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Abstract: All drivers have their own distinct driving habits, and usually hold and operate the
steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian
mixture model (GMM)-based method that can improve the traditional GMM in modeling driving
behavior. This new method can be applied to build a better driver authentication system based on the
accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed
method, we created an experimental system that analyzes driving behavior using the built-in sensors
of a smartwatch. The experimental results for driver authentication—an equal error rate (EER) of
4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment—confirm
the feasibility of this approach.

Keywords: accelerometer sensor; driver authentication; Gaussian mixture models; orientation
sensor; smartwatch

1. Introduction

Driving behavior differs among drivers. Each driver has a habitual and distinctive driving style;
some drive slowly and carefully, while others drive fast and aggressively. Drivers exhibit distinct
methods for holding and operating the steering wheel, which differ depending on the driving scenarios
(e.g., driving straight, turning, and parking). Recently, several techniques of modeling the behavior
of a driver based on the pattern of operating the steering wheel and pedals [1–4], sitting posture [5],
and handgrip patterns [6], have been proposed as methods for driver identification and authentication.

Smartwatches have gained popularity because of technological advances. According to the
Gartner report [7], a 17% increase in smartwatch shipments is forecasted for 2018, compared to the 41.5
million units in 2017, and the quantity of yearly shipments is expected to reach nearly 81 million units
in 2021. Smartwatches equipped with multiple sensors, such as accelerometers and orientation sensors,
can be used not only for health monitoring but also for continuous motion analysis [8]. These devices
have been utilized for many applications, such as gesture detection [9,10], health monitoring [11–13],
information security [14,15], personal safety [16,17], and other applications [18].

Recently, smartwatches have been used to analyze the behavior of a driver for user authentication.
Liang and Kotz [19] developed a smartwatch-based user-presence authentication system that
continuously authenticated the user with a computer. This system required the hand- and
mouse-motion data of the user, and matched the enrolled pattern through three steps: peak detection,
weight calculation, and distance calculation. Lewis et al. [20] developed a gesture-based real-time
authentication system for a smartwatch. Their system applied behavioral biometrics collected from
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the readings of the accelerometer and gyroscope of a smartwatch, and used the dynamic time warping
algorithm for template generation and matching. These two studies on smartwatches show that the
characteristics of a user’s hand movement can be analyzed through the built-in sensor of a smartwatch.
On the other hand, Lee et al. [21] developed a real-time driver vigilance monitoring system that
tracked a user’s steering wheel movement (SWM) through the motion sensor of a smartwatch and the
heart rate from a photoplethysmogram (PPG) sensor. Pearson’s method was applied to select time,
phase, and frequency domain features extracted from the SWM, PPG, and PPG-derived respiration.
Driver hypervigilance was estimated according to the result of the weighted fuzzy c-mean algorithm.
Lee et al. [22] detected a driver’s drowsiness by the time, spectral, and phase domain features of
the driver’s hand movements. The accelerometer and gyroscope of a smartwatch captured the hand
movements of a driver. The SVM, implemented on the smartwatch, was used to detect the drowsiness
of a driver. Their studies show that smartwatches are capable of analyzing a driver’s driving behavior.

Several studies have been devoted to the problems of driver identification and/or driver
authentication. Igarashi et al. [1] built a driving behavior model through the Gaussian mixture
model (GMM) on the basis of pressure readings obtained from the accelerator and brake pedals.
Similarly, Miyajima et al. [2] used GMMs to model the pedal operation patterns of a driver when
following a car for driver identification. Later, Wahab et al. [3] compared GMMs and wavelet
transforms in the effectiveness of representing the accelerator and brake pedal pressures for driver
identification and authentication. They also compared multilayer perceptrons, fuzzy neural networks,
and statistical GMMs in recognition performance, and showed that GMMs are the most effective
method. Qian et al. [4] compared three methods for extracting features from the readings of the
steering wheel angle, the accelerator and the brake pedals, and applied support vector machines
(SVMs) to identify the drivers. Riener and Ferscha [5] installed pressure sensors in the driving
seat to capture the driver’s pelvic bone signature. They used the driver’s pelvic bone distance as a
biometric feature, and matched the driver’s enrolled patterns by the Euclidean distance. To the best
of our knowledge, there has not been any feasibility study on the problem of driver authentication
using smartwatches.

