Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data and Study Area
2.2. Methodology of Data Integration
- Multispectral image (MS) resampling to the panchromatic image resolution (PAN);
- Intensity calculation () for the multispectral image, including all bands;
- Adjusting the intensity image histogram to that of the panchromatic image;
- Development of a mask showing those pixels, which illustrate the spatial details (information, which is not in the MS image);
- Calculation of the distance of each pixel of the image from the nearest pixel of the mask (from the nearest spatial detail);
- Determination of weights and calculation of a modified panchromatic image as a weighted average of the original panchromatic image and the intensity ;
- Performing pan-sharpening by any method using the modified panchromatic image.
2.2.1. Proposed Method of Panchromatic Image Modification
2.2.2. Proposed Method of Detail Extraction
2.3. Methods of Assessing the Quality of Data Fusion
- The first property (consistency property): any fused image, once degraded to its original resolution, should be as identical as possible to the original image;
- The second property (synthesis property): Any fused image should be as identical as possible to the ideal image that the corresponding sensor would observe with the highest spatial resolution, if existent;
- The third property (synthesis property): The multispectral set of fused images should be as identical as possible to the multispectral set of ideal images that the corresponding sensor would observe with the highest spatial resolution, if existent.
3. Results
3.1. Integration of WorldView-2 PAN and Landsat 5 TM
3.2. Integration of WorldView-2 PAN and Landsat 8 OLI
3.3. Visual Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghoneim, E.; El-Baz, F. DEM-optical-radar data integration for palaeohydrological mapping in the northern Darfur, Sudan: Implication for groundwater exploration. Int. J. Remote Sens. 2007, 28, 5001–5018. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Kazimierski, W.; Stateczny, A. Fusion of Data from AIS and Tracking Radar for the Needs of ECDIS. In Proceedings of the 2013 Signal Processing Symposium (SPS), Serock, Poland, 5–7 June 2013. [Google Scholar]
- Pereira, L.D.O.; Freitas, C.D.C.; Sant’Anna, S.J.S.; Lu, D.; Moran, E.F. Optical and radar data integration for land use and land cover mapping in the Brazilian Amazon. GISci. Remote Sens. 2013, 50, 301–321. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Li, C. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Haara, A.; Nevalainen, S. Detection of dead or defoliated spruces using digital aerial data. For. Ecol. Manag. 2002, 160, 97–107. [Google Scholar] [CrossRef]
- Sofman, B.; Bagnell, J.A.; Stentz, A.; Vandapel, N. Terrain Classification from Aerial Data to Support Ground Vehicle Navigation. 2006. Available online: http://repository.cmu.edu/robotics/59/ (accessed on 1 June 2018).
- Jenerowicz, A.; Woroszkiewicz, M. The Pan-Sharpening of Satellite and UAV Imagery for Agricultural Applications. In SPIE Remote Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar] [CrossRef]
- Kedzierski, M.; Wilinska, M.; Wierzbicki, D.; Fryskowska, A.; Delis, P. Image Data Fusion for Flood Plain Mapping. In Proceedings of the 9th International Conference on Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- Mikrut, S. Classical photogrammetry and UAV–selected ascpects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, B1. [Google Scholar]
- Liu, J.G. Smoothing Filter-Based Intensity Modulation: A Spectral Preserve Image Fusion Technique for Improving Spatial Details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Amarsaikhan, D.; Blotevogel, H.H.; Van Genderen, J.L.; Ganzorig, M.; Gantuya, R.; Nergui, B. Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. Int. J. Image Data Fusion 2010, 1, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Noviello, M.; Ciminale, M.; De Pasquale, V. Combined application of pansharpening and enhancement methods to improve archaeological cropmark visibility and identification in QuickBird imagery: Two case studies from Apulia, Southern Italy. J. Archaeol. Sci. 2013, 40, 3604–3613. [Google Scholar] [CrossRef]
