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Abstract: Optimal sensor placement is a significant task for structural health monitoring (SHM).
In this paper, an SHM system is designed which can recognize the different impact location and
impact degree in the composite plate. Firstly, the finite element method is used to simulate the impact,
extracting numerical signals of the structure, and the wavelet decomposition is used to extract the
band energy. Meanwhile, principal component analysis (PCA) is used to reduce the dimensions
of the vibration signal. Following this, the non-dominated sorting genetic algorithm (NSGA-II) is
used to optimize the placement of sensors. Finally, the experimental system is established, and
the Product-based Neural Network is used to recognize different impact categories. Three sets of
experiments are carried out to verify the optimal results. When three sensors are applied, the average
accuracy of the impact recognition is 59.14%; when the number of sensors is four, the average accuracy
of impact recognition is 76.95%.

Keywords: structural impact monitoring; sensors distribution optimization; NSGA-II; energy analysis
of wavelet band; principal component analysis

1. Introduction

With the extensive utilization of load-carrying structures in various engineering applications, there
has been increasing interest in methods for predicting and estimating the location and extent of impact
damage in structures [1–4]. On the basis of recent research advances, a concept of damage diagnostics
for real-time structure monitoring, namely, structural health monitoring (SHM), has been proposed.
SHM aims to ensure structural safety by using information provided by the sensor network. Normally,
as for a simple structure, the design of a sensor network is based on the engineers’ judgment. However,
for complex structures, sensor location and the number of sensors in the network become fundamental
optimization issues, which cannot be ignored. Under the premise of guaranteed performance, fewer
sensors to cover an area will be considered, and the proper placing of these sensors will reduce costs.

In previous studies, sensor distribution optimization is only devoted to the location optimization
of sensors, and the number of sensors is limited. This research involved in many modern heuristic
algorithms such as genetic algorithm (GA) [5,6], simulated annealing (SA) [7], monkey algorithm
(MA) [8], ant colony algorithm (ACO) [9] and differential evolution (DE). Kim established a novel
particle swarm optimization framework to achieve robust consensus of decentralized sensors with
neighbors rather than through centralized control [10]. An algorithm based on ladder diffusion and
ACO is proposed to solve the power consumption and transmission routing problems in wireless
sensor networks [9]. Among them, genetic algorithm has been introduced as a promising method for
handling single-objective optimization, due to its better convergence, higher calculation precision,
lower calculation time and higher robustness.
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However, the optimization of the sensors network requires a reduction of the number of sensors
and increased monitoring accuracy. It is obviously a multi-objective optimization problem (MOOP).
Inherently, sensor location and the number of sensors are two conflicting goals for the design of sensor
networks. In recent years, in order to solve the multi-objective optimization problem, many researchers
improved the initial heuristic algorithm [11]. Céspedes-Mota uses improved differential evolution
algorithm to optimize the distribution of wireless sensor networks according to the distance arranged
by sensors [12]. Deb proposes the non-dominated sorting genetic algorithm to solve multi-objective
optimization problems [13]. Li also uses this method to optimize the sensors network: he uses the
number of sensors and the feature difference among all impact categories as two objective functions,
respectively. A set of optimal sensor networks are obtained by the NSGA-II method [14].

In this paper, the NSGA-II method is used to optimize the sensor network. The remaining part
of the paper is organized as follows: Section 2 describes the problem. The two objective functions
are defined as the following: (i) The number of sensors; (ii) the feature differences among different
impact categories. Section 3 describes how to solve the optimization problem by using the idea of
MOOP. Moreover, wavelet band energy extraction and PCA are combined to obtain the value of the
objective function. The result of sensors distribution optimization by NSGA-II is described in Section 4.
Meanwhile, in order to prove the superiority of genetic algorithm, a comparative study is conducted
with MA. In Section 5, the performance of the proposed algorithm in optimizing sensor distribution is
verified by experiments. Finally, the paper is concluded in Section 6.

2. Description of Problem

In this paper, the composite laminate is used as the object. The study aims to identify structural
impact damage, including impact location and impact degrees, by optimizing sensor networks. The
adopted material is a [0 deg/90 deg] s-glass/epoxy orthogonal anisotropic laminate. The parameters
of composite laminate are shown in Table 1.

