
sensors

Article

Smart Web-Based Platform to Support
Physical Rehabilitation

Yves Rybarczyk 1,2,* ID , Jan Kleine Deters 3, Clément Cointe 4 ID and Danilo Esparza 1

1 Intelligent & Interactive Lab (SI2 Lab), Universidad de Las Américas, Quito 170124, Ecuador;
wilmer.esparza@udla.edu.ec

2 Department of Electrical Engineering, CTS/UNINOVA, Nova University of Lisbon,
2829-516 Monte de Caparica, Portugal

3 Faculty of Electrical Engineering, University of Twente, 217 7500 Enschede, The Netherlands;
j.kleinedeters@utwente.nl

4 Ecole Normale Supérieure de Paris-Saclay, 94235 Cachan, France; clement.cointe@ens-cachan.fr
* Correspondence: yr@uninova.pt; Tel.: +351-2-1294-8545

Received: 29 March 2018; Accepted: 23 April 2018; Published: 26 April 2018
����������
�������

Abstract: The enhancement of ubiquitous and pervasive computing brings new perspectives in
medical rehabilitation. In that sense, the present study proposes a smart, web-based platform to
promote the reeducation of patients after hip replacement surgery. This project focuses on two
fundamental aspects in the development of a suitable tele-rehabilitation application, which are:
(i) being based on an affordable technology, and (ii) providing the patients with a real-time assessment
of the correctness of their movements. A probabilistic approach based on the development and
training of ten Hidden Markov Models (HMMs) is used to discriminate in real time the main faults in
the execution of the therapeutic exercises. Two experiments are designed to evaluate the precision of
the algorithm for classifying movements performed in the laboratory and clinical settings, respectively.
A comparative analysis of the data shows that the models are as reliable as the physiotherapists to
discriminate and identify the motion errors. The results are discussed in terms of the required setup
for a successful application in the field and further implementations to improve the accuracy and
usability of the system.

Keywords: telemedicine; motor rehabilitation; motion assessment; natural user interface; Hidden
Markov Model

1. Introduction

A current trend in rehabilitation medicine is the concept of a remote therapy system [1,2].
This concept consists of enabling patients to carry out part of the rehabilitation at home and to
communicate through the Internet the evolution of the recovery process. The implementation of
such a technology is justified by medical (improvement of the recovery process by the possibility
to perform rehabilitation exercises more frequently), economic (reduction of the number of medical
appointments and the time patients spend at the hospital), mobility (diminution of the transportation
to and from the hospital) and ethics (healthcare democratization and increased empowerment of the
patient) purposes [3,4]. Nevertheless, the fact that the patients can perform the rehabilitation exercises
by themselves and without the supervision of a therapist raises an issue regarding the correctness of
the therapeutic movement [5,6].

The present study exposes a web-based platform for physical tele-rehabilitation for patients after
hip arthroplasty surgery. This orthopedic procedure is an excellent case study, because it involves
people that are limited in their mobility and who need a postoperative functional rehabilitation
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program to recover strength and joint mobility. The proposed approach considers two fundamental
conditions for the development of a suitable tele-rehabilitation platform [7,8]. First, the system makes
use of a low-cost motion capture device, in order to be economically viable. Second, the platform
integrates an artificial intelligent module that automatically assesses the correctness of the executed
movement to provide the patient with real-time feedback.

The remainder of the manuscript is organized into six parts. Section 2 presents related work in
tele-rehabilitation systems. Section 3 is a general description of the web-based platform (frontend
and backend). Section 4 focuses on the used method to develop the assessment module, which is
based on Hidden Markov Models (HMMs). Section 5 consists of a laboratory experiment that tests
the reliability of the HMMs to discriminate between correctly and incorrectly performed movements,
and by comparison with the assessment made by therapists. Section 6 is a similar experiment carried
out in clinical conditions and with patients after hip replacement surgery. Finally, the last section
discusses (i) the results of the automatic assessment and possible improvements of the algorithm;
(ii) the required setup for a reliable classification of the movements in real conditions; and (iii) a
user-friendly application to enable the therapists to generate assessment models on any kind of
new exercises.

