Infiltrated Photonic Crystal Fibers for Sensing Applications
Abstract
:1. Introduction
2. Infiltration of Photonic Crystal Fibers
2.1. Photonic Crystal Fiber Infiltration with Gases
2.2. Photonic Crystal Fiber Infiltration with Liquids
2.3. Photonic Crystal Fiber Infiltration with Solids
3. Sensing Applications
3.1. Photonic Crystal Fibers Infiltrated with Gas
3.2. Photonic Crystal Fibers Infiltrated with Liquids
3.3. Photonic Crystal Fibers Infiltrated with Liquid Crystals
3.4. Photonic Crystal Fibers Infiltrated with Solids
3.5. Plasmonic Photonic Crystal Fibers
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kashyap, R.; Wyatt, R.; McKee, P.F. Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings. Electron. Lett. 1993, 29, 1025–1026. [Google Scholar] [CrossRef]
- Shigehara, M.; Satoh, T.; Inoue, A.; Hattori, Y. Optical fiber identification system using fiber Bragg gratings. Opt. Fiber Commun. 1996, 162–163. [Google Scholar]
- Hill, K.O.; Malo, B.; Bilodeau, F.; Thériault, S.; Johnson, D.C.; Albert, J. Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing. Opt. Lett. 1995, 20, 1438–1440. [Google Scholar] [CrossRef]
- Hill, K.O. Aperiodic distributed-parameter waveguides for integrated optics. Appl. Opt. 1974, 13, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Udd, E. An overview of fiber-optic sensors. Rev. Sci. Instrum. 1995, 66, 4015–4030. [Google Scholar] [CrossRef]
- Zubia, J.; Arrue, J. Plastic optical fibers: An introduction to their technological processes and applications. Opt. Fiber Technol. 2001, 7, 101–140. [Google Scholar] [CrossRef]
- Sano, Y.; Yoshino, T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. J. Lightwave Technol. 2003, 21, 132–139. [Google Scholar] [CrossRef]
- Koo, K.P.; Kersey, A.D. Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing. J. Lightwave Technol. 1995, 13, 1243–1249. [Google Scholar] [CrossRef]
- Ashoori, R. Time domain multiplexing for a Bragg grating strain measurement sensor network. In Proceedings of the 13th International Conference on Optical Fiber Sensors, Kyongju, Korea, 12–16 April 1999; p. 374614. [Google Scholar]
- Moraleda, A.T.; Montero, D.S.; Webb, D.; García, C.V. A self-referenced optical intensity sensor network using POFBGs for biomedical applications. Sensors 2014, 14, 24029–24045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalvo, J.; Tapetado, A.; Montero, D.S.; Vázquez, C. WDM-PON preventive optical monitoring system with colourless reflectors. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; p. W2A.57. [Google Scholar]
- Pinzón, P.J.; Montero, D.S.; Tapetado, A.; Torres, J.C.; Vázquez, C. Dual-wavelength speckle-based SI-POF sensor for frequency detection and localization of remote vibrations. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 31 May–3 June 2016; p. 99161Z. [Google Scholar]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Knight, J.C.; Russell, P.S.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Knight, J.C.; Mangan, B.J.; Russell, P.S.J. Photonic crystal fibres: An endless variety. IEICE Trans. Electron. 2001, E84-C, 585–592. [Google Scholar]
- Knight, J.C.; Birks, T.A.; Cregan, R.F.; Russell, P.S.J.; de Sandro, J.P. Large mode area photonic crystal fibre. Electron. Lett. 1998, 34, 1347–1348. [Google Scholar] [CrossRef]
- Ortigosa-Blanch, A.; Knight, J.C.; Wadsworth, W.J.; Arriaga, J.; Mangan, B.J.; Birks, T.A.; Russell, P.S.J. Highly birefringent photonic crystal fibers. Opt. Lett. 2000, 25, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Dakin, J.P.; Brown, R.G.W. (Eds.) Handbook of Optoelectronics (Two-Volume Set); Series in Optics and Optoelectronics; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zolla, F.; Renversez, G.; Nicolet, A.; Kuhlmey, B.; Guenneau, S.; Felbacq, D.; Argyros, A.; Leon-Saval, S. Foundations of Photonic Crystal Fibres; Imperial College Press: London, UK, 2011. [Google Scholar]
- Mogilevtsev, D.; Birks, T.; Russell, P. Localized function method for modeling defect modes in 2-D photonic crystals. J. Lightwave Technol. 1999, 17, 2078–2081. [Google Scholar] [CrossRef]
- Ferrando, A.; Silvestre, E.; Miret, J.J.; Andrés, P.; Andrés, M.V. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett. 1999, 24, 276–278. [Google Scholar] [CrossRef]
- Cregan, R.F. Single-mode photonic band gap guidance of light in air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef]
- Roberts, P.J.; Couny, F.; Sabert, H.; Mangan, B.J.; Williams, D.P.; Farr, L.; Mason, M.W.; Tomlinson, A.; Birks, T.A.; Knight, J.C.; et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef]
- Poletti, F.; Wheeler, N.V.; Petrovich, M.N.; Baddela, N.; Fokoua, E.N.; Hayes, J.R.; Gray, D.R.; Li, Z.; Slavík, R.; Richardson, D.J. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nat. Photonics 2013, 7, 279–284. [Google Scholar] [CrossRef]
- Perrin, M.; Quiquempois, Y.; Bouwmans, G.; Douay, M. Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes. Opt. Express 2007, 15, 13783–13795. [Google Scholar] [CrossRef] [PubMed]
- Ranka, J.K.; Windeler, R.S.; Stentz, A.J. Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. In Proceedings of the IEEE Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 8–11 November 1999; p. CPD8. [Google Scholar]
- Zhang, R.; Teipel, J.; Giessen, H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Express 2006, 14, 6800–6812. [Google Scholar] [CrossRef]
- Bozolan, A.; de Matos, C.J.; Cordeiro, C.M.B.; dos Santos, E.M.; Travers, J. Supercontinuum generation in a water-core photonic crystal fiber. Opt. Express 2008, 16, 9671–9676. [Google Scholar] [CrossRef] [PubMed]
- Renn, M.J.; Montgomery, D.; Vdovin, O.; Anderson, D.Z.; Wieman, C.E.; Cornell, E.A. Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett. 1995, 75, 3253–3256. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Nakata, T.; Sakaki, K.; Ohtsu, M.; Lee, K.I.; Jhe, W. Laser apectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. Phys. Rev. Lett. 1996, 76, 4500–4503. [Google Scholar] [CrossRef]