Table 1. Parameters of composite laminate.

Equipment Parameter

thickness and area 15 mm × 500 mm × 500 mm
elastic modulus Ez = 7.2 GPa, Ex = Ey = 6.9 GPa

Poisson ratio Vxz = Vyz = 0.29, Vxy = 0.28
shear elasticity Gxz = Gyz = 7.6 GPa, Gxy = 4.4GPa

density 2100 Kg/m3

As shown in Figure 1, the composite plate is divided into 9 × 9 grids, which includes 64 grid
nodes. The impact load is applied at each node respectively. And each position is subject to two
degrees impact, so there are in total 128 impact categories. The sensors are also positioned in some of
these 64 nodes. Thus, there are two optimization objectives:

(1) Minimizing the number of sensors
(2) Maximizing the sensor network’s optimization performance index based on impact categories

The method of getting the objective function will be introduced in the next section.
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Figure 1. The grid division of composite.

3. Problem Formulation

Because there are two conflicting optimization objectives in the process of sensor network
optimization, the optimization problem is a non-dominated multi-objective optimization.
The optimization results will include a number of Pareto optimal solutions. Each solution is
called non-dominated Pareto optimal, Pareto efficient or non-inferior. Without additional subjective
preference information, all Pareto optimal solutions are considered equal. In this paper, the
non-dominated sorting genetic algorithm II (NSGA-II) is used to obtain the Pareto optimal solutions of
sensor networks.

3.1. Objective Function I

Before solving this problem, the objective function needs to be defined. Reducing the number of
sensors can not only reduce the cost of monitoring system, but also accelerate the processing speed of
data. The number of sensors is set as the objective function I.

In this paper, the encoding method of the sensor network is binary coding. Because the sensor
has 64 alternate locations, each sensor network can be represented by 64 binary digits. When the value
of the element is 0 there is no sensor in the position; when the value of the element is 1, the sensor is

present in that position. So the sensor network is obtained (
→
S = [s1, s2, · · · , s64]

T). For example, if the

sensor is placed in position 1, the vector
→
S is equal to [10000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000]T.

3.2. Objective Function II

3.2.1. Numerical Simulation

For the purpose of improving the sensor network optimization performance index, the software
ANSYS, which performs well with finite element analysis, is used to obtain the shock response
of each category impact. It can provide effective data for sensor network optimization. As a
rectangular structure is used in this paper, solid units are used. The composite material has a layered
structure inside, so layered units are used. Solid-layered-46 is selected as the simulated entity type.
Following this, the real constant is defined. The thickness of the composite plate is 15 mm, and the
laminate has 10 layers, each with a thickness of 1.5 mm. The internal structure of the laminate is
anisotropic orthogonal, that is, the laminate form of the laminate is (0/90) s.

The model is divided into 9 × 9 orthogonal distribution grids. The composite laminate is
supported at the four corners, and the finite element analysis model is shown in Figure 2.
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Figure 2. Finite element analysis model of the composite laminate.

As shown in Figure 1, there are 64 nodes on the composite plate. Each node is subjected to
two degrees of impact—the full-load impact and half-load impact. The impact process of full-load
is divided into two steps. The first load is 30× sin(1744.4× t), 0 ≤ t ≤ 0.0018 s and is divided into
9 sub-steps. The second load is a zero force, used in order to get the free shock response of the
composite laminate. The second load includes 991 sub-steps and the total loading time is 0.1982 s.
The total impact process of the simulation analysis is 0.2 s, and the load sub-steps include 1000 steps.
The frequency of simulated vibration signal is 5k Hz. The half-load impact steps are similar to the
whole load impact steps, the difference between them being impact strength. The half-load of the first
step is 15× sin(1744.4× t), 0 ≤ t ≤ 0.0018 s. Linear analysis is used in this paper because the impact
of the experiment is elastic deformation.

The vibration response can be obtained by ANSYS software when the structure is impacted.
For example, the response of the 28th downside grid node is obtained as shown in Figure 3.
The vibration response curve of the 28th downside grid node is obtained under the full-load impact to
the 28th upside grid node.
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Figure 3. Shock response of 28th downside grid node with load acted on 28th upside grid node.