2. Related Work

Table 1 presents the main related studies and approaches to build a physical tele-rehabilitation
system. First of all, the motion capture can be based on inertial wearable sensors or visual sensors.
Fortino and Gravina [9] propose a cloud-assisted wearable system (Rehab-aaService) that enables a
general motor rehabilitation, even if the system is optimized for the upper limbs. The platform is
scalable and can be integrated into a body sensor network (BodyCloud) [10] for the monitoring of
different physiological parameters. However, the system does not have an artificial intelligent module
that allows for a rigorous assessment of the rehabilitation exercises. In addition, the wearable devices
require the inertial sensors to be precisely placed on the body and/or to involve a calibration stage.
Thus, another approach consists of using a vision-based motion capture. This system also presents
certain limitations, such as the occlusion problem, but it has the advantage to provide an easy setup.
The occlusion can be overcome (at least partially) by asking the individuals to change the orientation
of their body according to the plane in which the movement is performed. Most of the systems
use the Kinect, because it is an affordable piece of equipment and its accuracy is good enough for
functional assessment activities [11]. An avatar evolving in a serious game is usually used to motivate
the user to regularly practice their therapeutic exercises [12]. However, it is very rare to find a system
that provides both an attractive virtual environment and an algorithm to assess the quality of the
rehabilitation movements executed by the patients. Instead of evaluating a spontaneous movement,
other studies propose to guide the gesture through visual [13] or haptic [14] feedback, in order to
avoid wrong motions. The disadvantage of these approaches is to induce a too stereotyped movement,
which reduces the functional benefit of the rehabilitation. So, the technological implementation of an
appropriate program of motor rehabilitation must involve an expert system that could substitute the
therapist and provide the patient with feedback. Recent studies applied algorithms based on Dynamic
Time Warping [15] and fuzzy logic [16] for the recognition of therapeutic movements and the diagnosis
of physical impairments, respectively. Nevertheless, the current systems are only able to discriminate
between a correct and an incorrect gesture, but they cannot give a targeted feedback on the type of
error when a movement is wrongly executed. To get such a feedback, it seems necessary to build a
model of the therapeutic exercises as suggested by [17], who propose a theoretical modeling in UML
for the reeducation of the upper limbs. Our work proposes a more advanced approach, since we
developed and implemented a statistical model to assess the rehabilitation movements, which can
be applied on any part of the body (upper and lower limbs) and can precisely identify the cause of
a bad performance to provide the users of the platform with comprehensive feedback regarding the
corrections to be made to the gesture.
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Table 1. Characteristics of studies on tele-rehabilitation systems.

Studies Type Motion Capture Movement
Assessment Feedback Biological

Features Application System Evaluation Contribution/Results

Fortino and
Gravina, 2015 [9]

Theoretical and
applied research

Wearable device—Inertial
sensors Not presented Visual—Avatar limb Optimized for

upper limbs
General motor
rehabilitation Not presented Scalable system

Pedraza-Hueso
et al., 2015 [12] Applied research Vision-based—Kinect No Visual—Avatar of a

serious game
Movements of
the whole body

Workout for
elderly Not presented Attractive virtual

environment

Da Gama et al.,
2012 [13] Applied research Vision-based—Kinect 2D range of motion Textual Upper limbs General motor

rehabilitation
Physiotherapists
and elderly

Avoiding wrong
movements by guidance

Brokaw et al.,
2013 [14]

Experimental
research Kinect and robotic system By comparison with a

reference Haptic Upper limbs Stroke
rehabilitation One health subject Multimodal interaction

Antón et al.,
2015 [15] Applied research Vision-based—Kinect Dynamic Time Warping No Posture and

movements
General motor
rehabilitation

Compared with
therapists’
assessment

Accurate discrimination of
the movements

Gal et al., 2015 [16] Applied research Vision based—Kinect Dynamic Time Warping
and Fuzzy Logic Textual Posture and

motion ranges

Diagnostic of
physical
impairments

Not on real patients Tested on healthy subjects

López-Jaquero et al.,
2016 [17] Theoretical research Natural User

Interface—Kinect Not presented Not presented Body joints Upper limbs
rehabilitation Not presented Modelling of the

therapeutic movements
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3. Web Platform

3.1. Global Architecture

One of the main goals of the web application is to be easy to use for patients and physiotherapists.
The rehabilitation platform is supported by a client-server architecture (Figure 1). The server contains
the remote application and the associated database. The user’s interface enables patients and therapists
to manage the display and the use of the Kinect data. The client-server connection is established via
Web Socket as communication protocol.