In this paper, a smartwatch-based driver authentication mechanism is proposed. A novel
GMM-based approach is also developed for building the driving behavior model of a driver. Since a
driver usually manipulates the steering wheel differently in different driving maneuvers (e.g., driving
straight or turning), we have created a behavioral model for each driving maneuver for each driver.

The proposed GMM-based approach addresses two weaknesses of the traditional GMM by
building a smartwatch-based behavioral model of drivers. First, in the traditional GMM-based
approach, the likelihood value of the GMM of an input pattern is often used to determine whether
or not the input pattern is drawn from the data distribution modelled by the GMM. However, when,
for example, some Gaussian components of the GMM for driver A cover all of the Gaussian components
of the GMM for driver B, it may be difficult to distinguish between drivers A and B with the likelihood
value of the GMM for driver A, even though the two GMMs have distinctive Gaussian components.
In this paper, to enhance the distinctive Gaussian components of the GMM for each driver, the posterior
probabilities of the Gaussian components of GMMs were used instead of the likelihood value of the
GMM. Second, in the traditional GMM-based approach [1–3], different kinds of features are equally
weighted. We found that different kinds of features can be weighted differently to reflect their
differing effectiveness for different drivers. To alleviate the two weaknesses of the traditional GMM,
we designed two models and combined them through stacked generalization [23] to yield the final
driving behavior model.

We established a driving simulation system to collect driving behaviors and recruited 52
participants for the experiment to evaluate the proposed approach. The behaviors of each participant
when driving straight, turning left, and turning right were used to construct his/her own models.
In the context of driver authentication, if a given participant is selected as the registrant, then all
other participants are considered as imposters. The experimental results indicate that the proposed
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approach can be used to authenticate the driver, with an equal error rate (EER) of 4.62%. Additionally,
the proposed approach was tested on 15 participants, who were licensed to drive automobiles, in a
real-driving environment, with an EER of 7.86%.

Our main contributions are highlighted below:

(i) A smartwatch-based driver authentication mechanism is presented. We demonstrate that the
driver’s hand motion information captured by the built-in sensors of a smartwatch can be used
to authenticate the driver.

(ii) A novel GMM-based behavioral modeling approach is also proposed to improve the traditional
GMM in modeling driving behavior.

(iii) The experimental results on the data collected from both the simulated and real-traffic
environments indicate that the proposed approach is feasible in both environments and more
accurate than the traditional GMM.

The remainder of this paper is organized as follows: Section 2 introduces the driving simulation
system, the real-traffic environment, and the apparatus used in this study, and Section 3 describes
the proposed methodology for driving behavioral modeling and detection. Section 4 discusses the
experimental results. Concluding remarks and suggestions for future studies are presented in Section 5.

2. Data Collection Environments and Apparatus

2.1. The Simulated System

A driving simulation system bearing close resemblance with a real driving system was established
to analyze driving behaviors (Figure 1a). The simulation system included a desktop computer,
a liquid-crystal display monitor, a simulator-grade wheel, and a pedal unit. The driving simulation
software City Car Driving [24] was used to simulate realistic three-dimensional road scenes with
dynamic traffic streams (Figure 1b).
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Figure 1. (a) Driving simulation system. (b) Simulated road scene.

Participants were asked to drive using this system as they would drive a real car (their safety was
ensured regardless of their driving skill). Although this system did not provide a complete driving
experience with fully realistic controls and variable road conditions, it could capture driver behavior
in accordance with our criteria for comparing and identifying driving behaviors.

2.2. The Real Environment

We also collected the driving behavior data of some participants driving a real vehicle (Honda
CR-V) in the campus of National Central University. As shown in Figure 2a, a smartphone was placed
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in this car beside the driver; the smartphone’s gyroscope readings were used to divide each driver’s
driving session into separate segments for different driving maneuvers. The road scene of the campus
is shown in Figure 2b.
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Figure 2. (a) Participant in a real vehicle. (b) Real-traffic road scene [25].

2.3. Apparatus

The Sony SmartWatch 3, the Sony Xperia Z5 Premium (Sony Corp., Tokyo, Japan) and the Logitech
G27 racing wheel (Logitech International S.A., Lausanne, Switzerland) [26] were used in the simulating
system, and the angle of the steering wheel was acquired through the Logitech Steering Wheel SDK [27].
The LG Watch Urbane and the LG V20 smartphone (LG Electronics Inc., Seoul, South Korea) were
used in the real environment; while the sampling rate of the smartwatch’s and smartphone’s built-in
sensors were set at 50 Hz in both environments.

