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Abstract: A High-Definition map (HD map) is a precise and detailed map composed of various
landmark feature layers. The HD map is a core technology that facilitates the essential functions
of intelligent vehicles. Recently, it has come to be required for the HD map to continuously add
new feature layers in order to increase the performances of intelligent vehicles in more complicated
environments. However, it is difficult to generate a new feature layer for the HD map, because the
conventional method of generating the HD map based on several professional mapping cars has high
costs in terms of time and money due to the need to re-drive on all of the public roads. In order to
reduce these costs, we propose a crowd-sourced mapping process of the new feature layer for the HD
map. This process is composed of two steps. First, new features in the environments are acquired
from multiple intelligent vehicles. The acquired new features build each new feature layer in each
intelligent vehicle using the HD map-based GraphSLAM approach, and these new feature layers are
conveyed to a map cloud through a mobile network system. Next, the crowd-sourced new feature
layers are integrated into a new feature layer in a map cloud. In the simulation, the performance of
the crowd-sourced process is then analyzed and evaluated. Experiments in real driving environments
confirm the results of the simulation.
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1. Introduction

Recently, most automobile companies have begun the development of intelligent vehicles such as
vehicles with Advanced Driver Assistance Systems (ADAS), partially autonomous vehicles, and fully
autonomous vehicles. These newly developed intelligent vehicles must satisfy various driving
requirements such as safety, comfort, and fuel efficiency.

The foundation of an intelligent vehicle is its ability to understand the environment around it [1,2].
For this purpose, a variety of internal sensors such as ultrasonic sensors, RAdio Detection And Ranging
(RADAR) sensors, LIght Detection And Ranging (LIDAR) sensors, cameras, and Global Navigation
Satellite Systems (GNSS) are installed in intelligent vehicles. However, there are two limitations to
understanding the environment which depends only on these internal sensors: the absence of integrity
and the perception range. First, the integrity of the information acquired from internal sensors is not
guaranteed; the sensors are sometimes vulnerable to environmental noises and are limited by the
fact that high-performance computing units cannot be used in vehicles due to their high price and
the excessive electric consumption. These problems make it so that the sensors cannot guarantee the
complete tracking of the sensing information and real-time performance. In addition, these sensors
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have limited perception ranges, and the sensors cannot measure target objects located outside of its
Field of View (FoV) or target objects occluded by other obstacles.

In order to solve these problems, a High-Definition map (HD map) have been widely researched [3].
The HD map is a precise and detailed map that stores landmark features which are essential to intelligent
driving. Though the composition of the HD map differs according to the map providers (HERE [4] and
TomTom [5]) or the purpose of the map (localization [6–10], perception [11], and planning [12]), the HD
map generally includes various landmark features (such as road geometry [13], road maneuver [14],
lane [15,16], road surface marking [17], and traffic control units [18]).

The use of the HD map improves several functions of the intelligent vehicles: localization,
perception, and planning. First, the matching relation between the HD map and the perception
measurements improves the accuracy and reliability of vehicle localization without the need for
high-cost sensors [6–10]. Next, when the position and heading of the vehicle are known precisely by
the vehicle localization, the features in the HD map can be used as virtual sensors in the intelligent
vehicle. For example, the traffic sign information in the HD map can be “sensed” by the intelligent
vehicle without using the perception sensors. In addition, in order to accurately recognize continuously
changing information such as the state of a traffic light in real-time, information such as the position
and size of the traffic light can be transmitted to the recognition system through the HD map [11].
Finally, the HD map can be used to generate the local routes and global routes to destinations in the
path planning of the intelligent vehicle [12].

In order to generate the HD map used in intelligent vehicles, professional mapping vehicles
equipped with Mobile Mapping System (MMS) are mainly used through three processes [19].
First, the mapping vehicle equipped with high-performance position and perception sensors travels
along target routes in order to acquire the mapping data (data acquisition). Next, the features acquired
from the mapping vehicle are accumulated based on the trajectory of the vehicle on the map according
to the types of the features (data accumulation). Finally, the features in the map are manually refined
and confirmed (data confirmation).

The constructed features in the HD map for the intelligent vehicles are generally managed by
the layer-based map management system, which has some advantages in the application for the
intelligent vehicle. Editing of the HD map such as addition, deletion, or correction, is efficient because
it is easy to visualize and access the map database. In addition, the network bandwidth can be saved
by downloading only the required layer, when the map data are downloaded to the intelligent vehicles.
Finally, it is easy to support old vehicles, because the formats of the layers required by the vehicles
remain despite the addition of the new layers.