- Dall, R.G.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J. Guiding of metastable helium atoms through hollow optical fibres. J. Opt. B Quant. Semiclass. Opt. 1999, 1, 396–401. [Google Scholar] [CrossRef]
- Müller, D.; Cornell, E.A.; Anderson, D.Z.; Abraham, E.R.I. Guiding laser-cooled atoms in hollow-core fibers. Phys. Rev. A 2000, 61, 033411. [Google Scholar] [CrossRef]
- Christensen, C.A.; Will, S.; Saba, M.; Jo, G.B.; Shin, Y.I.; Ketterle, W.; Pritchard, D. Trapping of ultracold atoms in a hollow-core photonic crystal fiber. Phys. Rev. A 2008, 78, 033429. [Google Scholar] [CrossRef]
- Krauss, T.F. Why do we need slow light? Nat. Photonics 2008, 2, 448–450. [Google Scholar] [CrossRef]
- Larsen, T.; Bjarklev, A.; Hermann, D.; Broeng, J. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 2003, 11, 2589–2596. [Google Scholar] [CrossRef]
- Wolinski, T.R.; Szaniawska, K.; Ertman, S.; Lesiak, P.; Domanski, A.W.; Dabrowski, R.; Nowinowski-Kruszelnicki, E.; Wojcik, J. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol. 2006, 17, 985–991. [Google Scholar] [CrossRef]
- Du, F.; Lu, Y.Q.; Wu, S.T. Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 2004, 85, 2181–2183. [Google Scholar] [CrossRef]
- Haakestad, M.W.; Alkeskjold, T.T.; Nielsen, M.D.; Scolari, L.; Riishede, J.; Engan, H.E.; Bjarklev, A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technol. Lett. 2005, 17, 819–821. [Google Scholar] [CrossRef]
- Woliński, T.R.; Szaniawska, K.; Bondarczuk, K.; Lesiak, P.; Domański, A.W.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J. Propagation properties of photonic crystal fibers filled with nematic liquid crystals. Opto-Electron. Rev. 2005, 13, 177–182. [Google Scholar]
- Alkeskjold, T.T.; Lægsgaard, J.; Bjarklev, A.; Hermann, D.S.; Anawati, A.; Broeng, J.; Li, J.; Wu, S.T. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 2004, 12, 5857–5871. [Google Scholar] [CrossRef]
- Wynne, R.M.; Barabadi, B.; Creedon, K.J.; Ortega, A. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor. J. Lightwave Technol. 2009, 27, 1590–1596. [Google Scholar] [CrossRef]
- Hoo, Y.L. Evanescent-wave gas sensing using microstructure fiber. Opt. Eng. 2002, 41, 8–9. [Google Scholar] [CrossRef]
- Ritari, T.; Tuominen, J.; Ludvigsen, H.; Petersen, J.C.; Sørensen, T.; Hansen, T.P.; Simonsen, H.R. Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 2004, 12, 4080–4087. [Google Scholar] [CrossRef]
- Parry, J.P.; Griffiths, B.C.; Gayraud, N.; McNaghten, E.D.; Parkes, A.M.; MacPherson, W.N.; Hand, D.P. Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 2009, 20, 075301. [Google Scholar] [CrossRef]
- Van Brakel, A.; Grivas, C.; Petrovich, M.N.; Richardson, D.J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 2007, 15, 8731–8736. [Google Scholar] [CrossRef]
- Markos, C.; Vlachos, K.; Kakarantzas, G. Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber. Opt. Express 2010, 18, 24344–24351. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.K.C.; Kuhlmey, B.T.; Eggleton, B.J. Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 2009, 34, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Mileńko, K.; Rutkowska, K.A.; Woliński, T.R. Numerical and experimental analysis of photonic crystal fiber selectively infiltrated with silicon oil. Acta Phys. Pol. A 2013, 124, 589–591. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, W.; Hansen, O.; Bang, O. Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt. Express 2011, 19, 17585–17590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Jin, W.; Demokan, M.S.; Ho, H.L.; Hoo, Y.L.; Zhao, C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt. Express 2005, 13, 9014–9022. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef]
- Nielsen, K.; Noordegraaf, D.; Sørensen, T.; Bjarklev, A.; Hansen, T.P. Selective filling of photonic crystal fibres. J. Opt. A Pure Appl. Opt. 2005, 7, L13–L20. [Google Scholar] [CrossRef]
- Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S. Micromachining structured optical fibers using focused ion beam milling. Opt. Lett. 2007, 32, 1575–1577. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Tyagi, H.K.; Sempere, L.P.; Russell, P.S.J. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett. 2008, 93, 111102. [Google Scholar] [CrossRef]
- Lee, H.W.; Schmidt, M.A.; Russell, R.F.; Joly, N.Y.; Tyagi, H.K.; Uebel, P.; Russell, P.S.J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 2011, 19, 12180–12189. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Sempere, L.N.P.; Tyagi, H.K.; Poulton, C.G.; Russell, P.S.J. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys. Rev. B 2008, 77, 033417. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, H.K.; Schmidt, M.A.; Sempere, L.P.; Russell, P.S. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt. Express 2008, 16, 17227–17236. [Google Scholar] [CrossRef] [PubMed]
- Markos, C.; Yannopoulos, S.N.; Vlachos, K. Chalcogenide glass layers in silica photonic crystal fibers. Opt. Express 2012, 20, 14814–14824. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Granzow, N.; Da, N.; Peng, M.; Wondraczek, L.; Russell, P.S.J. All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Opt. Lett. 2009, 34, 1946–1948. [Google Scholar] [CrossRef] [PubMed]
- Takeyasu, N.; Tanaka, T.; Kawata, S. Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 2005, 44, L1134–L1137. [Google Scholar] [CrossRef]
- Sazio, P.J.A. Microstructured optical fibers as high-pressure microfluidic reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Donald, I.W.; Metcalfe, B.L. The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process. J. Mater. Sci. 1996, 31, 1139–1149. [Google Scholar] [CrossRef]
- Hou, J.; Bird, D.; George, A.; Maier, S.; Kuhlmey, B.; Knight, J.C. Metallic mode confinement in microstructured fibres. Opt. Express 2008, 16, 5983–5990. [Google Scholar] [CrossRef]
- Tuniz, A.; Kuhlmey, B.T.; Lwin, R.; Wang, A.; Anthony, J.; Leonhardt, R.; Fleming, S.C. Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 2010, 96, 191101. [Google Scholar] [CrossRef]
- Michieletto, M.; Lyngsø, J.K.; Jakobsen, C.; Lægsgaard, J.; Bang, O.; Alkeskjold, T.T. Hollow-core fibers for high power pulse delivery. Opt. Express 2016, 24, 7103–7119. [Google Scholar] [CrossRef]