3. The Proposed Methodology

The proposed smartwatch-based driver authentication mechanism, as illustrated in Figure 3, has
three major steps: (1) the preprocessing; (2) the feature extraction; and (3) the decision.
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In our driver authentication mechanism, a driver’s behaviors are directly observed by capturing
the data of the smartwatch built-in motion sensors (3-axis accelerometer and 3-axis orientation sensor).
In Preprocessing, the dynamic data are extracted from the collected motion data, and then the noise
of the raw and dynamic data are removed through a median filter. In this study, the entire sensor
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data sequence is partitioned into segments, so that each segment is focused on a specific operational
behavior of an individual. In Feature Extraction, two GMM-based driver models are built to extract
several features from the preprocessed data. Finally, two types of features are separated to train the
classifier model by using SVMs. These two SVMs are combined through stacked generalization to
yield a driving behavior model for the driver.

3.1. Data Preprocessing

Smartwatch accelerometers and orientation sensors can provide multidimensional data during
a single sensor event. Since the z-axis signal of the orientation sensor is the angle to the magnetic
north [28], the information from the z-axis is more related to the condition and direction of the road than
the driving behavior, and thus is not used in this study. Many studies reported that, compared to static
information, the use of dynamic information can improve the accuracy of behavioral biometrics [29,30].
Therefore, for each dimension of the sensor data, the delta (velocity) coefficient, a dynamic data, was
adopted. The delta coefficient can be obtained from the following formula:

∆x(t) = ∑K
u=1 u(x(t + u)− x(t− u))

2 ∑K
u=1 u2

(1)

where the delta window size K was set to 25 on the basis of preliminary experiments [31]. As listed in
Table 1, four types of signals were obtained from the accelerometer and orientation sensor. The sensor

data collected at time t are presented as xt =
[
ωT

1;t, ωT
2;t, ωT

3;t, ωT
4;t

]T
∈ R10, where ω1;t ∈ R3, ω2;t ∈

R2, ω3;t ∈ R3, and ω4;t ∈ R2 are the vectors formed by the three axes of the accelerometer, the x and y
axes of the orientation sensor, the delta coefficients with respect to the three axes of the accelerometer,
and the delta coefficients with respect to the x and y axes of the orientation sensor, respectively.

Table 1. Four signals derived from the built-in smartwatch sensors.

Signal Type Description

Acc The three-dimensional signal of the accelerometer
Ori The two-dimensional signal of the orientation sensor

∆Acc The three delta coefficients with respect to the three-dimensional signal of the accelerometer
∆Ori The two delta coefficients with respect to the two-dimensional signal of the orientation sensor

After removing the noise from the sensor data using a median filter (as shown in Figure 4),
the entire sensor data sequence was partitioned into segments by analyzing the steering wheel angle in
the simulated environment, and by analyzing the z-axis angular velocity of the smartphone gyroscope
in the real-driving environment. Each segment conveyed information regarding the behavior of a
driver driving straight, turning left, or turning right, modeling all three driving behaviors.
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Figure 4. (a) X-axis accelerometer signal with noise. (b) Median filtered X-axis accelerometer signal.

In the simulated environment, the threshold value of the steering wheel angle for partitioning
the signal was set to ±30◦. Figure 5a displays the correlation between the accelerometer and the
steering wheel signals at different periods. By contrast, the threshold value of the angular velocity
of the smartphone’s gyroscope for partitioning the signal was set to ±10◦/s. Figure 5b displays the
correlation between the accelerometer and the gyroscope of the smartphone at different periods.
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3.2. Feature Extraction

The smartwatch sensor data varied according to the driver and the driving scenario. The GMM
was used to capture the sensor data distributions for a driver with a specific driving behavior, which
is referred to as an individual driver model (IDM). The IDM log-likelihood of the sensor data has
already been used for driver recognition [1–3,32], where the log-likelihood value of the model is the
total sum of each log-likelihood value of the GMMs based on each sensor. In our study, since each of
the four features differed in its effectiveness to authenticate genuine drivers, the IDM log-likelihoods
for the four features were combined using SVMs in a weighted manner. Furthermore, to enhance
the distinctive Gaussian component of a driving behavior, a universal driver model (UDM), which
represented the collective behavior of all drivers, was learned by the GMM. Furthermore, SVMs on the
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posterior probabilities of the Gaussian components of the UDM were used in the study of other driver
models. These two base SVMs for each driver were combined through stacked generalization to form
each driving behavior model.