Recently, it has come to be required for the HD map to add new feature layers continuously as
a solution for more complicated problems in intelligent vehicles, as the functional requirements for
intelligent vehicles have increased. Unfortunately, the new feature layer mapping in the conventional
method using mapping vehicles has several problems: costs, human resources, and latency.
(1) Since mapping vehicles must be re-driven on all roads to acquire new feature data, it requires
substantial costs. (2) Many human resources are needed to confirm the newly acquired feature
information. (3) Latency necessarily occurs in the addition of the new feature layers, because it
takes lots of the times for few mapping vehicles to acquire all of the necessary data.

In order to solve the problems associated with new feature layer mapping based on several
mapping vehicles, we propose a crowd-sourced mapping process of the new feature layer based on
multiple intelligent vehicles. The main contribution of our paper is the generation of new feature
layers in the accuracy level of the HD map using the existing HD map and crowd-sourced information
without additional costs, human resources, or latency. Since the layers can be used in intelligent driving,
it is essential for the new feature layers to be highly accurate.

For the new feature layers to be highly accurate, the fact that the crowd-sourced information
acquired from intelligent vehicles is not as accurate as information acquired from mapping vehicles
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must be overcome. In order to overcome the inaccuracy of the information, the paper uses two concepts:
matching with the HD map and crowd-sourced data.

•Matching with the HD map: By considering the matching between the sensor information and the
existing features in the HD map, new feature layers are generated
with increased precision.

• Crowd-sourced data: Combining many new feature layers acquired from many intelligent vehicles
solves the accuracy problem that arises when using inaccurate sensors.

The results of the proposed algorithm were evaluated by simulations and confirmed by the
experiments in the real driving environments.

In order to explain the mapping of the new feature layer based on two concepts, this paper
is organized as follows. Section 2 presents a system architecture of the proposed system. Section 3
explains the new feature layer mapping in an individual intelligent vehicle. Section 4 describes the
integration of the new feature layers acquired from multiple intelligent vehicles in a map cloud system,
and Section 5 evaluates the proposed system through simulations. Section 6 explains the experimental
results. Finally, the conclusion is presented in Section 7.

2. System Architecture

The crowd-sourced mapping process of the new feature layer for the HD map consists of two
steps, as shown in Figure 1. The two steps are composed of (1) the mapping of the new feature
layer in each intelligent vehicle and (2) the integration of the new feature layers in a map cloud.
First, each intelligent vehicle acquires the vehicle speed, yaw rate, GNSS, and perception measurements
(including new features and the map-matching features to match with the existing features in the
HD map) to estimate the pose of the ego-vehicle precisely. The data can also be used as the mapping
data to generate the new feature layer for the HD map. In order to perform the mapping process,
an HD map-based incremental GraphSLAM algorithm is applied [20]. The algorithm accumulates the
mapping data incrementally during driving on the roads. When the vehicle is stopped temporally or
shut-down at the parking lot, the algorithm optimizes the acquired new features using the GraphSLAM
algorithm. After the optimization, the new feature layer optimized in the vehicle is uploaded to the
map cloud. Also, the algorithm is initialized and starts to re-accumulate the mapping data. Since the
algorithm is based on the optimization method, the algorithm can estimate new features more precisely
than filtering-based methods such as EKF-SLAM [21] and FastSLAM 2.0 [22]. In addition, since the
GraphSLAM algorithm uses matching constraint between the map-matching features and the existing
features in the HD map downloaded from the map cloud, the new features are estimated precisely.
Each new feature layer constructed in each intelligent vehicle is uploaded to the map cloud through a
mobile network system. Since the new feature layer is compressed from mapping data to some new
features, the network bandwidth can be saved.

Next, multiple new feature layers conveyed by the multiple intelligent vehicles are combined into
an integrated new feature layer in the map cloud. New features estimated by individual vehicles are
associated with an integrated new feature through data association algorithms such as distance-based
clustering. The map cloud uses a recursive least square (RLS) algorithm to update the integrated
feature layer whenever individual new feature layers are uploaded from multiple vehicles [23].
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Figure 1. The crowd-sourced mapping process of the new feature layer with a map cloud system.