Figure 1. Platform architecture.

3.1.1. Django Website Server

The website is based on Django, a web framework written in Python. For an effective development,
it was decided to use Django CMS, a content management system that simplifies the implementation
of the web application.

3.1.2. Client Side

The Kinect camera is used to capture the movements performed by the patient. A network
application is launched on the patient’s computer, in order to send the data from the Kinect to the
Django website. To perform an exercise and to use the Kinect data, a gateway between the Kinect
and the server is necessary to manage the data flow. This application launched in the backend of
the system must be able to retrieve the data sent by the Kinect and create a link with the server to
send them (Network communication). Node.js, a JavaScript run-time environment, is used for this
part. It allows the creation of an application coded in JavaScript and HTML; and the communication
with the Django server. The backend manages the data from the Kinect and generates an HTML page
for the browser. Node.js was chosen for its wide range of modules, and more specifically the library
Kinect2, which simplifies the communication with the Kinect. The library http is used to start the
application. Figure 2 shows an example of the JavaScript application created to display the avatar of
the patient in a browser. The avatar (point-light representation) appears in a window on the left side
of the graphic user interface. A demonstration video of the exercise is displayed on the right side of
the interface. Two buttons on the top-right corner allow the patient to start (after 5 s countdown) and
stop the recording of the exercise, respectively.
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Figure 2. Patient’s interface during the practice of a rehabilitation exercise.

3.1.3. Web Socket

Node.js includes a library named Socket.IO and allows the deployment of a real-time bidirectional
event-based communication. To do so, the destination address of the data (the address of the server
hosting the website) must be declared in the Node.js application, and the IP address of the sender must
be declared in the Django website. Through this method, the library Socket.IO for Python and the one
for Node.js are able to communicate by using a function call.

3.2. Users Interface

The website can accommodate different types of users, such as patients and therapists.
The functionalities are singular for these two kinds of users. The rehabilitation is divided into several
parts, called stages. Each stage corresponds to a different level in terms of the intensity of: (i) Range of
Movement (ROM); (ii) Stretching; (iii) Force; and (iv) Walking. The transition from one stage to another
is allowed when the patient completes correctly all the exercises of the current stage and receives the
physiotherapist’s consent. In other words, the physiotherapist only can unlock a stage according to the
progress of the patient.

3.2.1. Patient Interface

Figure 3 shows the workflow of the patient interface. The patients have the choice to practice
exercises, consult their performances, or send a message to the health professionals.

Practice. Before the rehabilitation begins, patients must answer a questionnaire, which evaluates
their ability to complete the exercises. They must self-assess pain levels, skin problems, and potential
edemas. If the questionnaire outputs a low score, the patients are impeded to perform the physical
exercises. In the opposite case, the patients can proceed with the rehabilitation protocol. They must
choose an available stage and the various associated exercises. The reeducation program is divided
into different items. First, they have the option to watch an explanation of the movements. After the
exercise is starting, the user’s avatar and a real-time feedback on the quality of the movement is
displayed on the screen (see, Figure 2). The 3D joint coordinates received from the Kinect and the
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assessment associated are saved into the database. At the end of the exercise, the patients can review
their movements and have a detailed feedback on their performance. The same questionnaire as
previously mentioned is asked to the user at the end of a practical session, in order to provide the
therapist with information on the state of the patient after performing the physical exercises.

Consult. This section allows the patients to check the results and performances of the exercises
they achieved.

Messaging. This section allows the patient to exchange messages with a health professional
(questions, advice, etc.).

Figure 3. Workflow of the patient interface.
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3.2.2. Physiotherapist Interface

Several functionalities are available for the health professionals. First, they have to create an
account if they are not yet registered. After that, as shown in Figure 4, it is possible to: (i) add a new
patient and/or update information on existing patients; (ii) monitor the performance, progress and
movements of the patients; and (iii) send and/or receive messages from patients. Physiotherapists
have also the possibility to update the intensity of the rehabilitation program.Sensors 2018, 18, x  7 of 21 
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3.3. Database Modelling

The database is directly associated with the Django website. Django CMS integrates a relational
database management system named SQLite3, which is adequate for the requirements of the
tele-rehabilitation platform.