- Hädrich, S.; Rothhardt, J.; Demmler, S.; Tschernajew, M.; Hoffmann, A.; Krebs, M.; Liem, A.; de Vries, O.; Plötner, M.; Fabian, S.; et al. Scalability of components for kW-level average power few-cycle lasers. Appl. Opt. 2016, 55, 1636–1640. [Google Scholar] [CrossRef] [PubMed]
- Heckl, O.H.; Saraceno, C.J.; Baer, C.R.E.; Südmeyer, T.; Wang, Y.Y.; Cheng, Y.; Benabid, F.; Keller, U. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express 2011, 19, 19142–19149. [Google Scholar] [CrossRef] [PubMed]
- Ouzounov, D.G. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 2003, 301, 1702–1704. [Google Scholar] [CrossRef] [PubMed]
- Cassataro, M.; Novoa, D.; Günendi, M.C.; Edavalath, N.N.; Frosz, M.H.; Travers, J.C.; Russell, P.S.J. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt. Express 2017, 25, 7637–7644. [Google Scholar] [CrossRef] [PubMed]
- Finger, M.A.; Iskhakov, T.S.; Joly, N.Y.; Chekhova, M.V.; Russell, P.S.J. Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum. Phys. Rev. Lett. 2015, 115, 143602. [Google Scholar] [CrossRef] [PubMed]
- Ménard, J.M.; Köttig, F.; Russell, P.S.J. Broadband electric-field-induced LP_01 and LP_02 second harmonic generation in Xe-filled hollow-core PCF. Opt. Lett. 2016, 41, 3795–3798. [Google Scholar] [CrossRef] [PubMed]
- Konorov, S.O.; Fedotov, A.B.; Zheltikov, A.M. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Opt. Lett. 2003, 28, 1448–1450. [Google Scholar] [CrossRef]
- Jones, A.M.; Nampoothiri, A.V.V.; Ratanavis, A.; Fiedler, T.; Wheeler, N.V.; Couny, F.; Kadel, R.; Benabid, F.; Washburn, B.R.; Corwin, K.L.; et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 2011, 19, 2309–2316. [Google Scholar] [CrossRef]
- Ruddy, V. An effective attenuation coefficient for evanescent wave spectroscopy using multimode fiber. Fiber Integr. Opt. 1990, 9, 143–151. [Google Scholar] [CrossRef]
- Stewart, G.; Norris, J.; Clark, D.F.; Culshaw, B. Evanescent-wave chemical sensors: A theoretical evaluation. Int. J. Optoelectron. 1991, 6, 227–238. [Google Scholar]
- Hoo, Y.L.; Jin, W.; Shi, C.; Ho, H.L.; Wang, D.N.; Ruan, S.C. Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 2003, 42, 3509–3515. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.L.; Hoo, Y.L.; Jin, W.; Ju, J.; Wang, D.N.; Windeler, R.S.; Li, Q. Optimizing microstructured optical fibers for evanescent wave gas sensing. Sens. Actuators B 2007, 122, 289–294. [Google Scholar] [CrossRef]
- Asaduzzaman, S.; Ahmed, K.; Arif, M.F.H.; Morshed, M. Application of microarray-core based modified photonic crystal fiber in chemical sensing. In Proceedings of the 2015 International Conference on Electrical & Electronic Engineering, Jinan, China, 29–31 May 2015. [Google Scholar]
- Pickrell, G.; Peng, W.; Wang, A. Random-hole optical fiber evanescent-wave gas sensing. Opt. Lett. 2004, 29, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P.; Astle, H.W. Low-loss single-material fibers made from pure fused silica. Bell Syst. Tech. J. 1974, 53, 1021–1039. [Google Scholar] [CrossRef]
- Chen, J.; Hangauer, A.; Strzoda, R.; Euser, T.G.; Chen, J.S.Y.; Scharrer, M.; Russell, P.S.J.; Amann, M.C. Sensitivity limits for near-infrared gas sensing with suspended-core PCFs directly coupled with VCSELs. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 16–21 May 2010. [Google Scholar]
- Dong, L.; Thomas, B.K.; Fu, L. Highly nonlinear silica suspended core fibers. Opt. Express 2008, 16, 16423–16430. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.S. Suspended-core holey fiber for evanescent-field sensing. Opt. Eng. 2007, 46, 010503. [Google Scholar] [CrossRef] [Green Version]
- Cox, F.M.; Lwin, R.; Large, M.C.J.; Cordeiro, C.M.B. Opening up optical fibres. Opt. Express 2007, 15, 11843–11848. [Google Scholar] [CrossRef] [PubMed]
- Warren-Smith, S.C.; Ebendorff-Heidepriem, H.; Foo, T.C.; Moore, R.; Davis, C.; Monro, T.M. Exposed-core microstructured optical fibers for real-time fluorescence sensing. Opt. Express 2009, 17, 18533–18542. [Google Scholar] [CrossRef]
- Kostecki, R.; Ebendorff-Heidepriem, H.; Davis, C.; McAdam, G.; Warren-Smith, S.C.; Monro, T.M. Silica exposed-core microstructured optical fibers. Opt. Mater. Express 2012, 2, 1538–1547. [Google Scholar] [CrossRef]
- Hoo, Y.L.; Jin, W.; Ho, H.L.; Ju, J.; Wang, D.N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B 2005, 105, 183–186. [Google Scholar] [CrossRef]
- Henningsen, J.; Hald, J. Dynamics of gas flow in hollow core photonic bandgap fibers. Appl. Opt. 2008, 47, 2790–2797. [Google Scholar] [CrossRef] [PubMed]
- Kassani, S.H.; Khazaeinezhad, R.; Jung, Y.; Kobelke, J.; Oh, K. Suspended Ring-Core Photonic Crystal Fiber Gas Sensor With High Sensitivity and Fast Response. IEEE Photonics J. 2015, 7, 2700409. [Google Scholar] [CrossRef]
- Li, X.; Pawłat, J.; Liang, J.; Xu, G.; Ueda, T. Fabrication of photonic bandgap fiber gas cell using focused ion beam cutting. Jpn. J. Appl. Phys. 2009, 48, 06FK05. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Oigawa, H.; Ueda, T. Doubled optical path length for photonic bandgap fiber gas cell using micromirror. Jpn. J. Appl. Phys. 2011, 50, 06GM01. [Google Scholar] [CrossRef]
- Jin, W.; Qi, L.F.; Ho, H.L.; Cao, Y.C. Gas detection with micro and nano-engineered optical fibers. In Proceedings of the Conference on Optical Sensors 2012, Micro and Nano-Engineered Sensors, Monterey, CA, USA, 24–28 June 2012; p. STu4F.3. [Google Scholar]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; Franco, M.A.R.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Cruz, C.H.B.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056–13066. [Google Scholar] [CrossRef]
- Morshed, M.; Hassan, M.I.; Roy, T.K.; Uddin, M.S.; Razzak, S.M.A. Microstructure core photonic crystal fiber for gas sensing applications. Appl. Opt. 2015, 54, 8637–8643. [Google Scholar] [CrossRef]
- Asaduzzaman, S.; Ahmed, K.; Paul, B.K. Slotted-core photonic crystal fiber in gas-sensing application. In Advanced Sensor Systems and Applications VII; Liu, T., Jiang, S., Landgraf, R., Eds.; SPIE: Beijing, China, 2016; p. 100250O. [Google Scholar]