3. Mapping of the New Feature Layer in an Intelligent Vehicle

3.1. New Feature Layer Mapping Without HD Map

In order to perform the mapping process in each intelligent vehicle, the GraphSLAM algorithm
is used [20]. The algorithm is composed of three components: nodes, edges, and a solver. The nodes
refer to the estimate states and measurements. As shown in the graph representation of Figure 2,
the nodes are represented as circles. The edges mean the relative constraints between nodes. In Figure 2,
the edges are represented as the arrows connecting two nodes. Finally, the solver solves the new feature
mapping problem to estimate vehicle poses and new features using optimization algorithms such as
the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm.

mnew

xt-2

ut-2

Xt-1

ut-1

xt

ut

Zn,t-2 Zn,t-1 Zn,t

Figure 2. Graph representation for the new feature layer mapping.

3.1.1. Node

While an intelligent vehicle is driving along the target trajectory that includes poses
x1:t = {x1, · · · , xt}, the vehicle acquires motion information u1:t = {u1, · · · , ut} and new feature
measurements zn,1:t = {zn,1, · · · , zn,t}. As shown in Figure 2, the nodes are composed of vehicle
poses x1:t, motion information u1:t, new feature measurements zn,1:t, and the new feature layer
mnew = {mn,1, mn,2, · · · , mn,N} which includes N new features. The poses x1:t can be represented
as two-dimensional special Euclidean groups (SE(2)). The SE(2), represented as the heading angle and
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the position in a plane, contains the yaw angle and the relative distances to the east and the north from
a specific reference point. The motion information u1:t is composed of the velocity and the yaw rate of
the vehicle. The new feature layer mnew in a global coordinate and new feature measurements zn,1:t in a
vehicle coordinate can be parameterized in various forms such as spatial landmarks, occupancy grids,
and point clouds.

The optimization method, which is the basis of the GraphSLAM algorithm, requires an initial
point to estimate the states. The initial point is represented in a high-dimensional space composed up
of poses x1:t and new features in the new feature layer mnew. In order to initialize the poses, Thrun et al.
used motion information and the vehicle motion model [24]. However, this method may accumulate
drift errors by biased noises of motion sensors over the times. Similarly, a Bayesian filtering-based
approach such as the extended Kalman filter and the unscented Kalman filter which integrates motion
information and GNSS information can cause errors in terms of the poses in the poor GNSS region.
In order to overcome this problem, the optimal smoothing algorithm is applied for the global estimation
of initial poses based on motion information and GNSS information [13,16]. The initial poses can
initialize the new features in the new feature layer. All of the new feature measurements in vehicle
coordinates can be converted to the global coordinate using the poses from where each measurement
was acquired. In the global coordinate, new feature measurements adjacent to each other are associated
as a new feature in the new feature layer. In this process, the associated new features become the initial
new features.

3.1.2. Edge

In the graph representation of Figure 2, an edge connecting two nodes is a constraint between
two states. The edges are composed of the transition model p(xt|xt−1, ut)) and the new feature
measurement model p(zn,t|xt, mnew). The transition model is interpreted into a motion constraint
between two consecutive poses. The pose xt at time t can be propagated from the pose xt−1 at time
t− 1 using motion information ut.

xt = g(xt−1, ut) + εp,t (1)

Fp,t = εT
p,tΩp,tεp,t (2)

The Equation (1) is the transition model with the error εp,t. Since the transition model is uni-modal,
the εp,t can be modelled as a Gaussian noise with zero means and information matrix Ωp,t. Therefore,
the motion constraint generates the negative log likelihood Fp,t as shown in Equation (2).

The new feature measurement model makes a new feature constraint where measurements of
perception sensors are associated as a new feature in the new feature layer mnew. The new feature
measurements zn,t at the pose xt can be modelled by the pose xt and the new feature layer mnew.

zn,t ≈ hn(xt, mnew) (3)

zi
n,t = hn(xt, mnew,j) + εn,i,t (4)

Fn,i,t = εT
n,i,tΩn,i,tεn,i,t (5)

Equation (3) is the new feature measurement model which estimates the new feature.
The measurement model Equation (3) is multi-modal, due to there being no correspondence with the
measurements and the layer. The measurement model hn(xt, mnew) can be converted into a uni-modal
measurement model hn(xt, mnew,j) where j = c(xt, zi

n,t, mnew) is the corresponding index between i-th
new feature measurement zi

n,t and new feature layer mnew. In the uni-modal measurement model
Equation (4), the new feature error εn,i,t can be modelled by Gaussian noise with zero mean and
information matrix Ωn,i,t. Therefore, the new feature constraint generates the negative log likelihood
Fn,i,t in the Equation (5).
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3.1.3. Solver

A cost function for the optimization of the GraphSLAM algorithm is derived from the sum of the
negative log likelihoods Equations (2) and (5).