Since each upside node is subject to two degrees of impact and the upside board of composite
has a total 64 nodes, for the ith downside node it will receive a total of 128 vibration signals
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→
Mi

p(p = 1, 2, . . . 128). According to the result of finite element analysis, the shock response matrix at
the ith downside grid node Mi is defined as

Mi =


→
M

i

1
...

→
M

i

128

 =


Mi

1,1 · · · Mi
1,c

...
. . .

...
Mi

128,1 · · · Mi
128,c

(i = 1, 2, . . . , 64) (1)

where i is the ith alternate sensor location and c is the length of simulation vibration data. As for
the 64 downside grid nodes, the 64 shock response matrices are established by using the result of
numerical simulation.

3.2.2. Energy Analysis of Wavelet Band

After obtaining the original simulation data, its features need to be extracted. In recent years, the
wavelet transform has been introduced as a promising method in damage identification of structures
due to its excellent performance in detecting signal singularity [15–17].

A wavelet packet transform (WPT) is an orthogonal wavelet transform (WT). It inherits the idea of
short-time Fourier transform localization [18,19]. Therefore, wavelet feature extraction is often used for
impact location. At the same time, the time difference localization method is also a common positioning
method [20]. However, our research not only needs to identify the impact location, but also to identify
the impact level. Compared with the time difference positioning method, wavelet transform can not
only reflect the time difference of the signal, but also reflect the difference in signal strength. Therefore,
we chose wavelet decomposition to extract features. Firstly, the principle of wavelet transform needs
to be introduced. A function ψ ∈ L2(R) is called an orthonormal wavelet while it can be defined by
a Hilbert basis. It is a complete orthonormal system for the Hilbert space L2(R) of square integrable
functions. Therefore, the vibration signal can be decomposed by wavelet signal:

Mi
p(x) =

N

∑
j=1

∑
k∈Z

dj
k ϕjk(x) + ∑

k∈Z
cN

k ϕNk(x) (2)

where, N is the decomposition layer, dj
k is the detail coefficient of the jth layer, cN

k is the approximate
coefficient of the nth layer, and ϕNk(x) is the orthogonal scales function. According to Parseval’s
theorem, the set of orthogonal functions satisfies

∫
R

∣∣∣Mi
p(x)

∣∣∣2dx =
N

∑
j=1

∑
k∈Z

∣∣∣dj
k

∣∣∣2 + ∑
k∈Z

∣∣∣cN
k

∣∣∣2 (3)

where EdN =
N
∑

j=1
∑

k∈Z

∣∣∣dj
k

∣∣∣2, EaN = ∑
k∈Z

∣∣cN
k

∣∣2, and EdN are known as the total energy of the detail signal

of the 1 to N layer, EaN is the energy of the approximate signal of the nth layer. The total energy of
signal E = EdN + EaN . The sum of the energy of the signals in each frequency band is consistent
with the energy of the original signal, and the vibration signal in each frequency band represents the
vibration characteristic information of the original signal in the frequency range. The energy expression
of the jth layer in the vibration signal Ej can be defined as

Ej =
A

∑
l=1

∣∣∣dj
l

∣∣∣2 (4)

where dj
l is the decomposed signal and A is the number of discrete points in the corresponding

time period. A set of signals are obtained which correspond to a sequence of energy from low to
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high frequencies
{

Ej
∣∣j = 1, 2, · · · , 2N }. Finally, row vector

→
Ei

p is obtained by extracting the wavelet
frequency band energy:

Ei =


→
E

i

1
...

→
E

i

128

 =


ei

1,1 · · · ei
1,2N

...
. . .

...
ei

128,1 · · · ei
128,2N

 (i = 1, 2, . . . , 64) (5)

The time-frequency energy based on wavelet decomposition reflects the energy E of the original
signal over a certain period of time. It can more fully represent the signal characteristics of the data.
In order to make computation more rapid, principal component analysis (PCA) is used to reduce the
dimensions of the original data.