The remainder of this section describes two base learners: (1) the base SVM, which was based on
the IDM log-likelihoods; (2) the other base SVM, which was based on the posterior probabilities of the
Gaussian components of the UDM.

(1) Base Learner 1: SVM Based on the IDM Log-likelihoods

The parameters of the IDM with M Gaussian components are denoted by θ = {wi, µi, Σi}M
i=1. The

mixture density of the IDM θ is a weighted sum of M Gaussian component densities as follows:

P(ω|θ ) =
M

∑
i=1

wiG(ω|µi, Σi) (2)

where ω is a D-dimensional random vector, wi, i = 1, . . . , M and ∑M
i=1 wi = 1 are the mixture weights,

and G(ω|µi, Σi ), i = 1, . . . , M, is the density function of the multivariate normal distribution,

G(ω|µi, Σi ) =
1

(2π)
D
2 |Σi|

1
2

exp
{
−1

2
(ω− µi)

TΣ−1
i (ω− µi)

}
(3)

and where µi and Σi are the mean vector and covariance matrix for the ith component, respectively.
The four IDMs, each of which was built on one of the four types of features, were analyzed using
the expectation maximization algorithm to construct the driving behavior model for each driver
performing each maneuver.

The parameters of the ith IDM are denoted by θi =
{

wj;i, µj;i, Σj;i
}Mi

j=1. Let x1, . . . , xT be a segment
of the smartwatch sensor data of a driver. Similar to [1–3,32], whether x1, . . . , xT is generated by the
IDMs for a driver performing a specific maneuver can be determined by the log-likelihood of x1, . . . , xT ,
which is defined as follows:

L(x1, . . . , xT |θ1, . . . , θ4) = ∑4
i=1

1
T ∑T

t=1 log(P(ωi;t|θi)) (4)

where θ1, . . . , θ4 are the parameters of the IDMs for the four features. In this study, the following linear

SVM, which is the first base SVM, SIDM

([
1
T ∑T

t=1 log(P(ω1;t|θ1)) . . . 1
T ∑T

t=1 log(P(ω4;t|θ4))
]T
)

was estimated to weigh the four IDM log-likelihoods differently. The SVM SIDM also outputted an
estimate of the posterior probability so that the input feature vector was a positive sample.

(2) Base Learner 2: SVM Based on Posterior Probabilities of Gaussian Components of the UDM

The limitation of the IDM can be explained by the following example. As shown in Figure 6,
the Gaussian component set of participant B is a subset of that of participant A. Given a test sample
(either A or B), the likelihood of the test sample is calculated by the summation of the responses of
all the Gaussian components (or the log-likelihood) of the IDM of participant A. The test sample is
classified as Class “A” if the likelihood value is higher than a preset threshold. The likelihood of
B’s sample (from A’s IDM) is always high since B’s Gaussian components are also A’s. Therefore,
participant A’s IDM always misclassifies B’s samples as A.
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The proposed method takes two steps to alleviate the current limitation. In addition to the IDM
models for each participant, we have created a UDM based on the data of all participants. This UDM
represents the behavioral patterns of all participants; therefore, the Gaussian component sets of both
A and B are subsets of this UDM. Furthermore, we have built a SVM-based classifier that uses the
individual response of each component as an independent feature. This classifier is able to distinguish
Participant B from A since B’s Gaussian components are only a subset of A’s, but are not identical
to A’s.

To use the distinctive Gaussian components of driving behaviors, four UDMs, each constructed
on the basis of one of the four features, were estimated to build a GMM for the collective behavior in a
specific driving scenario. Subsequently, xt was mapped to vector ft in a new d-dimensional space by
using the formula

ft =
[

f1;1;t, f2;1;t, . . . , fM1;1;t, . . . , f1;4;t, . . . fM4;4;t
]T (5)

where d = ∑4
i=1 Mi is the total number of Gaussian components of the four UDMs and f j;i;t is the

posterior probability that ωi;t is generated by the jth Gaussian component of the ith UDM:

f j;i;t =
wj;iG

(
ωi;t
∣∣µj;i, Σj;i

)
∑Mi

k=1 wk;iG(ωi;t
∣∣µk;i, Σk;i)

(6)

In this d-dimensional space, a linear SVM SUDM

(
1
T ∑T

t=1 ft

)
, which is the second base SVM, was

calculated. This SVM SUDM also outputted the posterior probability that the input feature vector was
a positive sample.