J = ∑
t

εT
p,tΩp,tεp,t + ∑

i,t
εT

n,i,tΩn,i,tεn,i,t (6)

The unknown variables xt and mnew can be estimated by minimizing the cost function Equation (6)
based on the graph optimization [20,25]. While they estimate only poses and not map information [20],
the proposed approach estimates all states including poses and map information.

3.2. HD Map-Based New Feature Layer Mapping

The new feature mapping algorithm explained in Section 3.1 considers motion information and
new feature measurements without using the HD map. Using the additional information such as the
HD map and the map-matching feature measurements, the new feature mapping algorithm can be
improved because the map-matching constraints between the map-matching feature measurements
and the existing features in the HD map can improve the estimation performance.

3.2.1. Node

As shown in Figure 3, the nodes of the HD map mHD and the map-matching feature measurements
zm,t are added to the graph representation. In a similar manner to the new feature layer and the new
feature measurements, the HD map and map-matching feature measurements can be parameterized
into different forms such as landmarks, occupancy grids, and point clouds.

mnew

xt-2

ut-2

Zm,t-2

xt-1

ut-1

Zm,t-1

xt

ut

Zm,t

mHD

Zn,t-2 Zn,t-1 Zn,t

Figure 3. Graph representation for HD map-based new feature layer mapping.

3.2.2. Edge

A map-matching model between the existing features in the HD map and map-matching feature
measurements is converted to a constraint based on a map-matching algorithm. Such considering
of the matching relation can increase the accuracy of the poses and the new features, because more
accurate poses can propagate more accurate new features. The map-matching feature measurement
zm,t at time t can estimate the vehicle pose xt in consideration of the matching with the HD map mHD.

xt ≈ hm(mHD, zm,t) (7)
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Equation (7) is the map-matching feature-based pose estimation model. Since the model is a
multi-modal model, it must be converted to a uni-modal model. In order to convert the uni-modal
model, the initial pose x̆t is used.

xt = hm(x̆t, mHD, zm,t) + εm,t (8)

Fm,t = εT
m,tΩm,tεm,t (9)

Using the uni-modal model Equation (8), the map-matching error εm,t can be modelled by a
Gaussian noise with zero mean and information matrix Ωm,t. Therefore, the map-matching based pose
estimation constraint generates negative log likelihood Fm,t in the Equation (9).

3.2.3. Solver

A cost function for the optimization of the new feature layer mapping with HD map is derived
from the sum of the negative log likelihoods Equations (2), (5), and (9).

J′ = ∑
t

εT
p,tΩp,tεp,t + ∑

i,t
εT

n,i,tΩn,i,tεn,i,t + ∑
t

εT
m,tΩm,tεm,t (10)

Since the map-matching constraints are used in the optimization, the unknown variable xt and
mnew,j can be estimated by minimizing the cost function Equation (10) more precisely than the cost
function Equation (6).

4. Integration of New Feature Layers in a Map Cloud

The GraphSLAM algorithm generates a new feature layer on the driven roads whenever the
vehicle is stopped temporally or at a parking lot. The generated new feature layer is uploaded to the
map cloud through the mobile network system. This approach can reduce the network bandwidth
because the transmitting data are compressed from the mapping data to the new features in the layer
through the GraphSLAM algorithm.

Although the HD map is considered in the estimation of the vehicles, the crowd-sourced new
feature layers uploaded from multiple intelligent vehicles may have errors in actual positions of the new
features due to the inaccuracy of the low-cost sensors. In order to minimize the errors of new features,
the RLS algorithm ([23]) generates an integrated new feature layer by combining the crowd-sourced
new feature layers from multiple intelligent vehicles. Since the RLS algorithm recursively estimates
the integrated layer whenever the crowd-sourced layers are entered, the algorithm is suitable for
integrating the crowd-sourced layers into the integrated layer.