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components. The basic idea is to obtain a set of optimal unit orthogonal vectors
based on the linear transformation. The sample data is then rebuilt according to the above orthogonal
vector basis, in order to minimize the mean square error between reconstruction samples and original
samples [21–23]. The orthogonality between different features is represented by the contribution rate,
and then the new data are selected from the original data by setting the cumulative contribution rates
Rm. Through the projection of the data from the original 2N-dimension space to b-dimension space
(2N > b), namely dimensionality reduction, the new data after dimension reduction can maximally
retain the information of the original data. The steps are as follows:

For the Shock response data matrix of the ith node, the variable coefficient correlation matrix can
be written as

(
rgh

)i
=

128
∑

k=1
(ei

kg − xg)(ei
kh − xh)√

128
∑

k=1
(ei

kg − xg)
2 128

∑
k=1

(ei
kh − xh)

2
(6)

where xg = 1
128

128
∑

k=1
ei

kg, xh = 1
128

128
∑

k=1
ei

kh, and Ri = (rgh)i are the variable coefficient correlation matrix

(2N, 2N). On the basis of equation
∣∣∣Ri − λI(2N ,2N)

∣∣∣ = 0, the eigenvalue of matrix R can be obtained
{λ1, λ2, . . . , λ2N}. The cumulative contribution rate is described as

Ri
m =

m

∑
j=1

λj/
2N

∑
t=1

λi (7)

where Ri
m is the cumulative contribution rate, λ is the feature value, and m is the number of extracted

principal component characteristics. Generally, the selection criteria of m need to satisfy the condition
that the cumulative contribution rate is in the 85–95% range. In this study, the cumulative contribution
rate is set at 95%. Then the matrix can be modeled as

Xi =


→
X

i

1
...

→
X

i

128

 =


xi

1,1 · · · xi
1,b

...
. . .

...
xi

128,1 · · · xi
128,b

 (i = 1, 2, . . . , 64) (8)

Through this procedure, we obtained the matrix Xi(i = 1, 2, . . . , 64) which included the feature
vector of all impact categories.
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3.2.3. Sensor Location Optimization Performance Index

The objective function II presents the sensor network optimization performance index. For all
impact categories, a feature matrix I from a given sensor set S is shown as

I =
[

Xs1 · · · Xs f
]
=


→
X

s1

1 · · ·
→
X

s f

1
...

. . .
...

→
X

s1

128 · · ·
→
X

s f

128

 (9)

The feature differences among all impact categories are expressed according to the distance of the
row vectors of the feature matrix I:

Z =

 z1,1 · · · z1,128
...

. . .
...

z128,1 · · · z128,128

 (10)

where
zu,v =

√
[Iu − Iv]·[Iu − Iv]

T (u, v = 1, 2, . . . , 128) (11)

Objective function II, the sensor network optimization performance index, is defined as the
minimum value of the matrix element. The greater the value of the performance index, the greater the
difference between the different impacts. This makes it easier to identify different impacts. In order
to improve the accuracy of impact recognition, objective function II is maximized in the sensor
network optimization.

4. Sensor Network Optimization Algorithm

Based on the previously acquired objective functions, NSGA-II is employed to optimize the sensor
network. NSGA-II algorithm is proposed by Deb on the basis of NSGA [13]. Its basic process is
as follows:

Step 1: Random generation of original population St. Each of these individuals
Sg

t (g = 1, 2, . . . , 200) represent a set of sensor arrangements, and each position represents a gene.
The number of sensors in each individual is the value of objective function I. Set t = 1;

Step 2: Evaluate objective function II of each sensor set. In this case, each individual corresponds
to two objective function values;

Step 3: According to the value of functions, the population is divided into different non-inferior
layers K1, K2, . . . , Kn. Firstly, find the individual in K1. If Sg

t (g = 1, 2, . . . , 200) does not satisfy the
following inequality:

fI

(
Sg

t

)
≥ fI

(
Si

t

)
, fII

(
Sg

t

)
< fII

(
Si

t

)
, ∃i = 1, 2, . . . , 200

Sg
t ∈ K1. After all individuals in K1 are found, these individuals are labeled, and the individuals

in K2, . . . , Kn are found in the same way;
Step 4: Establish the optimization pool. Two individuals are selected randomly, and according to

the non-inferior layers the better one is chosen and put into the optimization pool;
Step 5: Generating child population S′t through crossover and mutation operations. Crossover

operations—two individuals are randomly selected from the optimization pool and a portion of the
genes in the two individuals are randomly exchanged. Figure 4 illustrates this process.
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As show in the right side of Figure 4, the number of sensors between the Parent and
Crossover-Child may be different. So the method could optimize different numbers of sensor networks
at the same time.