- Havivi, S.; Schvartzman, I.; Maman, S.; Rotman, S.R.; Blumberg, D.G. Combining TerraSAR-X and Landsat Images for Emergency Response in Urban Environments. Remote Sens. 2018, 10, 802. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Johnson, B.A.; Tateishi, R.; Hoan, N.T. A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. Int. J. Remote Sens. 2013, 34, 6969–6982. [Google Scholar] [CrossRef]
- Pluto-Kossakowska, J.; Osinska-Skotak, K.; Sterenczak, K. Determining the spatial resolution of multispectral satellite images optimal to detect dead trees in forest areas. ISPRS J. Photogramm. Remote Sens. 2017, 161, 395–404. [Google Scholar]
- Zheng, Y.; Dai, Q.; Tu, Z.; Wang, L. Guided Image Filtering-Based Pan-Sharpening Method: A Case Study of GaoFen-2 Imagery. ISPRS Int. J. Geo-Inf. 2017, 6, 404. [Google Scholar] [CrossRef]
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information fusion techniques for change detection from multi-temporal remote sensing images. Inf. Fusion 2013, 14, 19–27. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Chu, J.; Frankenberg, E.; Thomas, D. Assessment and prediction of natural hazards from satellite imagery. Prog. Phys. Geogr. 2007, 31, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Mishra, R.K. A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion. In Proceedings of the IEEE International, Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 182–185. [Google Scholar]
- Ŝvab, A.; Oŝtir, K. High-Resolution Image Fusion. Photogramm. Eng. Remote Sens. 2006, 72, 565–572. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; He, M. A novel pan sharpening algorithm for WorldView-2 satellite images. Int. Conf. Ind. Intell. Inf. 2012, 31, 18–23. [Google Scholar]
- Israa, A.; Javier, M. Multispectral Image Pansharpening based on the Contourlet Transform. In Information Optics and Photonics; Springer: New York, NY, USA, 2010; pp. 247–261. [Google Scholar]
- Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, H.K.; Huang, B. Revealing Implicit Assumptions of the Component Substitution Pansharpening Methods. Remote Sens. 2017, 9, 443. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Al-Wassai, F.A.; Kalyankar, N.V.; Al-Zuky, A.A. The IHS transformations based image fusion. arXiv, 2011; arXiv:1107.4396. [Google Scholar]
- Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Trans. Geosci. Remote Sens. 2004, GE-1, 309–312. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Jelének, J.; Kopačková, V.; Koucká, L.; Mišurec, J. Testing a modified PCA-based sharpening approach for image fusion. Remote Sens. 2016, 8, 794. [Google Scholar] [CrossRef]
- Maurer, T. How to pan-sharpen images using the Gram-Schmidt pan-sharpen method-a recipe. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 21–24 May 2013. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M.; Alparone, L. Enhanced Gram-Schmidt spectral sharpening based on multivariate regression of MS and pan data. In Proceedings of the IGARSS IEEE Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 3806–3809. [Google Scholar]
- Craig, A.L.; Bernard, V.B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent US09069232, 29 April 1998. [Google Scholar]
- Du, Q.; Younan, N.H.; King, R.; Shah, V.P. On the performance evaluation of pan-sharpening techniques. IEEE Geosci. Remote Sens. Lett. 2007, 4, 518–522. [Google Scholar] [CrossRef]
- Tu, T.M.; Lee, Yu.; Chang, C.; Huang, P.S. Adjustable intensity-hue-saturation and Brovey transform fusion technique for IKONOS/QuickBird imagery. Opt. Eng. 2005, 44. [Google Scholar] [CrossRef]