The values and covariances of integrated new features must be initialized to apply the
RLS algorithm.

x0 = y0, f irst new f eature (11)

P0 = R0, noise covariance o f perception sensor

The x and the P are the state and the covariance of the feature in the integrated new feature
layer, respectively. The y refers to the new features estimated in each vehicle. A firstly-uploaded
new feature y0 is used to initialize an integrated new feature. The initial covariance of the integrated
feature is determined by the noise covariance R of the perception sensor equipped in the intelligent
vehicle. For the purpose of merging the crowd-sourced layers into the integrated layer, each measured
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new feature is associated to the integrated feature using the distance-based clustering algorithm.
The associated new feature updates the integrated feature using the RLS algorithm.

Kk = Pk−1HT
k (HkPk−1HT

k + Rk)
−1

xk = xk−1 + Kk(yk − Hkxk−1) (12)

Pk = (I − Kk Hk)Pk−1(I − Kk Hk)
T + KkRkKT

k

The Jacobian matrix of the measurement model H is an identity matrix because the measurement
y and the estimated states x are the same. Entering futher measurements into the RLS algorithm
reduces the covariance and makes the integrated map more accurate.

5. Simulation

A simulation analysis was performed in order to evaluate the crowd-sourced mapping process
of the new feature layer with the HD map and to analyze the effects of the noises of commercial
sensors on the new feature layer mapping. In the simulation, a beacon layer is generated based on the
crowd-sourcing mapping with the HD map which has a lane layer only. The beacon can be modeled by
single points which have two-dimensional position information. The reason why the beacon is selected
for the new features is that it is easy to intuitively understand the process of the new feature mapping
algorithm. Not only the beacon but also other parameterized data can be generated as the new feature
layer. On the other hand, the lane in the HD map can be modeled by polylines which have consecutive
points to represent lines. Since the lane information exists on most of the actual roads, it is selected as
the HD map in the simulation. Various feature types as well as the lane can be used as the HD map.

In order to perform the simulation, a test vehicle is equipped with a high-precision Global
Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) with 0.01 m positioning errors,
in-vehicle motion sensors, and a low-cost GNSS with 2.5 m positioning errors. To estimate new features,
the mapping data consists of vehicle motion data (yaw rate and speed), a low-cost GNSS, and virtual
noised lanes and beacons. The virtual lanes and beacons replace the actual features for the purpose
of analyzing the effects of the sensor noises. The test site is UTAC CREAM in France, as shown in
Figure 4.

Figure 4. Test site for simulation: UTAC CREAM.

5.1. Simulation of Sensors

The GNSS/IMU can measure the precise pose of a vehicle. The precise pose can be used to simulate
the information which would otherwise be gathered by low-cost perception sensor information.
First, a true beacon layer and a true lane layer need to be pre-defined in the WGS84 coordinates,
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as shown in Figure 4. The true beacon layer plays two roles in the simulation: (1) the source information
to generate noised beacon measurements, and (2) the ground truth information to evaluate the beacons
estimated by the proposed algorithm. On the other hand, the true lane layer also plays two roles in
the simulation: (1) the source information to generate noised lane measurements, and (2) the existing
feature layer in the HD map for matching with noised lane measurements. Second, when the test car is
driven in the test site, the global positions of the beacons and the lanes within the detection range of
the car can be inferred from the two true layers based on the precise GNSS information, as represented
in Figure 5. Next, the beacons and the lanes in the WGS84 coordinates are converted in the vehicle
coordinate so as to simulate the perception information. Finally, Gaussian white noises are added to the
computed precise perception information to simulate the noised beacons and the noised lanes which
can be measured by low-cost sensors. The perception sensor noises added to the sensor measurements
are designed as functions of the noise level lbeacon and llane in Table 1. Basically, the two noise level
parameters are initialized as 1.

True lane

Noised 

lane

Detection range 

for lanes

Detection range 

for beacons

Noise area

True beacon

Noised beacon

Noise area

Figure 5. Concept of perception simulators for beacons and lanes.

Table 1. Sensor noise modeling.

Simulated Sensors Sensor Noises

Distance of point feature (m) N(0, (lbeacon)
2)

Heading of point feature(deg) N(0, (2.5lbeacon)
2)

Distance of polyline feature (m) N(0, (llane)
2)

Heading of polyline feature (deg) N(0, (2.5llane)
2)

To match between the simulated lanes (red) and the lanes in the HD map (blue), a generalized
iterative closest point (GICP) algorithm is applied [26]. Since the GICP algorithm matches the source
points with the target points, the simulated lanes and the lanes in the HD map are sampled to the
points at intervals of 0.1 m. The matching relation between two lanes can infer the transformation
matrix between the initial pose and the estimated pose.