Step 6: Mutation operations—an individual is randomly selected from the pool of preferences,
and a random exchange exchanges a portion of the genes in the individual. And Figure 5 illustrates
this process.Sensors 2018, 18, x FOR PEER REVIEW  8 of 14 
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Step 7: Obtain the combined population S′′t = S′t ∪ St. According to the value of objective function
I and objective function II, the population is divided into different non-inferior layers K1, K2, . . . , Km.
The highly non-inferior layers’ individuals are selected as the new population St+1;

Step 8: Iteration ends if the end condition is reached or t = 10,000;
Step 9: Set t = t + 1, and go back to step 3.
The parameters of the NSGA-II are shown in Table 2.

Table 2. Parameter set of genetic algorithm (GA).

Parameter Numeric

initial population size min(n × 64,200)
crossover probability 0.5
mutation probability 0.16

off-springs population size after mutation operation
and crossover operation min(n × 64 × 1.5300)

termination condition min(n × 64,200)
(selection according to crowding distance)

5. Results and Discussion

The multi-objective optimization monkey algorithm (MOMA), composed of the monkey algorithm
and NSGA-II, are used for sensor distribution optimization. The monkey algorithm (MA) is an
intelligent optimization algorithm proposed by Zhao et al. [24] to solve large-scale and multi-peak
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optimization problems. The algorithm simulates the movement of monkeys in the process of climbing
in nature, which includes climbing, looking and jumping. This algorithm includes three search
processes: the climbing process is mainly used to search for the local optimal solution of the current
location; the looking process mainly searches the neighborhood for better solutions than the current
position in order to accelerate the search process of the optimal solution; the jump process is to search
other areas to avoid the search process in the local area. In this paper, the concept of deep climbing
is introduced on the basis of the classical monkey algorithm, which increases the range of optimal
solutions and accelerates the convergence rate of the algorithm [25]. As the total number of positions
of the sensor is 64, the fast distance is 64. In this paper, the climb process, watch–jump process and
deep climb process thresholds are 8, 64 and 64, respectively.

The sensor network optimization results of NSGA-II and MOMA are obtained as shown in Table 3.
From Table 3, it is observed that for the different designed thresholds of sensor number, all sensor sets
of low threshold are included in sensor sets of high threshold. The NSGA-II and MOMA algorithms
get the same optimal sensors network. This proved that the arrangement of the sensor network is
optimal. The iteration times of the two algorithms are shown in Figure 6. Since the two algorithms get
the same optimal solution, the convergence rate becomes the main index to decide which algorithm is
better. NSGA-II is better than the MOMA in terms of iteration time.

Table 3. Sensor sets of Pareto solutions with the different designed thresholds of sensor number.

Designed Threshold Solution No. Sensor No. (NSGA-II) Sensor No. (MOMA)

6

6 4 5 35 36 37 38 4 5 35 36 37 38
5 18 27 28 30 55 18 27 28 30 55
4 27 30 50 55 27 30 50 55
3 11 25 29 11 25 29
2 28 30 28 30
1 25 25

3
3 11 25 29 11 25 29
2 28 30 28 30
1 25 25

1 1 25 25
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6. Method Evaluation

In order to verify the accuracy of impact recognition by sensor networks, an experimental system
is designed. In this section, the experimental equipment and classification algorithm are introduced
and experimental results are presented.

6.1. Experimental Setup

In this experiment, the identification includes impact degrees and impact locations. We suppose
a rubber ball with a diameter of 20 mm dropped from 250 mm is considered a full-load shock, and
the height of 125 mm freely dropped is seen as a half-load shock. At the same time, the difference of
recognition accuracy and computation time between two, three and four sensors are also considered in
the experiment.

