a small chip.

However, when designing the algorithm, we should consider not only the spatial complexity
but also the time complexity, so we evaluate the above algorithm in terms of time efficiency. Table 3
compares the time required to complete the experiment when using DTW in combination with the
sparse method for identification.

Table 3. Time efficiency comparison of DTW with sparse optimization algorithm (time unit seconds).

Time(s)

Item Num_32_Red_2 Num_32_Red_4 Num_50_Red_10 Baseline

Train Test Train Test Train Test Train Test

1th 0.0966 1.5518 0.0223 0.3732 0.0060 0.0972 0.0044 0.0083
2th 0.0953 1.5780 0.0229 0.3643 0.0059 0.0984 0.0013 0.0082
3th 0.0950 1.5680 0.0226 0.3655 0.0059 0.0994 0.0014 0.0084
Average 0.0956 1.5659 0.0226 0.3677 0.0059 0.0983 0.0024 0.0083

Using Figure 10 and Table 3, we can conclude that when the DTW is combined with the sparse
algorithm, the time efficiency decreases as the recognition accuracy increases. This is because the
dynamic programming algorithm is used when the final reduced feature value is increased such that
the time efficiency rises to the power of O

(
n2). In the baseline algorithm, dynamic programming

is not used, and only the correlation coefficient between the two samples is calculated, so the time
complexity is not as high as with the MDI algorithm. These experimental results show that the MDI
algorithm and the DTW combined with the sparse identification multi-dimensional feature algorithm
have advantages and disadvantages in terms of time and space efficiency, but the MDI algorithm
increases the time by only 1 or 2 seconds in comparison with the baseline algorithm, so it is still very
feasible for practical applications.
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5. Comparison

5.1. Comparison with One-Dimensional Models

To date, not much attention has been paid to investigating human identity verification using
a combination of ECG signal and blood oxygen level. In this section, three designs involving only
ECG signals are introduced. We then compare our scheme with these one-dimensional algorithms.
To achieve a fair assessment, all data are selected from the same database—the biometric collection
gathered from the wearable device introduced in Section 4.

(a) Reduced binary pattern (RBP)

The reduced binary pattern algorithm employs the frequency and rank order statistics of the input
ECG signals [31]. Express any collected ECG signal from an individual in the form {x1, x2, x3, . . . , xn},
where each real-value xi denote the ith value from the input data. Compare any two consecutive
values and categorize the data into two cases: decrease or increase in xi. A preliminary reduced
function then maps these two cases to 0 or 1, respectively, according to the following two-state rule as

yi =

{
1 , xi+1 ≥ xi,
0, otherwise.

This step converts one segment of the ECG signal of length n to a binary sequence Y =

{y1, y2, . . . , yn−1} of length n− 1. Group every m bits in Y into a reduced binary sequence and collect
all m-bits to form a reduced binary pattern {b1, b2, . . . , bn−m}, where bk = {yk, yk+1, . . . , yk+m−1}.

Let dk be the decimal expansion of bk, k = 1, 2, · · · , n−m. It is obvious that the values of dk can
change from 0 to 2m − 1. Count the occurrences of each dk, sort them in order of descending frequency,
and find the corresponding probability. Ranking can be omitted if the tested ECG segments have the
same sampling duration.

Consider two segments of ECG data S1 and S2, which may belong to two distinct individuals. To
determine how closely they are related, the measurement of similarity between S1 and S2 is defined as

Dm(S1, S2) =
1

2m − 1
·
∑
(2m−1)
dk=0 |R1(dk)− R2(dk)| p1(dk) p2(dk)

∑
(2m−1)
dk=0 p1(dk)p2(dk)

(8)

where pi(dk) and Ri(dk) represent the relative frequency and rank of wk in the sequence Si, i = 1, 2.
The absolute difference between two ranks is multiplied by the normalized probabilities as a weighted
sum; the factor 1

2m−1 ensures all values of Dm lie within the scope of (0, 1).

(b) Waveform algorithm.

Waveform algorithms [32] use characteristic features obtained directly from the ECG waveform
to verify human identity. After an ECG waveform is measured, it passes through high- and low-pass
filters for pre-processing. Various techniques are then carried out to extract the characteristic points
inside the waveform where ECG complexes P, Q, R, S and T are located. Based on the extracted values
of the characteristic points, some identification features are composed of relative representations.
The extraction of characteristic points and the composed features are shown in Figure 11. In a
waveform-based study [33], a total of 19 features were extracted from four classes: amplitude (PQ, RQ,
TQ, RT, PS, RP, TS, RS, PT, QS), duration (QS, PR, QR, ST, QT), slope (RS, ST, QR), and area (area of the
QRS triangle). These features form a feature-vector S.

Based on the feature-vectors obtained from the individuals, we use the measurement of similarity
formula (6) to evaluate the difference between two subjects. Closeness between two feature-vectors S1

and S2 is denoted as the distance d(S1, S2). We then use (5) to calculate the FA, FR, and FA+FR
2 rates of

all obtained distances.
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(c) Wavelet transform algorithm

A wavelet transformation is the representation of a function by wavelets, which are scaled copies
of finite-length or fast-decaying oscillation waveforms. The wavelet-based algorithm [34] includes the
following procedures: each R-R cardiac cycle is obtained through R-R detection; an interpolation is
performed on the R-R interval so each R-R cardiac cycle holds 284 data points; every R-R cycle is cut
into three parts, each containing 85, 156, and 43 points; the first 85 and the last 43 points in each R-R
cycle are assembled to form a 128-point segment; every four segments are grouped, and an n-level
discrete wavelet transform (DWT) is performed to obtain the corresponding wavelet coefficients. Four
of the computed wavelet coefficients are gathered as a wavelet vector.