- Asaduzzaman, S.; Ahmed, K. Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 2016, 10, 20–26. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Lehmann, H.; Bartelt, H.; Magalhães, F.; Amezcua-Correa, R.; Santos, J.L.; Van Roosbroeck, J.; Araújo, F.M.; Ferreira, L.A.; Knight, J.C. Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009, 2009, 398403. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Zhang, M.; Ye, P. Gas sensing properties of index-guided PCF with air-core. Opt. Laser Technol. 2008, 40, 167–174. [Google Scholar]
- Yu, X.; Sun, Y.; Ren, G.B.; Shum, P.; Ngo, N.Q.; Kwok, Y.C. Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber. IEEE Photonic Technol. Lett. 2008, 20, 336–338. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, S.; Oh, K. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 2011, 19, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.; Hasan, M.I.; Razzak, S.M.A. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sens. 2015, 5, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Olyaee, S.; Naraghi, A. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sens. 2013, 3, 131–136. [Google Scholar] [CrossRef]
- Olyaee, S.; Naraghi, A.; Ahmadi, V. High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik Int. J. Light Electron Opt. 2014, 125, 596–600. [Google Scholar] [CrossRef]
- Jin, W.; Ho, H.L.; Cao, Y.C.; Ju, J.; Qi, L.F. Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 2013, 19, 741–759. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Kriezis, E.E. Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers. J. Opt. Soc. Am. B 2007, 25, 111–118. [Google Scholar] [CrossRef]
- Rosberg, C.R.; Bennet, F.H.; Neshev, D.N.; Rasmussen, P.D.; Bang, O.; Krolikowski, W.; Bjarklev, A.; Kivshar, Y.S. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. Opt. Express 2007, 15, 12145–12150. [Google Scholar] [CrossRef]
- Gundu, K.M.; Kolesik, M.; Moloney, J.V.; Lee, K.S. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Opt. Express 2006, 14, 6870–6878. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Vázquez, C.; Kriezis, E.E.; Yioultsis, T.V. Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation. Opt. Express 2011, 19, 21680–21691. [Google Scholar] [CrossRef]
- Kuhlmey, B.T.; Eggleton, B.J.; Wu, D.K.C. Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Technol. 2009, 27, 1617–1630. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Bhatia, V.; Vengsarkar, A.M. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Djambova, T.V.; Mizunami, T. Simultaneous sensing of temperature and displacement using a multimode fiber Bragg grating. Jpn. J. Appl. Phys. 2000, 39, 1566–1570. [Google Scholar] [CrossRef]
- Lim, J.; Yang, Q.; Jones, B.E.; Jackson, P.R. Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing. IEEE Trans. Instrum. Meas. 2002, 51, 622–627. [Google Scholar] [Green Version]
- Kronenberg, P.; Rastogi, P.K.; Giaccari, P.; Limberger, H.G. Relative humidity sensor with optical fiber Bragg gratings. Opt. Lett. 2002, 27, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Stefani, A.; Bache, M.; Jacobsen, T.; Rose, B.; Herholdt-Rasmussen, N.; Nielsen, F.K.; Andresen, S.; Sørensen, O.B.; Hansen, K.S.; et al. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt. Commun. 2011, 284, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Woyessa, G.; Fasano, A.; Stefani, A.; Markos, C.; Nielsen, K.; Rasmussen, H.K.; Bang, O. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 2016, 24, 1253–1260. [Google Scholar] [CrossRef]
- Frazão, O.; Santos, J.L.; Araújo, F.M.; Ferreira, L.A. Optical sensing with photonic crystal fibers. Laser Photonics Rev. 2008, 2, 449–459. [Google Scholar] [CrossRef]
- Martelli, C.; Canning, J.; Groothoff, N.; Lyytikainen, K. Strain and temperature characterization of photonic crystal fiber Bragg gratings. Opt. Lett. 2005, 30, 1785–1787. [Google Scholar] [CrossRef]
- Chen, G.; Liu, L.; Jia, H.; Yu, J.; Xu, L.; Wang, W. Simultaneous pressure and temperature measurement using Hi-Bi fiber Bragg gratings. Opt. Commun. 2003, 228, 99–105. [Google Scholar] [CrossRef]
- Geernaert, T.; Luyckx, G.; Voet, E.; Nasilowski, T.; Chah, K.; Becker, M.; Bartelt, H.; Urbanczyk, W.; Wojcik, J.; Waele, W.D.; et al. Transversal load sensing with fiber Bragg gratings in microstructured optical fibers. IEEE Photonics Technol. Lett. 2009, 21, 6–8. [Google Scholar] [CrossRef]
- Bhatia, V.; Campbell, D.; Claus, R.O.; Vengsarkar, A.M. Simultaneous strain and temperature measurement with long-period gratings. Opt. Lett. 1997, 22, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, T.; Sun, T.; Grattan, K.T.V. Long period grating-based humidity sensor for potential structural health monitoring. Sens. Actuators A 2008, 148, 57–62. [Google Scholar] [CrossRef]
- Ju, J.; Jin, W. Long period gratings in photonic crystal fibers. Photonic Sens. 2011, 2, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Chiavaioli, F.; Baldini, F.; Tombelli, S.; Trono, C.; Giannetti, A. Biosensing with optical fiber gratings. Nanophotonics 2017, 6, 663–679. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Yang, B.; Lee, B.; Seo, H.S.; Choi, S.; Oh, K. Electrically controllable long-period liquid crystal fiber gratings. IEEE Photonics Technol. Lett. 2000, 12, 519–521. [Google Scholar] [CrossRef]
- Noordegraaf, D.; Scolari, L.; Lægsgaard, J.; Rindorf, L.; Alkeskjold, T.T. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Opt. Express 2007, 15, 7901–7912. [Google Scholar] [CrossRef]
- Rindorf, L.; Bang, O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett. 2008, 33, 563–565. [Google Scholar] [CrossRef]
- Yu, X.; Shum, P.; Ren, G.B. Highly sensitive photonic crystal fiber-based refractive index sensing using mechanical long-period grating. IEEE Photonics Technol. Lett. 2008, 20, 1688–1690. [Google Scholar] [CrossRef]