The experimental system is shown in Figure 7. Firstly, the vibration signal is collected by the
acceleration sensors. Secondly, the signal is introduced into the conditioning circuit to amplify the
signal. Thirdly, the signal is imported into the data acquisition module. The parameters of the
experimental installations are shown in Table 4.
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Table 4. Experimental installation parameters.

Equipment Model Number Parameter

acceleration sensors CA-YD-188T with a range of −10 g to 10 g, sensitivity is 500 mV/g, frequency
response is 0.6~5000

conditioning circuit YE3826A 12 channels, with a gain of 10, the electric current output is 4 mA

I/O junction box NI SCB-68A 16 channel analog input channel, custom cable connector kits
and mounting accessories

data acquisition module NI PCI-6251

16 analog inputs at 16 bits, 1.25 MS/s (1 MS/s scanning), Up to
4 analog outputs at 16 bits, 2.8 MS/s (2 µs full-scale settling),

Analog and digital triggering, Two 32-bit, 80 MHz
counter/timers

6.2. Localization Methodology

In the experiment, 100 samples are taken from each kind of full-load and half-load impact.
At the same time, the experiments are carried out when the number of sensors network is 2, 3 and 4,
respectively. Taking the number of sensors 4 as an example, the calculation process of impact category
recognition is introduced.

Step 1: Dividing the original data. Fifty groups are randomly selected as training samples, and
the other 50 groups are selected as test samples. Each category’s training sample of a sensor is selected
according to the similarity of vibration waveforms. If the average similarity is less than 0.5, this group
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of data is deleted. From the rest of the data, 30 groups are randomly selected as training samples, so a
training sample matrix is obtained.

Step 2: Getting the training sample feature matrix. In the first place, energy analysis of wavelet
band is used to extract features from vibration data. Then, principal component analysis (PCA)
is used to reduce the dimensions of the training sample matrix. The cumulative contribution rate
is 95%. Following this, the data of the 4 sensors are merged together to obtain the feature matrix
Xp

q (p = 1, 2, . . . , 128, q = 1, 2, . . . , 30).

Xp =


→
X

p

1
...
→
X

p

30

 =


xp

1,1 · · · xp
1,m×4

...
. . .

...
xp

30,1 · · · xp
30,m×4

 (p = 1, 2, . . . , 128) (12)

Step 3: Selecting test samples. The average similarity between each test sample of each set of
sensors and the shock response of each group’s 30 training samples is calculated, respectively. If the
similarity between all of the 128 impact classes is less than 0.5, the data of this shock are deleted.
Afterwards, 20 groups from qualifying data are selected as test samples.

Step 4: Obtaining the test sample feature matrix. Test samples of the 4 sensors are multiplied
by 4 transformation matrixes and the first m data are saved just like the training sample. Then, the
matrices of the 4 sensors are combined into the same column, and the characteristics of the test samples
for the pth vibration data Bp

t (p = 1, 2, . . . , 128, t = 1, 2, . . . , 20) can be expressed as

Bp =


→
B

p

1
...
→
B

p

20

 =


bp

1,1 · · · bp
1,m×4

...
. . .

...
bp

20,1 · · · bp
20,m×4

 (p = 1, 2, . . . , 128) (13)

Step 5: Identification of impact category by Product-based Neural Network (PNN). There are
many algorithms for solving classification problems, among which PNN is a neural network commonly
used in pattern classification [26]. Its training time is short and its classification accuracy is high. No
matter how complex the classification problem is, as long as there are enough training data, the
optimal solution under the Bayes criterion can be obtained. Therefore, this paper uses PNN algorithm
for classification.

When inputting a vector
→
Bp

t (p = 1, 2, . . . , 128, t = 1, 2, . . . , 20), the pattern layer computes the

distance between the input vector and the training vectors
→
Xp

q (p = 1, 2, . . . , 128, q = 1, 2, . . . , 30).
The summation layer sums the contribution for each class of inputs and output a probability value
fp(p = 1, 2, . . . , 128).