3.3. Proposed Driving Behavior Model

Two modalities based on linear SVMs—SIDM and SUDM— were trained on the different feature
vectors. As shown in Figure 7, another combiner SVM was used to combine SIDM and SUDM.
Stacked generalization can be used to illustrate this combination framework. The key idea is to
evaluate a meta-learner based on the outputs of multiple base-learners. Some researchers [33,34] have
demonstrated that the base-learners and meta-learner can use the same learning algorithm to handle
multimodalities. In the present study, the combiner SVM also outputs the posterior probability that the
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input is a positive sample. Additionally, these driving behavior models for a driver can be applied in
several driving scenarios to determine if the driver drives as usual in these driving scenarios. To this
end, the average output of the driving behavior models for a driver can be used in these different
driving scenarios. In the present work, we built three driving behavior models for a driver in three
specific driving scenarios: driving straight, turning left, and turning right.
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4. Experiments and Discussion

Three experiments were conducted to evaluate the proposed approach. The purposes of the
experiments were as follows: (1) to analyze the number of Gaussian components of the GMM
required for the proposed approach; (2) to evaluate the accuracy of the proposed approach for driver
authentication in the simulated environment; and (3) to evaluate the accuracy of the proposed approach
in the real-traffic environment.

The implementations of the traditional GMM approach and the proposed approach were as follows:

• GMM: The traditional GMM technique (using function (4)) is hereafter referred to as the GMM
approach. The implementation of GMMs in the statistics and machine learning toolbox of
MATLAB was employed for performance comparison.

• Stacking: The proposed approach (the combiner SVM as shown in Figure 7) is hereafter referred
to as the stacking approach. It was implemented in MATLAB 2017a with LIBSVM [35].

All analyses were conducted on a personal computer (Predator G3610, Acer Inc., New Taipei City,
Taiwan) with an Intel Core i7-2600 CPU (Intel Corp., Santa Clara, CA, USA) and 16 gigabytes of RAM,
and run in the Windows 7 operating system (Microsoft Corp., Washington, DC, USA).

4.1. Experimental Setups

(1) Data Acquisition

Fifty-two volunteers, including 27 licensed drivers and 25 unlicensed persons, were recruited
from various departments of National Central University for the experiment, with a mean age of
24 ± 2 years. All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of National Taiwan University (201802ES007). To ensure that these
participants were familiar with the simulated system, they were trained until they could maintain
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normal driving (driving in oncoming traffic lanes and weaving in and out of traffic were prohibited).
We also ensured that every participant maintained a good mental state and did not drink before data
collection. They were asked to wear a smartwatch on their left hand and proceeded with their most
comfortable driving behavior to operate the steering wheel. The participants in the real environment
also adhered to the same requirement.

Figure 8a shows the route of the simulated environment. Each participant was asked to drive the
route under similar traffic conditions clockwise 40 times, and counterclockwise 40 times to collect the
driving behavior of the participant when turning right and left. In total, each participant undertook
80 driving sessions; each session lasted an average of 180 seconds (s) (9000 data points in average).
The 80 driving sessions were completed in eight rounds of experiments over the course of three weeks.
In total, 14,832 segments of driving straight, 8434 segments of turning left, and 12,168 segments of
turning right were collected. Each segment was regarded as a driving behavior sample.
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Fifteen participants (of 52 volunteers) were also involved in the data collection in the real-traffic
environment. They all had driver’s licenses and had at least two years of driving experience. As shown
in Figure 8b, the route for this experiment has five turns and is approximately 1.77 km long. Each
participant was asked to drive the route clockwise and counterclockwise so that their driving behavior
when turning right and left, respectively, could be collected. Each participant was required to be
familiar with the road of the campus prior to data collection. In consideration of the risk of real-traffic
roads, data acquisition was conducted only in the daytime between 9 a.m. and 5 p.m., and if there
were sunny weather conditions. Every participant undertook 20–25 driving sessions, with each session
lasting for 345 s on average (17,250 data points on average). All the driving sessions of a participant
were collected in four rounds of experiments over two weeks. In total, 3172 segments of driving
straight, 2093 segments of turning left, and 1428 segments of turning right were collected.