5.2. Results of Simulation

The results of the new feature mapping algorithm in the simulation are evaluated using the
Euclidean distance errors between the estimated beacons and the true beacons. In order to analyze the
effects of the HD map in the algorithm, the simulation is split into two cases: new feature mapping
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without the HD map and new feature mapping with the HD map. Next, the results of map integration
are computed so as to analyze the effects of the number of measurements.

The distance errors of the beacons are shown in Figure 6. The green bars in Figure 6 are the errors
of the beacons generated by the new feature mapping algorithm without the HD map. The mean
and the standard deviation of the errors without the HD map are 1.372 m and 0.810 m, respectively.
The blue bars in Figure 6 represent the errors of the beacons generated by the new feature mapping
algorithm with the HD map. The mean and the standard deviation of the errors with the HD map are
0.647 m and 0.357 m, respectively. The mean and the standard deviation of beacons considering the HD
map are smaller than those of the beacons not considering the HD map, because matching information
with the HD map is used to estimate the positions of the beacons. In other words, the beacons can be
more precisely estimated when considering the HD map.

Figure 6. The errors of the new features.

For simulating the map integration, the crowd-sourced new feature layers update the integrated
new feature layer using the RLS algorithm. In order to evaluate the accuracies of the beacons
along the number of measurements, the Euclidean distance errors of the integrated beacons are
analyzed. The means of the errors of the integrated beacons are represented along the number of the
measurements, as shown in Figure 7. When the number of the measurements is one, the mean of errors
of the beacons is 0.56 m. On the other hand, when the number of the measurements is 6, the mean
of errors is 0.14 m. When more measurements are used, the means of the Euclidean distance errors
further decrease.

Figure 7. The errors of the integrated features.
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5.3. Analysis of Sensor Noises

To simulate the errors associated with the low-cost perception sensors, the beacon simulator
and lane simulator are used in the simulation. To analyze the effects of low-cost perception sensors,
the means of the Euclidean distance errors of beacons are analyzed by changing the perception
sensor noises.

While the noise level l of a sensor is changed from 0.5 to 2, the noise level l of the other sensor is
fixed to 1 for analyzing the effect of the noise of the target sensor. After the noise level of the target
sensor is selected, beacons are estimated using the HD map-based new feature mapping algorithm
and the RLS algorithm using crowd-sourced data. The beacons are evaluated by the true beacon map.
The means of the errors of all beacons are shown in Figure 8. The blue line represents the change of
the mean of the errors along the change of lbeacon at llane = 1, while the orange line represents the
change of the mean of the errors along the change of tlane at lbeacon = 1. When the noise level of the
lane sensor increases, the means of errors of the beacons increase. Since the noised lanes have different
shapes with the HD map, the rotation and translation matrices computed by the GICP algorithm are
more incorrectly estimated along the more noised lanes. The most significant effect on the result is
the noise of the beacon sensor. When the noise of the beacon sensor increases, the estimated beacons
become inaccurate, because the noised information is directly combined with the estimated positions
of the beacons.

Figure 8. The mean of the errors of the integrated features along to the noises.

6. Experiment

6.1. Experimental Environment

The experiments are evaluated in two ways: (1) crowd-sourced mapping of the new feature layer
and (2) localization on the HD map with the generated new feature layer. A test site for the experiment
is a motorway road in Korea, as shown in Figure 9. A streetlight layer is generated as new feature
layer based on the crowd-sourced mapping process with the HD map which includes a lane layer.
The reason why the streetlight is selected as the new feature is that the streetlights most frequently
appear on the test site. Since the lanes which are basic elements of the road are on all of the public roads,
the lanes are used as map-matching features. In order to generate the new feature layer, it is necessary
to acquire the multiple mapping data from lots of intelligent vehicles. Since it is difficult to prepare lots
of intelligent vehicles, the mapping data are replaced by data acquired from multiple drivings of a test
vehicle (11 drivings). The generated new feature layer (the streetlight layer) is evaluated by comparing
with the true streetlight layer which is generated by the conventional mapping process based on the
high-precision sensors. On the other hand, in order to evaluate the effect of the new feature layer in
the intelligent driving, the performance of the localization based on the HD map with the generated
new feature layer was compared with the performance of the localization based on the HD map only.
The performance of the localization is evaluated by the high-precision sensors.
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Figure 9. Test site for experiment: motorway road in Korea.