Figure 8 shows the basic design of a PNN used for impact recognition. The feature vector
→
Bp

q
passes from the input layer through the pattern layer to the output layer. The neurons in the pattern
layer enable mapping of the nonlinearity relations between the input and output values, which gives
PNN models a better performance over others. The summation fp is expressed as

fp(Bp
t ) =

1

a(2π)m×4/2σm×4

a

∑
q=1

exp(−
m×4

∑
w=1

(bp
tw − xqw)

2

2σ2 ) (14)

where a is the training samples number of each category, σ represents the smoothness parameter, and
the value of the smoothed parameter is 0.15. btw represents the wth data of the tth neuron of each
sample. The summation layer has 30 neurons in each, with a total 128 categories. The output layer
compares the votes for each target predict accumulated in the summing layer. The target category is
predicted to the largest vote.
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6.3. Experimental Results and Discussion

Next, in order to confirm the effectiveness of our optimization results, four sets of sensor networks
are selected for impact experiments. They are the first non-inferior layer arrangement of 2, 3, and
4 sensors, respectively. And the four sensors in the second non-inferior layer are also arrangement.We
analyze the difference in impact identification between the different number of sensors and sensor
locations. The impact recognition accuracy obtained by the above method is shown in Figure 7.

As shown in Figure 9, each figure includes 128-type impact recognition accuracy. The first
64 impact categories are half-load shocks and the last 64 are full-load shocks. From Figure 9, the
recognition accuracy gradually increases with the number of sensors. Recognition accuracy of the
half-load is slightly higher than recognition accuracy of the full-load. Table 5 gives detailed data.
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Figure 9. (a) The positioning accuracy when installing two sensors; (b) the positioning accuracy when
installing there sensors; (c) the positioning accuracy when installing four sensors; (d) the positioning
accuracy when installing four sensors, which are second non-inferior layer (10, 15, 35, 38).
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Table 5. Different sensors network impact accuracy.

Sensors Network Average Accuracy Half-Load Impact
Average Accuracy

Full-Load Impact
Average Accuracy Computation Time

(28, 30) 25.27% 26.88% 23.67% 6.01 ms
(11, 25, 29) 59.14% 65.31% 52.97% 8.36 ms

(27, 30, 50, 55) 76.95% 81.72% 72.19% 11.33 ms
(10, 15, 35, 38) 75.55% 80.23% 70.86% 11.33 ms

7. Conclusions

This paper proposes an optimization program of sensor networks for impact identification of
composite laminates. The optimization objective includes the optimization of the number of sensors
and the sensor network optimization performance index. The number of sensors is defined as objective
function I, and the sensor location optimization performance index is defined as objective function II.
In order to obtain objective function II, the finite element, energy analysis of wavelet band and PCA
methods are used to data processing. Moreover, an experimental system was established to verify
whether the impact recognition results were consistent with the assumptions. The final recognition
accuracy is obtained using the above mentioned experimental system, and the conclusions are showing
as follows:

(a) Comparing NSGA-II and MOMA, the two algorithms can get the same result. However, NSGA-II
is better than the MOMA in terms of iteration time, and the gap will become more pronounced
with increasing numbers of sensors;

(b) When the number of sensors in the sensor network is 2, 3, and 4, the average recognition accuracy
is 25.27%, 59.14% and 76.95%, respectively. The results show that as the number of sensors
increases, higher recognition accuracy is obtained;

(c) When there are four sensors, the identification accuracy of the first non-inferior sensor network is
76.95%, and the recognition accuracy of the second non-inferior sensor network is 75.55%. Results
show that when the number of sensors is constant, the accuracy of impact recognition will be
correlated with the sensor network optimization performance index. The experiment shows that
the optimized sensors network can achieve the best impact recognition accuracy;

(d) When there are two sensors in the experiment, the average of full-load impact and half-load
impact are 23.67% and 26.88%, respectively; with three sensors, the average of full-load impact and
half-load impact are 52.97% and 65.31%, respectively; and with four sensors in the experiment, the
average of full-load impact and half-load impact are 72.19% and 81.72%, respectively. The results
show that the accuracy of the half-load is slightly higher than full-load under the same conditions;

(e) The calculation time of the experimental results shows that when the number of sensors increases,
the recognition accuracy increases. However, computing time also increases. Therefore, in
real application, it is necessary to select the appropriate number of sensors according to the
real-time requirements.
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