- Han, T.; Liu, Y.G.; Wang, Z.; Zou, B.; Tai, B.; Liu, B. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 2010, 35, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Steinvurzel, P.; Moore, E.D.; Mägi, E.C.; Eggleton, B.J. Tuning properties of long period gratings in photonic bandgap fibers. Opt. Lett. 2006, 31, 2103–2105. [Google Scholar] [CrossRef]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Hong, X. Compact and ultrasensitive temperature sensor with a fully liquid-filled photonic crystal fiber Mach–Zehnder interferometer. IEEE Sens. J. 2014, 14, 167–170. [Google Scholar] [CrossRef]
- Yang, M.; Wang, D.N. Photonic crystal fiber with two infiltrated air holes for temperature sensing with excellent temporal stability. J. Lightwave Technol. 2012, 30, 3407–3412. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.; Wang, D.N.; Liao, C.R. Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity. IEEE Photonics Technol. Lett. 2011, 23, 1520–1522. [Google Scholar] [CrossRef]
- Wang, R.; Yao, J.; Miao, Y.; Lu, Y.; Xu, D.; Luan, N.; Musideke, M.; Duan, L.; Hao, C. A reflective photonic crystal fiber temperature sensor probe based on infiltration with liquid mixtures. Sensors 2013, 13, 7916–7925. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Wang, Y.; Wang, D.N. Selectively infiltrated PCF for directional bend sensing with large bending range. IEEE Photonics Technol. Lett. 2015, 27, 502–505. [Google Scholar] [CrossRef]
- Gao, R.; Lu, D.; Cheng, J.; Meiqi, Z. Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk. Opt. Express 2017, 25, 18081–18091. [Google Scholar] [CrossRef]
- Luo, M.; Liu, Y.G.; Wang, Z.; Han, T.; Wu, Z.; Guo, J.; Huang, W. Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber. Opt. Express 2013, 21, 30911–30917. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Y.; Huang, Y.; Liao, C.; Bai, Z.; Hou, M.; Li, Z.; Wang, Y. Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement. Photonics Res. 2017, 5, 129–133. [Google Scholar] [CrossRef]
- Han, T.; Liu, Y.G.; Wang, Z.; Guo, J.; Yu, J. A high sensitivity strain sensor based on the zero-group- birefringence effect in a selective-filling high birefringent photonic crystal fiber. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Thakur, H.V.; Nalawade, S.M.; Gupta, S.; Kitture, R.; Kale, S.N. Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl. Phys. Lett. 2011, 99, 161101. [Google Scholar] [CrossRef]
- Zu, P.; Chan, C.C.; Gong, T.; Jin, Y.; Wong, W.C.; Dong, X. Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid. Appl. Phys. Lett. 2012, 101, 241118. [Google Scholar] [CrossRef]
- Gao, R.; Lu, D.F.; Cheng, J.; Jiang, Y.; mei Qi, Z. Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide. Appl. Phys. Lett. 2017, 110, 131903. [Google Scholar] [CrossRef]
- Liang, H.; Liu, Y.; Li, H.; Han, S.; Zhang, H.; Wu, Y.; Wang, Z. Magnetic-ionic-liquid-functionalized photonic crystal fiber for magnetic field detection. IEEE Photonics Technol. Lett. 2018, 30, 359–362. [Google Scholar] [CrossRef]
- Smolka, S.; Barth, M.; Benson, O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Opt. Express 2007, 15, 12783–12791. [Google Scholar] [CrossRef] [PubMed]
- Rindorf, L.; Jensen, J.B.; Dufva, M.; Pedersen, L.H.; Høiby, P.E.; Bang, O. Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 2006, 14, 8224–8231. [Google Scholar] [CrossRef]
- Yong, D.; Ng, W.L.; Yu, X.; Chan, C.C. A compact opto-fluidic platform for chemical sensing with photonic crystal fibers. Sens. Actuators A 2013, 191, 22–26. [Google Scholar] [CrossRef]
- Yu, X.; Shum, P.; Ren, G.B.; Ngo, N.Q. Photonic crystal fibers with high index infiltrations for refractive index sensing. Opt. Commun. 2008, 281, 4555–4559. [Google Scholar] [CrossRef]
- Town, G.E.; Yuan, W.; McCosker, R.; Bang, O. Microstructured optical fiber refractive index sensor. Opt. Lett. 2010, 35, 856–858. [Google Scholar] [CrossRef]
- Wu, D.K.C.; Lee, K.J.; Pureur, V.; Kuhlmey, B.T. Performance of refractive index sensors based on directional couplers in photonic crystal fibers. J. Lightwave Technol. 2013, 31, 3500–3510. [Google Scholar] [CrossRef]
- Qiu, S.J.; Chen, Y.; Xu, F.; Lu, Y.Q. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 2012, 37, 863–865. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.G.; Wang, Z.; Han, T.; Xu, W.; Wang, Y.; Wang, S. Intermodal interferometer based on a fluid-filled two-mode photonic crystal fiber for sensing applications. Appl. Opt. 2013, 52, 3166–3171. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, Y.; Wang, Z.; Liu, Z.; Zou, B.; Jin, L.; Liu, B.; Kai, G.; Dong, X. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt. Express 2008, 16, 4263–4269. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Fiber ring laser temperature sensor based on liquid-filled photonic crystal fiber. IEEE Sens. J. 2017, 17, 6948–6952. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, X.; Jin, W.; Liu, S.; Ying, D.; Hoo, Y.L. Improved bending property of half-filled photonic crystal fiber. Opt. Express 2010, 18, 12197–12202. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, C.R.; Wang, D.N. Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement. Opt. Lett. 2012, 37, 4747–4749. [Google Scholar] [CrossRef]
- Mahmood, A.; Kavungal, V.; Ahmed, S.S.; Farrell, G.; Semenova, Y. Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid. Opt. Lett. 2015, 40, 4983–4986. [Google Scholar] [CrossRef]
- Jensen, J.B.; Pedersen, L.H.; Hoiby, P.E.; Nielsen, L.B.; Hansen, T.P.; Folkenberg, J.R.; Riishede, J.; Noordegraaf, D.; Nielsen, K.; Carlsen, A.; et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 2004, 29, 1974–1976. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Asquini, R.; Bellini, R.P.; Donisi, D.; Beccherelli, R. Integrated optic devices using liquid crystals: Design and fabrication issues. In Proceedings of the 49th SPIE Annual Meeting and International Symposium on Optical Science and Technology, Denver, CO, USA, 2–6 August 2004. [Google Scholar]
- Bellini, B.; Larchanché, J.F.; Vilcot, J.P.; Decoster, D.; Beccherelli, R.; d’Alessandro, A. Photonic devices based on preferential etching. Appl. Opt. 2005, 44, 7181–7186. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Donisi, B.D.; Beccherelli, R.; Asquini, R. Nematic liquid crystal optical channel waveguides on silicon. IEEE J. Quant. Electron. 2006, 42, 1084–1090. [Google Scholar] [CrossRef]