In order to evaluate the algorithm in two ways such as mapping and localization, the test vehicle
is equipped with a commercial camera (Mobileye EyeQ3), a LIDAR with 16 layers (Velodyne VLP-16),
a high-precision GNSS/IMU (OXTS RT3002), a low-cost GNSS(U-blox EVK-6T), and in-vehicle motion
sensors (a yaw rate sensor and a wheel speed sensor). The camera can detect the lane information
at 15 FPS in the 40◦ horizontal view. The LIDAR with 16 layers can detect the point clouds reflected
from the surrounding environment at 10 FPS in the 360◦ horizontal view. Although either the image
processing approach [27] or deep learning approach [28] can be applied to detect the streetlights,
the pole-like object detector based on the multi-layer LIDAR [29] is applied for convenience in the
experiments. The high-precision GNSS/IMU and the low-cost GNSS have 0.01 m and 2.5 m position
accuracy, respectively.

It is essential to generate two types of data: (1) the true streetlight layer to evaluate the mapping
performance of the proposed algorithm and (2) the lane layer used as the HD map. In order to generate
both units of data, the conventional mapping method is applied. The point clouds from the LIDAR
are accumulated based on the vehicle pose measured by the high-precision GNSS/IMU. The true
streetlight layer is extracted manually based on the shape of accumulated point clouds. The true
streetlight layer is used to evaluate the mapping performance of the new feature layer generated by
the proposed algorithm based on crowd-sourced mapping data. Similarly, the lane layer is extracted
manually based on the intensity of accumulated point clouds. The lane layer used as the HD map
increases the mapping performance of the new feature layer by matching with the lanes measured by
the commercial camera.

6.2. Mapping of New Feature Layer

To evaluate the results of both the individual new feature layer estimated by one mapping data
and the integrated new feature layer estimated by multiple mapping data, the Euclidean distance errors
of the estimated streetlights are shown in Figure 10. In contrast, only considering the Euclidean distance
errors for the evaluation in the simulation, the graphs in Figure 10 include Euclidean distance errors,
lateral distance errors, and longitudinal distance errors. The lateral errors and longitudinal errors
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between the ground truths of the streetlights and the estimated streetlights refer to the differences
in the perpendicular direction and the parallel direction of the trajectory of the vehicle, respectively.
The reason for using three types of errors is to reflect the properties of lanes as follows. As shown
in Figure 11, the lanes in the HD map cannot determine the longitudinal position of the vehicle
because lanes are continuously represented as similar lanes which are placed straight toward the
longitudinal direction in the motorway condition. While the lateral position of the car can be estimated
by matching information of these lanes, the longitudinal position cannot be estimated precisely in
the same way. Therefore, when the lane matching is considered, the streetlights are more precise to
the lateral direction than they are to the longitudinal direction. On the other hand, the longitudinal
errors of new features estimated with the HD map are caused by noises of sensors such as wheel
speed sensors and low-cost GNSS. Since each new feature estimated by each driving is spread to the
longitudinal direction around the ground truth of the streetlight as shown in Figure 9, the new feature
integrated by the RLS algorithm approximates the ground truth of the streetlight.

Figure 10. Errors of estimated streetlights. (top) the Euclidean error, (middle) the lateral error,
and (bottom) the longitudinal error of the streetlights. The lateral errors are reduced based on the
matching with the HD map. The longitudinal errors are reduced by considering the crowd-sourced data.

The green bars in Figure 10 are generated by the new feature layer mapping without the HD map
in a single intelligent vehicle. The blue bars in Figure 10 show the errors of the streetlights estimated
by the HD map-based new feature layer mapping in the single driving. The magenta bars are made by
the map integration using crowd-sourced new feature layers. The means and the standard deviations
of the errors from several conditions are shown in Table 2.

Table 2. Means and standard deviations of streetlight errors.

Mean (m)/Std. (m) w/o HD Map with HD Map Integration

Euclidean error 5.2718/0.6877 4.5284/0.6418 0.5458/0.3543
Lateral error 0.4651/0.2506 0.1825/0.1564 0.1184/0.0939

Longitudinal error 5.2445/0.6944 4.5220/0.6418 0.5181/0.3638
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Figure 11. Results of the proposed algorithm in the specific streetlights. The integrated streetlight is
updated recursively based on each indexing number beside each estimated streetlight. As a result,
the integrated streetlight approximates the true streetlight.