(2) Evaluation and Performance Indices

To estimate the performance indices for each participant, the driving behavior of a given
participant was regarded as the registrant’s behavior, while the driving behavior of the other
participants was regarded as the imposter’s behavior. For each participant, 51 pairs of training
and test sets were produced by the leave-one-person-out strategy. The training set comprised 55
segments of the registrant’s driving behavior (as positive samples) and 80 segments of the imposter’s
driving behavior (as negative samples). The test set comprised another 20 segments of the registrant’s
driving behavior and 20 segments of the imposter’s driving behavior. Participants who provided
negative samples in the training set contributed no samples to the test set.

The false acceptance rate (FAR), false rejection rate (FRR), detection error trade-off (DET) curve,
area under curve (AUC), and EER were used as performance indices for all the experiments. The
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FAR is defined as the percentage of the imposter’s behaviors that was wrongly recognized as the
registrant’s behaviors, and the FRR is the percentage of the registrant’s behaviors that was wrongly
recognized as the imposter’s behaviors. Both FAR and FRR depend on the threshold limit used
in the decision-making process. In the detection process, the DET curve was used to illustrate the
relationship between the FAR and FRR by varying the threshold limit [36]. The AUC of the DET curve
is proportional to the product of the FAR and the FRR. Minimizing the AUC of the DET curve is
equivalent to reducing either one of the error types or both [37]. The EER is the value where the FAR
and FRR become equal by adjusting the threshold. The EER performance measure rarely corresponds
to a realistic operating point. However, it is a relatively popular measure of the ability of a system to
distinguish between the two categories [38].

The models obtained for each driving maneuver were annotated with an “S” (for driving straight),
“L” (for turning left), or “R” (for turning right), and the “stacking S + L + R approach” referred to
the stacking approach that utilized the three segments, with each annotation representing one of the
three maneuvers.

4.2. Experimental Results

(1) Experiment 1: Analysis of the Number of Gaussian Components

The number of Gaussian components required for the GMM was analyzed from 15 participants in
the simulated environment as follows. Figure 9a presents the EER, while Table 2 presents the training
time of the GMM and the stacking approaches in the S + L + R driving scenario with respect to 2, 4,
8, 16, and 24 Gaussian components. The training time was proportional to the number of Gaussian
components, and the EER decreased as the number of Gaussian components increased from 8 to 24.
Figure 9b provides the EER of the two base SVMs SIDM and SUDM. Notably, they did not require the
same number of Gaussian components. Figure 9b and Table 2 show that when the number of GMM
components of SIDM increased from 4 to 8, the accuracy of SIDM improved by 6.17% but the training
time increased by 216%. The results also show that the accuracy of SUDM improved by 14.15% and the
training time increased by 54.63% when the number of GMM components of SUDM increased from
8 to 16. After evaluating the trade-off between the EER and the training time, the number of GMM
components was set to 4 for the IDM and 16 for the UDM. In this parameter setting, the average training
time and the average testing time of the stacking S+L+R approach were 172 s and 0.04 s, respectively.
Additionally, since the stacking approach is more computationally complicated, it was slower than the
IDM approach. However, the computational cost of the stacking approach was acceptable.
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Table 2. Average training time with respect to the number of Gaussian components.

Time (seconds) GMM Stacking SIDM SUDM

2 Components 1.82 13.29 3.07 10.21
4 Components 7.58 38.29 8.98 29.33
8 Components 26.86 134.68 28.41 106.04
16 Components 43.65 209.89 45.46 163.97
24 Components 78.66 300.58 80.74 219.21

(2) Experiment 2: Performance Evaluation of Driver Authentication in the Simulated Environment

Figure 10 displays the DET curves of the GMM and the stacking approaches. Figure 10a reveals
that the stacking approach was more accurate than the GMM approach in single driving scenarios.
In addition, as presented in Figure 10b, the accuracy of the stacking and the GMM approaches
improved after multiple driving scenarios, with the stacking approach remaining more accurate than
the GMM approach in multiple driving scenarios. Table 3 demonstrates that the stacking approach
was at least 4% more accurate than the GMM approach when considering the EERs of each approach.
Therefore, the experimental results indicated that the proposed approach outperformed the GMM
approach, and thus supports the proposed approach as a feasible method for verifying drivers in the
simulated environment.
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Table 3. EERs for the GMM and stacking approaches for various driving scenarios.