- Bellini, B.; d’Alessandro, A.; Beccherelli, R. A method for butt-coupling optical fibres to liquid crystal planar waveguides. Opt. Mater. 2007, 29, 1019–1022. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Donisi, D.; Sio, L.D.; Beccherelli, R.; Asquini, R.; Caputo, R.; Umeton, C. Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating. Opt. Express 2008, 16, 9254–9260. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; Sio, L.D.; Beccherelli, R.; Asquini, R.; d’Alessandro, A.; Umeton, C. Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals. Opt. Lett. 2011, 36, 4755–4757. [Google Scholar] [CrossRef] [PubMed]
- Infusino, M.; Ferraro, A.; Luca, A.D.; Caputo, R.; Umeton, C. POLYCRYPS visible curing for spatial light modulator based holography. J. Opt. Soc. Am. B 2012, 29, 3170–3176. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Asquini, R.; Kriezis, E.E.; d’Alessandro, A.; Beccherelli, R. Guided-wave liquid-crystal photonics. Lab Chip 2012, 12, 3598–3610. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.C.; Beccherelli, R. Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides. Plasmonics 2012, 8, 599–604. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Beccherelli, R. Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators. J. Opt. 2013, 15, 055009. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Beccherelli, R. Design of a vertically coupled liquid-crystal long-range plasmonic optical switch. Appl. Phys. Lett. 2013, 102, 101103. [Google Scholar] [CrossRef] [Green Version]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Sánchez-Pena, J.M. Modal liquid crystal microaxicon array. Opt. Lett. 2014, 39, 3476–3479. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; del Pozo, V.U.; Sanchez-Pena, J.M.; Oton, J.M. An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display. J. Disp. Technol. 2014, 10, 713–720. [Google Scholar] [CrossRef]
- Algorri, J.F.; Lallana, P.C.; Urruchi, V.; Sanchez-Pena, J.M. Liquid crystal temperature sensor based on three electrodes and a high-resistivity layer. IEEE Sens. J. 2015, 15, 5222–5227. [Google Scholar] [CrossRef]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Morawiak, P.; Sanchez-Pena, J.M.; Oton, J.M. Integral imaging capture system with tunable field of view based on liquid crystal microlenses. IEEE Photonics Technol. Lett. 2016, 28, 1854–1857. [Google Scholar] [CrossRef]
- Algorri, J.F.; Bennis, N.; Herman, J.; Kula, P.; Urruchi, V.; Sánchez-Pena, J.M. Low aberration and fast switching microlenses based on a novel liquid crystal mixture. Opt. Express 2017, 25, 14795–14808. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Morawiak, P.; Sánchez-Pena, J.M.; Otón, J.M. Liquid crystal spherical microlens array with high fill factor and optical power. Opt. Express 2017, 25, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Bennis, N.; Urruchi, V.; Morawiak, P.; Sánchez-Pena, J.M.; Jaroszewicz, L.R. Tunable liquid crystal multifocal microlens array. Sci. Rep. 2017, 7, 17318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zografopoulos, D.C.; Pitilakis, A.; Kriezis, E.E. Liquid crystal-infiltrated photonic crystal fibres for switching applications. In Optofluidics, Sensors and Actuators in Microstructured Optical Fibers; Elsevier Woodhead Publishing: Cambridge, UK, 2015; Chapter 3; pp. 55–83. [Google Scholar]
- Zografopoulos, D.C.; Kriezis, E.E. Tunable polarization properties of hybrid-guiding liquid-crystal photonic crystal fibers. J. Lightwave Technol. 2009, 27, 773–779. [Google Scholar] [CrossRef]
- Pitilakis, A.K.; Zografopoulos, D.C.; Kriezis, E.E. In-line polarization controller based on liquid-crystal photonic crystal fibers. J. Lightwave Technol. 2011, 29, 2560–2569. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Pitilakis, A.K.; Kriezis, E.E. Dual-band electro-optic polarization switch based on dual-core liquid-crystal photonic crystal fibers. Appl. Opt. 2013, 52, 6439–6444. [Google Scholar] [CrossRef]
- Alkeskjold, T.T.; Lægsgaard, J.; Bjarklev, A.; Hermann, D.S.; Broeng, J.; Li, J.; Gauza, S.; Wu, S.T. Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber. Appl. Opt. 2006, 45, 2261–2264. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Huang, Y.; Wang, C.; He, J.; Liao, C.; Yin, G.; Zhou, J.; Liu, S.; Zhao, J.; Wang, Y. Ultra-sensitive temperature sensor based on liquid crystal infiltrated photonic crystal fibers. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference, Jeju, Korea, 20–22 May 2015; Volume 9655, p. 96551W. [Google Scholar]
- Xu, Z.; Li, B.; Hu, D.J.J.; Wu, Z.; Ertman, S.; Wolinski, T.; Tong, W.; Shum, P.P. Hybrid photonic crystal fiber for highly sensitive temperature measurement. J. Opt. 2018, 20, 075801. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, Q.; Zhao, Y. Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sens. Actuators A 2018, 278, 78–84. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers. Sens. Actuators A 2011, 167, 54–59. [Google Scholar] [CrossRef]
- Mahmood, A.; Kavungal, V.; Ahmed, S.S.; Kopcansky, P.; Zavisova, V.; Farrell, G.; Semenova, Y. Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal. Opt. Express 2017, 25, 12195–12202. [Google Scholar] [CrossRef] [PubMed]
- Zito, G.; Pissadakis, S. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber. Opt. Lett. 2013, 38, 3253–3256. [Google Scholar] [CrossRef] [PubMed]
- Wolinski, T.R.; Czapla, A.; Ertman, S.; Tefelska, M.; Domanski, A.W.; Wojcik, J.; Nowinowski-Kruszelnicki, E.; Dabrowski, R. Photonic liquid crystal fibers for sensing applications. IEEE Trans. Instrum. Meas. 2008, 57, 1796–1802. [Google Scholar] [CrossRef]
- Noordegraaf, D.; Scolari, L.; Lægsgaard, J.; Alkeskjold, T.T.; Tartarini, G.; Borelli, E.; Bassi, P.; Li, J.; Wu, S.T. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Opt. Lett. 2008, 33, 986–988. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Directional electric field sensitivity of a liquid crystal infiltrated photonic crystal fiber. IEEE Photonics Technol. Lett. 2011, 23, 408–410. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements. Appl. Opt. 2011, 50, 2628–2635. [Google Scholar] [CrossRef]