As shown in Table 2, consideration of the HD map leads to a substantial difference in the mean of
the errors. The mean of lateral errors of streetlights is reduced to 0.1825 m due to the consideration
of the lane matching. In contrast, the mean of the longitudinal errors of the streetlights with the HD
map is 4.5220 m which is similar to the mean of the longitudinal errors without the HD map, which is
5.2445 m, because the lane matching rarely compensates for the longitudinal errors.

The RLS algorithm integrates with crowd-sourced new feature layers. The means and standard
deviations of Euclidean, lateral, and longitudinal errors based on the map integration were smaller than
those not based on the map integration. The longitudinal errors especially can be reduced dramatically.
The experiment integrating motion, GNSS, perceptions, and the HD map based on the crowd-sourced
data resulted in the mean errors 0.5458 m in the Euclidean distance. Therefore, the experimental results
demonstrate that streetlights are more precisely generated through matching with the HD map and
crowd-sourced data.

6.3. Localization in HD Map With New Feature Layer

To evaluate the effect of the existence of the new feature layer in the localization of the intelligent
vehicle, the localization algorithm is performed under two conditions: (1) the HD map without the
new feature layer and (2) the HD map with the new feature layer. The test vehicle uses in-vehicle
motion sensors, the low-cost GNSS, the camera sensor to detect the lanes, and the LIDAR sensor to
detect the streetlights. The high-precision GNSS/IMU is used as the ground truth information of the
vehicle pose.

To perform the localization, the GraphSLAM approach is applied. Under both of the conditions,
the lane matching is considered in the manner explained in the Equation (8). The approach considers
motion information, GNSS information, and lane matching information similarly with the general
lane based localization algorithm [30]. Under the condition in the HD map with the new feature layer,
the streetlight matching is additionally considered in the similar manner explained in the Equation (4).
While the mnew,j is used as a variable in the mapping process, mnew,j is used as a fixed value in the
localization process.

As shown in Table 3, the lateral Root Mean Square Errors (RMSEs) without the new feature layer
0.2214 m and with the new feature layer 0.2077 m are similar to each other, the reason being that
matching with the lanes compensates for the lateral positioning errors. However, the longitudinal
RMSE with the new feature layer 0.6261 m is smaller than the RMSE without the new feature layer
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5.4138 m. The new feature layer reduces the RMSE to the longitudinal direction by matching with the
measured streetlights.

Table 3. RMSE of localization Errors from Figure 12.

RMSE (m) w/o New Features With New Features

Lateral RMSE 0.2214 0.2077
Longitudinal RMSE 5.4138 0.6261

Figure 12. Localization errors. (top) the error to the longitudinal direction and (bottom) the error to the
lateral direction. The longitudinal errors based on the localization with the new feature layer is more
reduced than the errors based on the localization without the new feature layer.

7. Conclusions

This paper proposed a crowd-sourced mapping process of a new feature layer to reduce the
costs caused by re-driving mapping vehicles and the delays of the addition of new feature layers.
The process is performed in individual intelligent vehicles and the map cloud.

1. The mapping process applies the HD map-based GraphSLAM algorithm. Since the matching
information between features acquired from perception sensors and features in the existing HD map
is considered, the process increases the reliability and accuracy of the new feature layer. In addition,
the new feature layer has high consistency with the existing HD map.

2. In order to compensate for the errors of the low-cost sensors, the map cloud integrates
crowd-sourced new feature layers based on the RLS algorithm. Since the algorithm recursively
estimates the integrated feature whenever each new feature layer is inputted from each intelligent
vehicle, the algorithm is effective in integrating individual new feature layers into the integrated layer.

3. Simulations were performed to analyze the effects of the sensor noises caused by the low-cost
sensors. Experiments in real driving environments evaluated the performance of the crowd-sourced
mapping for the new feature layer. In addition, the localization performance with the new feature
layer was evaluated by comparing it with the localization performance without the new feature layer.

This paper presents the crowd-sourced mapping process of the new feature layer using multiple
intelligent vehicles. The approach has limitations in that the performance of the algorithm is largely
affected by the performance of the landmark feature detector. In order to overcome the dependency
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of the detector, the authors plan to research the crowd-sourced mapping process based on the signal
level features.
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