Driving Scenario Simulated Environment

GMM Stacking

S 19.39% 14.65%
L 18.02% 11.07%
R 20.53% 12.88%

S+L 12.14% 7.07%
S+R 14.48% 8.35%
L+R 12.47% 6.33%

S+L+R 9.86% 4.62%
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(3) Experiment 3: Performance Evaluation of Driver Authentication in a Real-Traffic Environment

Fifteen participants were involved in experiments conducted in a real-traffic environment.
As Table 4 indicates, the stacking approach was more accurate than the GMM approach, and the
EER of the proposed approach for the S + L + R driving scenario was 7.86%. Table 4 also compares the
experimental results of these participants in the real-traffic environment compared to the simulated
environment. According to the 2-sample t test, the stacking approach attained similar EERs for the S
and R driving scenarios in the real-traffic (p = 0.094) and simulated (p = 0.438) environments. However,
the stacking approach was less accurate for the L driving scenario in the real-traffic environment
(p = 1.064× 10−8). One possible reason may be that the participants made left turns more carefully in
the real-traffic environment, and thus, their left-turning behavior was not as distinguishable as in the
simulated environment. Another possibility is that the real-traffic environment had only one lane of
traffic whereas the simulated environment had two. Therefore, driving maneuvers in the simulated
environment may have been easier for participants in the simulated environment compared to the
real-traffic environment. Nevertheless, the experimental results indicated that the proposed approach
holds feasibility in a real-traffic environment.

Table 4. EERs of the GMM and stacking approaches in real-traffic and simulated environments.

Driving Scenario Real-Traffic Environment Simulated Environment

GMM Stacking GMM Stacking

S 20.93% 16.40% 25.07% 18.38%
L 29.10% 18.33% 17.46% 10.91%
R 24.74% 15.33% 24.15% 15.14%

S+L 18.34% 11.46% 14.44% 8.20%
S+R 17.41% 10.52% 20.30% 11.41%
L+R 20.52% 10.82% 13.70 6.90%

S+L+R 15.67% 7.86% 12.86% 6.07%

4.3. Discussion

Drivers’ physical and mental states might affect their driving behaviors. Additionally, in real-life
driving, there are driving scenarios, such as parking and backing a car, that were not considered in the
experiment. In this study, driving scenarios and drivers’ physical and mental states were controlled
to reduce the complexity of the experiments. However, in Experiments 2 and 3, we found that the
accuracy of driver authentication could be improved if more driving maneuvers were used. For
example, the S + L + R driving scenario would have resulted in a higher accuracy than the S + L and S
driving scenarios. This was probably because more driving maneuvers provided more information
about the driver. These issues are worthy of further investigation.

Table 5 gives a summary of the accuracy of several authentication mechanisms based on a driver’s
behavioral characteristics, and shows that our approach is a promising means of driver authentication.
Table 5 does not include other studies on smartwatch-based driver authentication because, to the best
of our knowledge, these studies are scarce.

Table 5. Summary of the EERs of user authentication using various behavioral characteristics.

Behavioral Characteristic Performance (%) Participants

Car driving signals [3] EER = 3.44 to 5.02 30
Gait/Stride [39] EER = 5 to 6 21

Keystroke dynamics [40] FAR = 0.01; FRR = 4 154
Mouse dynamics [41] FAR = 2.465; FRR = 2.461 22
Touch Gestures [42] EER = 2.35 to 2.99 51

Our proposed approach EER = 4.62 52
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5. Conclusions

To conclude, the driving behavior of a driver was analyzed from his/her use of a steering wheel.
Data from the built-in sensors of a smartwatch attached to the driver’s left hand were used for the
analysis. The driving behavior was also modeled by proposing a GMM-based modeling approach.
To demonstrate the feasibility of the proposed method, we created an experimental system that
analyzed driving behavior using two built-in sensors of a smartwatch. The experimental results
indicated that the proposed approach had EERs of 4.62% in a simulated environment and 7.86% in a
real-traffic environment, confirming the feasibility of this approach.

The proposed modeling approach has potential for other applications, such as detecting whether
drivers maintain normal/habitual behaviors to ensure driving safety. We also believe that the proposed
approach can be applied on other kinds of sensing devices. In future works, we intend to investigate the
possibility of implementing this authentication mechanism on a smartwatch, and apply the proposed
modeling approach to more applications.
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