- Gangkofner, U.G.; Pradhan, P.S.; Holcomb, D.W. Optimizing the high-pass filter addition technique for image fusion. Photogramm. Eng. Remote Sens. 2008, 74, 1107–1118. [Google Scholar] [CrossRef]
- Dong, L.; Yang, Q.; Wu, H.; Xiao, H.; Xu, M. High quality multi-spectral and panchromatic image fusion technologies based on Curvelet transform. Neurocomputing 2015, 159, 268–274. [Google Scholar] [CrossRef]
- Li, S.; Yang, B. Hybrid multiresolution method for multisensor multimodal image fusion. IEEE Sens. J. 2010, 10, 1519–1526. [Google Scholar] [CrossRef]
- Qu, J.; Lei, J.; Li, Y.; Dong, W.; Zeng, Z.; Chen, D. Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion. Remote Sens. 2018, 10, 373. [Google Scholar] [CrossRef]
- Amro, I.; Mateos, J.; Vega, M.; Molina, R.; Katsaggelos, A.K. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 2011, 79. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Xiao, L.; Wei, Z.; Liu, H.; Tang, S. A new pan-sharpening method with deep neural networks. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1037–1041. [Google Scholar] [CrossRef]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Palubinskas, G. Model-based view at multi-resolution image fusion methods and quality assessment measures. Int. J. Image Data Fusion 2016, 7, 203–218. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. A new pansharpening algorithm based on total variation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 318–322. [Google Scholar] [CrossRef]
- Rahmani, S.; Strait, M.; Merkurjev, D.; Moeller, M.; Wittman, T. An adaptive IHS pan-sharpening method. IEEE Geosci. Remote Sens. Lett. 2010, 7, 746–750. [Google Scholar] [CrossRef]
- Saeedi, J.; Faez, K. A new pan-sharpening method using multiobjective particle swarm optimization and the shiftablecontourlet transform. ISPRS J. Photogramm. Remote Sens. 2011, 66, 365–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, G. An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images. Inf. Fusion 2005, 6, 225–234. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef]
- Ehlers, M. Multi-image fusion in remote sensing: Spatial enhancement vs. spectral characteristics preservation. In Advances in Visual Computing, Part II; Bebis, G., Ed.; Springer: Berlin, Germany, 2008; pp. 75–84. [Google Scholar]
- Pohl, C.; van Genderen, J.L. Multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- Ehlers, M.; Jacobsen, K.; Schiewe, J. High resolution image data and GIS. In ASPRS Manual of GIS; Madden, M., Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2009; pp. 721–777. [Google Scholar]
- Ehlers, M.; Klonus, S.; Johan Åstrand, P.; Rosso, P. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 2010, 1, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A global quality measurement of pan-sharpened multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 313–317. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Huang, G. A parallel computing paradigm for pan-sharpening algorithms of remotely sensed images on a multi-core computer. Remote Sens. 2014, 6, 6039–6063. [Google Scholar] [CrossRef]
- Fryskowska, A.; Wojtkowska, M.; Delis, P.; Grochala, A. Some Aspects of Satellite Imagery Integration from EROS B and LANDSAT 8. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; pp. 647–652. [Google Scholar]
- Grochala, A.; Kedzierski, M. A Method of Panchromatic Image Modification for Satellite Imagery Data Fusion. Remote Sens. 2017, 9, 639. [Google Scholar] [CrossRef]
- Soriano, A.; Vergara, L.; Ahmed, B.; Salazar, A. Fusion of scores in a detection context based on alpha Integration. Neural Comput. 2015, 27, 1983–2010. [Google Scholar] [CrossRef] [PubMed]
- NASA. Available online: http://landsat.gsfc.nasa.gov (accessed on 20 October 2018).
- Satellite Imaging Corporation. Available online: https://www.satimagingcorp.com/satellite-sensors/worldview-2/ (accessed on 20 October 2018).