The Euclidean distance between two wavelet vectors S1 and S2 is denoted as d(S1, S2); the intra-
and inter-group distances can then be calculated using (6). Table 4 contains the outcomes of our QSMI
design, with three one-dimensional algorithms for comparison. It is clear that the RBP, waveform,
and wavelet transform algorithms perform well, with an approximately 75% success rate for human
identification. But with an accuracy of 93%, the proposed QSMI algorithm using both ECG signal and
blood oxygen level far outperforms the others.

Table 4. Comparison of FA, FR, and FA+FR
2 rates.

Item RBP Waveform Wavelet QSMI

FA 0.4880 0.2418 0.5196 0.1373
FR 0 0.2222 0 0
(FA + FR)/2 0.2440 0.2320 0.2598 0.0686
Accuary 75.60% 76.8% 74.02% 93.14%

Next, we compare our scheme with two other typical two-dimensional algorithms.

5.2. Comparison with TTwo-d Dimensional MModels

Now, we compare the proposed QSMI scheme with two other commonly used two-dimensional
algorithms: baseline and principal component analysis.

(a) Baseline algorithm

The baseline algorithm is a simple and effective way to determine the similarity between two
sparse matrices [35]. The sparse matrix is formed by the mapping rule and dimensionality reduction



Sensors 2018, 18, 4138 13 of 16

of the sample points. There are many standards of similarity. Here, we use the Euclidean distance; that
is, we define the baseline to measure the similarity between two sparse matrices SM1 and SM2 as:

b = ∑
i

∑
j
((SM1)ij −

(
SM2)ij

)2. (9)

After the similarity is measured using (10), the correlation coefficient between two b’s, as well as
the minimum and mean correlation coefficients Ri

min and Ri
mean for each individual i, can be computed.

Furthermore, the FA, FR, and FA+FR
2 rates can be determined using (5).

(b) Principal component analysis (PCA) algorithm

PCA is a powerful tool for identifying similarities and differences in patterns of data. For high-
dimension data, this method reduces the number of dimensions without much loss of information.
PCA maps data in a high-dimensional space to a space of lower dimensions using a linear projection.
This well-known dimension reduction method is commonly applied to investigate linear correlations
across multiple time series [36].

For a matrix X consisting of sample data, a linear transformation converts X to Y through

Y = PX (10)

The linear mapping P allows Y to extract the principal components from X, and each row of P
contains the eigenvectors of CX , where

CX =
1
n

XXT (11)

In PCA assessment, we use the data collected from the previously mentioned wearable device,
the difference being that the ECG signal is arranged prior to the blood oxygen level. The PCA algorithm
extracts select features that are then used to train and test human identification. Experimental results
confirm that the success rate for identification is much better with the five extracted features.

Figure 12 shows that with ECG signal and blood oxygen level combined, the proposed QSMI
algorithm demonstrates a much lower FA+FR

2 value, which equates to a better accuracy rate than with
the other two two-dimensional designs.
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5.3. Comparison with MMulti-d Dimensional MModels

Here, we use PTB multi-lead ECG signal data. We read the multi-lead signal from the PTB data,
fuse the multi-lead data signal, and then classify the individual. Similar to the experimental models
in the previous two parts, the PTB database contains 249 individuals, and we divide the data into
training sets and test sets. To evaluate the algorithm fairly and without loss of efficiency, we select
12 individual 12-lead signals to conduct our experiment. To analyze with other multi-dimensional
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feature algorithms, we compare the MDI algorithm with the PCA algorithm and the baseline-QSMI
algorithm. The results are shown in Figure 13.Sensors 2018, 18, x FOR PEER REVIEW  14 of 16 
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It can be seen from Figure 13 that the recognition rate of our MDI algorithm reaches 98.67%,
which is about 3.4% higher than the recognition result with the baseline algorithm and up to 13%
higher than with the PCA algorithm, thus proving that the final proposed MDI algorithm has
considerable advantages.

5.4. Additional Discussion

This section briefly addresses two questions. Some studies conduct ECG analysis with common
classifiers such as artificial neural networks and support vector machines [37]. Is such an approach
suitable for this study? General classification algorithms are more commonly used in ECG diagnosis.
Our research is more suitable for ECG identification, as it applies a one-to-one comparison of a
similarity algorithm to identify a person. Because ECG is a one-dimensional data source, if it is used
for many-to-many identification, high error rates may result.

Another question is whether a system combining ECG and photoplethysmography (PPG) data has
practical value. Some studies have applied ECG and PPG to heart-rate analysis or diagnosis [38], and
now smart watches are able to integrate these two sensors, so including diagnosis and identification
devices in smart watches should be possible. The successful combination of light and electric sensors
proven by our research can achieve a higher recognition rate, further increasing the application value
of ECG and PPG.

6. Conclusions

This study presents an innovative and efficient approach to better verify human identification.
Experiments confirm that the combination of ECG signal and blood oxygen level yields greater
identification accuracy than using ECG signal alone. The identity verification success rate using the
proposed QSMI algorithm is 93.14%, almost 20% higher than with other one-dimensional methods and
6% higher than with two commonly used two-dimensional algorithms. Practically speaking, all ECG
and blood oxygen level data can be easily collected from a small wearable device and stored in the
memory card of a mobile phone. If we can collect more data dimensions, we can increase the ECG
recognition rate through our proposed MDI algorithm.
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