- Kerbage, C.; Steinvurzel, P.; Reyes, P.; Westbrook, P.S.; Windeler, R.S.; Hale, A.; Eggleton, B.J. Highly tunable birefringent microstructured optical fiber. Opt. Lett. 2002, 27, 842–844. [Google Scholar] [CrossRef]
- Markos, C.; Vlachos, K.; Kakarantzas, G. Guiding and birefringent properties of a hybrid PDMS/silica photonic crystal fiber. SPIE 2011, 7914, 791427. [Google Scholar]
- Sun, B.; Wei, W.; Wang, C.; Liao, C.; Xu, J.; Wan, H.; Zhang, L.; Zhang, Z.; Wang, Y. Solid optical fiber with tunable bandgaps based on curable polymer infiltrated photonic crystal fiber. J. Lightwave Technol. 2016, 34, 5616–5619. [Google Scholar] [CrossRef]
- Naeem, K.; Kim, B.H.; Kim, B.; Chung, Y. High-sensitivity temperature sensor based on a selectively-polymer- filled two-core photonic crystal fiber in-line interferometer. IEEE Sens. J. 2015, 15, 3998–4003. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1553–1559. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. A miniature optical breathing sensor. Biomed. Opt. Express 2012, 3, 3325–3331. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Semenova, Y.; Farrell, G. Fiber optic hybrid device for simultaneous measurement of humidity and temperature. IEEE Sens. J. 2013, 13, 1632–1636. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.R.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 2016, 12, 489–496. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Z.; Liu, C.; Sun, T.; Chu, P.K. A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE). Opto-Electron. Rev. 2018, 26, 50–56. [Google Scholar] [CrossRef]
- Rifat, A.; Mahdiraji, G.; Chow, D.; Shee, Y.; Ahmed, R.; Adikan, F. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 2015, 15, 11499–11510. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, S.; Liu, Q.; An, G.; Chen, H.; Li, J.; Chao, D.; Li, H.; Zi, J.; Tian, W. High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 2015, 7, 4800809. [Google Scholar] [CrossRef]
- Shuai, B.; Xia, L.; Liu, D. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 2012, 20, 25858–25866. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Li, S.G.; Xue, J.R.; Xin, X.J.; Zhang, L. Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 2013, 22, 074213. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Z.; Liu, C.; Sun, T.; Chu, P.K. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 2016, 12, 1847–1853. [Google Scholar] [CrossRef]
- Qin, W.; Li, S.; Yao, Y.; Xin, X.; Xue, J. Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2014, 313, 94–98. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 2014, 26, 595–598. [Google Scholar] [CrossRef]
- Ng, W.L.; Rifat, A.A.; Wong, W.R.; Mahdiraji, G.A.; Adikan, F.R.M. A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics 2017, 13, 1165–1170. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, M.T.; Hao, C.J.; Zhao, Z.Q.; Yao, J.Q. Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 2014, 6, 6801307. [Google Scholar] [CrossRef]
- Fu, X.; Lu, Y.; Huang, X.; Hao, C.; Wu, B.; Yao, J. Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Opt. Appl. 2011, 41, 941–951. [Google Scholar]
- Lu, Y.; Yao, J.; Yang, X.; Wang, M. Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron. Lett. 2015, 51, 1675–1677. [Google Scholar] [CrossRef]
- Biswas, T.; Chattopadhyay, R.; Bhadra, S.K. Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids. J. Opt. 2014, 16, 045001. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Yan, X.; Zhang, X.; Yuan, Z.; Wang, H.; Zhang, Y.; Hao, X.; Shao, Y.; Han, Z. Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 2016, 12, 465–471. [Google Scholar] [CrossRef]
- Luan, N.; Wang, R.; Lv, W.; Lu, Y.; Yao, J. Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 2014, 14, 16035–16045. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.; Csaki, A.; Schwuchow, A.; Jahn, F.; Strelau, K.; Latka, I.; Henkel, T.; Malsch, D.; Schuster, K.; Weber, K.; et al. Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications. IEEE Sens. J. 2012, 12, 218–224. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Zheng, Z.; Yang, Y.; Xiao, J.; Li, S.; Bian, Y. Fluidic sensor based on the side-opened and suspended dual-core fiber. Appl. Opt. 2012, 51, 3096–3103. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Hong, X.; Deng, Y.; Song, K.; Geng, Y.; Wei, H.; Tong, W. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 2010, 18, 15383–15388. [Google Scholar] [CrossRef]
- Peng, Y.; Hou, J.; Huang, Z.; Lu, Q. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 2012, 51, 6361–6367. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Lv, J.; Sun, T.; Liu, Q.; Fu, C.; Mu, H.; Chu, P.K. A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 2016, 359, 378–382. [Google Scholar] [CrossRef]
- Bing, P.B.; Li, Z.Y.; Yao, J.Q.; Lu, Y.; Di, Z.G. A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core. Mod. Phys. Lett. B 2012, 26, 1250082. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, X.; Shum, P.; Zhang, Y.; Ho, H.P.; Liu, D. Highly sensitive pressure-induced plasmon resonance birefringence in a silver-coated photonic crystal fiber. J. Phys. Conf. Ser. 2011, 276, 012102. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Skorobogatiy, M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B 2009, 26, 1550–1557. [Google Scholar] [CrossRef]
- Liu, B.; Lu, Y.; Yang, X.; Yao, J. Tunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshells. Plasmonics 2017, 13, 763–770. [Google Scholar] [CrossRef]
- Algorri, J.F.; Poudereux, D.; García-Cámara, B.; Urruchi, V.; Sánchez-Pena, J.M.; Vergaz, R.; Caño-García, M.; Quintana, X.; Geday, M.A.; Otón, J.M. Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors. Opt. Data Process. Storage 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Budaszewski, D.; Siarkowska, A.; Chychłowski, M.; Jankiewicz, B.; Bartosewicz, B.; Dąbrowski, R.; Woliński, T.R. Nanoparticles-enhanced photonic liquid crystal fibers. J. Mol. Liq. 2018, 267, 271–278. [Google Scholar] [CrossRef]