- Singh, K.K.; Bajpai, M.K.; Pandey, R.K. A novel approach for enhancement of geometric and contrast resolution properties of low contrast images. IEEE/CAA J. Autom. Sin. 2018, 5, 628–638. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Ranchin, T.; Aiazzi, B.; Alparone, L.; Baronti, S.; Wald, L. Image fusion—The ARSIS concept and some successful implementation schemes. ISPRS J. Photogramm. Remote Sens. 2003, 58, 4–18. [Google Scholar] [CrossRef]
- Selva, M.; Santurri, L.; Baronti, S. On the Use of the Expanded Image in Quality Assessment of Pansharpened Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 320–324. [Google Scholar] [CrossRef]
- Carper, W.; Lillesand, T.; Kiefer, R. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Yakhdani, M.F.; Azizi, A. Quality Assessment of Image Fusion Techniques for Multisensor High Resolution Satellite Images—Case Study: IRS-P5 and IRS-P6 Satellite Images. In ISPRS TC VII Symposium—100 Years ISPRS; Wagner, W., Székely, B., Eds.; IAPRS: Vienna, Austria, 2010; Volume 37, pp. 204–209. [Google Scholar]
- Pirowski, T. The integration of remote sensing data acquired with various sensors—A proposal of merged image assessment. Geoinf. Pol. 2006, 8, 59–75. [Google Scholar]
Landsat 5 TM | Landsat 8 OLI/TIRS | WorldView-2 | |||
---|---|---|---|---|---|
Band 1 | 0.44 µm–0.51 µm | Band 1 | 0.44 µm–0.45 µm | Band 1 | 0.45 µm–0.80 µm |
Band 2 | 0.52 µm–0.60 µm | Band 2 | 0.45 µm–0.51 µm | Band 2 | 0.40 µm–0.45 µm |
Band 3 | 0.63 µm–0.69 µm | Band 3 | 0.53 µm–0.59 µm | Band 3 | 0.45 µm–0.51 µm |
Band 4 | 0.77 µm–0.90 µm | Band 4 | 0.64 µm–0.67 µm | Band 4 | 0.51 µm–0.58 µm |
Band 5 | 1.55 µm–1.75 µm | Band 5 | 0.85 µm–0.88 µm | Band 5 | 0.58 µm–0.62 µm |
Band 6 | 10.31 µm–12.36 µm | Band 6 | 1.57 µm–1.65 µm | Band 6 | 0.63 µm–0.69 µm |
Band 7 | 2.06 µm–2.35 µm | Band 7 | 2.11 µm–2.30 µm | Band 7 | 0.70 µm–0.74 µm |
Band 8 | 0.50 µm–0.68 µm | Band 8 | 0.77 µm–0.90 µm | ||
Band 9 | 1.36 µm–1.38 µm | Band 9 | 0.86 µm–1.04 µm | ||
Band 10 | 10.60 µm–11.19 µm | ||||
Band 11 | 11.50 µm–12.51 µm |
Area | Method | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Mod | Class | Mod | Class | Mod | Class | Mod | Class | Mod | Class | Mod | ||
open | GIHS | 0.50 | 0.60 | 0.57 | 0.62 | 0.49 | 0.55 | 0.12 | 0.11 | 0.61 | 0.39 | 0.50 | 0.51 |
GIHS-BT | 0.49 | 0.60 | 0.58 | 0.62 | 0.49 | 0.54 | 0.12 | 0.10 | 0.61 | 0.39 | 0.50 | 0.51 | |
HPF | 0.41 | 0.43 | 0.41 | 0.41 | 0.28 | 0.29 | 0.03 | 0.15 | 0.55 | 0.46 | 0.36 | 0.36 | |
PCA | 0.40 | 0.41 | 0.36 | 0.41 | 0.25 | 0.26 | 0.11 | 0.18 | 0.50 | 0.33 | 0.35 | 0.36 | |
Wave | 0.35 | 0.35 | 0.31 | 0.31 | 0.20 | 0.21 | 0.14 | 0.15 | 0.20 | 0.15 | 0.15 | 0.13 | |
GS | 0.44 | 0.46 | 0.49 | 0.49 | 0.36 | 0.38 | 0.10 | 0.17 | 0.53 | 0.38 | 0.48 | 0.49 | |
urban | GIHS | 0.35 | 0.44 | 0.40 | 0.45 | 0.31 | 0.38 | 0.08 | 0.01 | 0.27 | 0.18 | 0.07 | 0.10 |
GIHS-BT | 0.35 | 0.43 | 0.41 | 0.45 | 0.32 | 0.38 | 0.07 | 0.02 | 0.27 | 0.18 | 0.06 | 0.09 | |
HPF | 0.30 | 0.32 | 0.17 | 0.17 | 0.12 | 0.13 | 0.13 | 0.10 | 0.04 | 0.01 | 0.07 | 0.06 | |
PCA | 0.44 | 0.52 | 0.48 | 0.49 | 0.43 | 0.43 | 0.17 | 0.19 | 0.21 | 0.11 | 0.15 | 0.21 | |
Wave | 0.11 | 0.10 | 0.01 | 0.03 | 0.07 | 0.07 | 0.24 | 0.23 | 0.01 | 0.01 | 0.09 | 0.07 | |
GS | 0.48 | 0.55 | 0.48 | 0.53 | 0.40 | 0.47 | 0.19 | 0.15 | 0.23 | 0.13 | 0.12 | 0.15 |
Area | Method | SNR [dB] | AIL% [-] | SSIM [-] | |||
---|---|---|---|---|---|---|---|
Class | Mod | Class | Mod | Class | Mod | ||
open | GIHS | 21.31 | 22.41 | 99.77 | 86.60 | 0.20 | 0.21 |
GIHS-BT | 21.25 | 22.18 | 99.74 | 86.32 | 0.21 | 0.21 | |
HPFA | 24.18 | 24.50 | 99.77 | 86.81 | 0.18 | 0.17 | |
PCA | 21.22 | 20.62 | 73.68 | 73.82 | 0.18 | 0.17 | |
Wave | 23.72 | 23.90 | 84.48 | 71.79 | 0.11 | 0.10 | |
GS | 21.25 | 21.27 | 99.77 | 86.80 | 0.23 | 0.22 | |
urban | GIHS | 13.99 | 14.72 | 99.97 | 87.78 | 0.15 | 0.12 |
GIHS-BT | 13.69 | 14.48 | 99.96 | 87.70 | 0.15 | 0.12 | |
HPFA | 18.32 | 19.05 | 99.98 | 87.78 | 0.04 | 0.04 | |
PCA | 19.19 | 19.51 | 94.14 | 83.87 | 0.10 | 0.09 | |
Wave | 17.57 | 17.93 | 85.36 | 72.24 | 0.01 | 0.01 | |
GS | 16.51 | 17.34 | 99.97 | 87.78 | 0.14 | 0.12 |
Area | Method | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Mod | Class | Mod | Class | Mod | Class | Mod | Class | Mod | Class | Mod | Class | Mod | ||
open | GIHS | 0.20 | 0.20 | 0.22 | 0.23 | 0.28 | 0.31 | 0.29 | 0.34 | 0.35 | 0.41 | 0.53 | 0.62 | 0.45 | 0.48 |
GIHS-BT | 0.20 | 0.20 | 0.23 | 0.24 | 0.29 | 0.31 | 0.30 | 0.35 | 0.34 | 0.41 | 0.52 | 0.62 | 0.45 | 0.48 | |
urban | GIHS | 0.24 | 0.35 | 0.24 | 0.33 | 0.25 | 0.36 | 0.24 | 0.33 | 0.18 | 0.27 | 0.21 | 0.29 | 0.18 | 0.28 |
GIHS-BT | 0.23 | 0.34 | 0.23 | 0.33 | 0.25 | 0.36 | 0.24 | 0.33 | 0.17 | 0.26 | 0.21 | 0.29 | 0.19 | 0.28 |
Area | Method | SNR [dB] | AIL% [-] | SSIM [-] | |||
---|---|---|---|---|---|---|---|
Class | Mod | Class | Mod | Class | Mod | ||
open | GIHS | 22.01 | 24.38 | 99.77 | 95.68 | 0.13 | 0.12 |
GIHS-BT | 22.11 | 24.51 | 99.76 | 95.68 | 0.13 | 0.12 | |
urban | GIHS | 15.27 | 15.29 | 99.97 | 96.57 | 0.13 | 0.13 |
GIHS-BT | 15.15 | 15.13 | 99.96 | 96.55 | 0.13 | 0.13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekrecka, A.; Kedzierski, M. Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details. Sensors 2018, 18, 4418. https://doi.org/10.3390/s18124418
Sekrecka A, Kedzierski M. Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details. Sensors. 2018; 18(12):4418. https://doi.org/10.3390/s18124418
Chicago/Turabian StyleSekrecka, Aleksandra, and Michal Kedzierski. 2018. "Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details" Sensors 18, no. 12: 4418. https://doi.org/10.3390/s18124418
APA StyleSekrecka, A., & Kedzierski, M. (2018). Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details. Sensors, 18(12), 4418. https://doi.org/10.3390/s18124418