- Woliński, T.R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K.A.; Orzechowski, K.; Sala-Tefelska, M.; et al. Recent advances in liquid-crystal fiber optics and photonics. Proc. SPIE 2017, 10125, 101250W. [Google Scholar]
- Algorri, J.F.; Garcia-Camara, B.; Garcia-Garcia, A.; Urruchi, V.; Sanchez-Pena, J.M. Fiber optic temperature sensor based on amplitude modulation of metallic and semiconductor nanoparticles in a liquid crystal mixture. J. Lightwave Technol. 2015, 33, 2451–2455. [Google Scholar] [CrossRef]
- Siarkowska, A.; Chychłowski, M.; Woliński, T.R.; Dybko, A. Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers. Photonics Lett. Pol. 2016, 8, 29–31. [Google Scholar] [CrossRef]
- Siarkowska, A.; Chychłowski, M.; Budaszewski, D.; Jankiewicz, B.; Bartosewicz, B.; Woliński, T.R. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles. Beilstein J. Nanotechnol. 2017, 8, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poudereux, D.; Caño-García, M.; Algorri, J.F.; García-Cámara, B.; Sánchez-Pena, J.M.; Quintana, X.; Geday, M.A.; Otón, J.M. Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers. Opt. Express 2015, 23, 28935–28944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Application | PCF Type | Wavelength (nm) | Sensitivity | Ref. |
---|---|---|---|---|
Gases | IG-PCF | NA | 6% | [43] |
Acetylene (C2H2) Methane (CH4) | IG-PCF | 1530 1650 | 12.6% 14.9% | [77] |
Gases | IG-PCF | 750 1750 | [78] | |
Oxygen (O2) Methane (CH4) Carbon dioxide (CO2) | SCF | 763 1674 2004 | [82] | |
Acetylene (C2H2) | HC-PBF | 1530 | [90] | |
Methane (CH4) Hydrogen fluoride (HF) | HC-PBF | 1330 | [96] | |
Gases | HC-PBF | NA | [97] | |
Methane (CH4) | HC-PBF | 1330 | [98] | |
Methane (CH4) | IG-PCF (air core) | 1330 | [100] | |
Methane (CH4) Hydrogen fluoride (HF) | IG-PCF (air core) | 1330 | [103] | |
Gases | IG-PCF (air core) | NA | [104] |
Application | PCF Type | Wavelength (nm) | Sensitivity | Resolution | Ref. |
---|---|---|---|---|---|
Refractive index | IG-PCF | 1050 | 1500 nm/RIU | [129] | |
Refractive index | IG-PCF | 1420 | 240 nm/RIU | [130] | |
Refractive index | BG-PCF | 1350–1550 | 32,400 nm/RIU | [131] | |
Refractive index | IG-PCF | 1500 | 30,100 nm/RIU | [48] | |
Temperature | BG-PCF | 1200–1250 | nm/°C | NA | [132] |
Temperature | IG-PCF | 1250 | nm/°C | NA | [133] |
Temperature | IG-PCF | 1550 | nm/°C | NA | [134] |
Temperature | IG-PCF | 1550 | nm/°C | NA | [135] |
Temperature | IG-PCF | 1550 | 1 dB/°C | NA | [136] |
Bend radius | IG-PCF | 1580 | nm/m−1 | NA | [137] |
Bend radius | IG-PCF | 1545 | nm/m−1 | NA | [138] |
Strain | IG-PCF | 650–950 | pm/µε | NA | [139] |
Strain | IG-PCF | 1500 | pm/µε | NA | [140] |
Strain | IG-PCF | 1520 | 25 pm/µε | NA | [141] |
Magnetic field | IG-PCF | 1560 | pm/Oe | NA | [142] |
Magnetic field | BG-PCF | 1040–1100 | nm/Oe | Oe | [143] |
Magnetic field | HC-MOF | 1535 | 81 pm/Oe | NA | [144] |
Magnetic field | IG-PCF | 960 | dB/Oe | NA | [145] |
Fluorescence | HC-PCF | 570 | NA | M | [146] |
Biolayer thickness | IG-PCF | 835 | nm/nm | RIU | [147] |
Application | PCF Type | Wavelength (nm) | Sensitivity | Ref. |
---|---|---|---|---|
Temperature | BG-PCF | 400–800 | 7 nm/°C | [37] |
Temperature | BG-PCF | 1550 | 27 nm/°C | [182] |
Temperature | BG-PCF | 1200–1550 | 105 nm/°C | [183] |
Temperature | HG-PCF | 1400–1600 | nm/°C | [184] |
Temperature | IG-PCF | 1400–2600 | up to nm/°C | [185] |
Electric field | IG-PCF | 1550 | 20 dB/kVrms/mm | [186] |
Magnetic field | IG-PCF | 1550 | pm/Oe | [187] |
Bend radius | IG-PCF | 1550 | nm/m−1 | [188] |
Hydrostatic pressure | BG-PCF | 600–670 | rad/m/MPa | [189] |
Application | PCF Type | Wavelength (nm) | Sensitivity | Ref. |
---|---|---|---|---|
Temperature | IG-MOF | 1550 | rad/°C/cm | [193] |
Temperature | IG-PCF | 633 | rad/°C/cm | [194] |
Temperature | BG-PCF | 680–740 | nm/°C | [49] |
Temperature | BG-PCF | 1000–1600 | nm/°C | [195] |
Temperature | IG-PCF | 1550 | nm/°C | [196] |
Temperature | IG-PCF | 1390 | nm/°C | [58] |
Relative humidity | IG-PCF | 1550 | dB/%RH | [197] |
Application | PCF Type | Wavelength (nm) | Sensitivity | Resolution | Ref. |
---|---|---|---|---|---|
Refractive index | IG-PCF | 500 to 1500 | 873 dB/RIU | RIU | [201] |
Refractive index | IG-PCF | 750 to 1750 | 2520 nm/RIU | RIU | [202] |
Refractive index | IG-PCF | 500 to 1010 | 9000 nm/RIU | RIU | [203] |
Refractive index | IG-PCF | 900 to 1200 | 10,000 nm/RIU | RIU | [203] |
Refractive index | HC-PBF | 560 to 610 | 14,240 nm/RIU | RIU | [216] |
Refractive index | HC-PBF | 1330 | 5500 nm/RIU | NA | [98] |
Refractive index | SCF | 400 to 700 | 227 nm/RIU | NA | [220] |
Refractive index | SCF | 1550 | 8360 rad/RIU | RIU | [221] |
Temperature | IG-PCF | 400–500 | nm/°C | NA | [214] |
Temperature | IG-PCF | 800–1100 | 5 nm/°C | NA | [219] |
Temperature | IG-PCF | 1550 | dB/°C | NA | [222] |
Temperature | HC-PBF | NA | nm/°C | °C | [223] |
Temperature | HC-PBF | 550–900 | nm/°C | °C | [224] |
Temperature | HC-PBF | NA | RIU | [225] | |
Pressure | IG-PCF | 400–800 | nm/N | NA | [226] |
Biolayer thickness | IG-PCF | 600–750 | nm/nm | nm | [227] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algorri, J.F.; Zografopoulos, D.C.; Tapetado, A.; Poudereux, D.; Sánchez-Pena, J.M. Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors 2018, 18, 4263. https://doi.org/10.3390/s18124263
Algorri JF, Zografopoulos DC, Tapetado A, Poudereux D, Sánchez-Pena JM. Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors. 2018; 18(12):4263. https://doi.org/10.3390/s18124263
Chicago/Turabian StyleAlgorri, José Francisco, Dimitrios C. Zografopoulos, Alberto Tapetado, David Poudereux, and José Manuel Sánchez-Pena. 2018. "Infiltrated Photonic Crystal Fibers for Sensing Applications" Sensors 18, no. 12: 4263. https://doi.org/10.3390/s18124263
APA StyleAlgorri, J. F., Zografopoulos, D. C., Tapetado, A., Poudereux, D., & Sánchez-Pena, J. M. (2018). Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors, 18(12), 4263. https://doi.org/10.3390/s18124263