3.3.1. User Database

This database stores different information about the users, such as: name, e-mail, age, occupation,
city, etc.

3.3.2. Exercise Database

The modelling of this database is as follows (see, Figure 5):
Main table. This table synthetizes the data about the exercises completed by the patient (date,

kind of exercise, stage, completion time, etc.) and the corresponding outcome performance. During the
execution of an exercise, fractions of the entire movement are assessed in real-time, in order to
evaluate the correctness of the performed movement. Then, a single outcome (good, fair or bad) is
produced based on the sum of these individual assessments (see, next section for more details on the
assessment module).

Exercises table. This table, linked to the Main table through a 1:N relationship, provides details
about each exercise and a demonstration video of the movement that must be performed.

Data exercise N* table. This table, linked to the Main table by a 1:N relationship, provides details
about the movement performed during an exercise and stores the 3D joint coordinates captured by
the Kinect. These data can be used to display a replay of the movement carried out by the patients,
in order to provide the physiotherapist with an additional visualization (more ecologic) of the actual
performance of the patient.
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Assessment table. This table is linked to each Data Exercise N◦* table, through a 1:N relationship,
and stores the evaluation calculated by the assessment module for each part of the movement
(see Figure 3, Markov Model box).

Sets table. This table, linked to the Main table by a 1:N relationship, describes the nature of the
exercise (balance, coordination, ROM and force).

Figure 5. Architecture of the database.

3.3.3. Questionnaire Database

This database stores all the questionnaires answered by the patients and provides the
physiotherapist with a medical history and a permanent monitoring of the patient’s condition.

4. Assessment Module

4.1. Hidden Markov Approach

To evaluate in real time the quality of the movement performed by the patient, an artificial
intelligent program is developed to be integrated into the physical tele-rehabilitation platform as an
assessment module. Our approach is based on the Hidden Markov Model, which is a probabilistic
model that can be applied for time series analyses, such as gestures.

HMM can provide time-scale invariability when it comes to the recognition of temporal
patterns. A HMM models real world data into so called ‘hidden states’. HMMs have been
successfully applied in the domain of gesture recognition [18], speech and language processing [19],
meteorological forecasting [20], stock market/economical trend analyses [21], among others. HMM is
described in terms of probabilities. These are initial, transitional, and emission probabilities.
Initial probabilities are the distribution of probabilities of ‘being in a state’ before a sequence is
observed. Transitional probabilities are represented by a matrix, in which the probabilities indicate
the possible changes from one state to another. Finally, the emission probabilities model the variance
of each state’s associated values (mostly Gaussian Probability Density Functions or PDF) obtained
from continuous variable observations. Estimating the model parameters is done by utilizing the
Baum–Welch Expectation–Maximization (EM) algorithm, which is based on a forward–backward
algorithm used in classifying Hidden Markov Chains [22,23]. The probabilities are calculated at any
point of a sequence by inspecting previous observations, to find out how well the model describes the
data, and following observations, to conclude how well the model predicts the rest of the sequence.
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This is an iterative process, in which the objective is to find an optimal solution (state sequence) for
the HMM. This optimal sequence of states is inferred using the Viterbi algorithm. Also, the forward
algorithm can be used to calculate the probability that a sequence is generated by a specifically trained
HMM, making it applicable for classification.

HMMs are characterized by a set of real world observations (o1, . . . , on) where (o1, . . . , on) ε

X(Discrete,
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Using the forward algorithm, it is possible to calculate the probability that a sequence is 
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choosing the highest probability provides us with a recognition and further assessment of the 
movement. 
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The Kinect camera is used to extract the three-dimensional coordinates of the main body joints. 
Nevertheless, additional data are required for the feature representation. The joint positions only are 
not sufficient to create the motion representation. It is also necessary to consider the joint orientation 
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to calculate pitch, yaw and roll between two sets of coordinate systems (in this case the joint specific 
orientations). These rotations enable us to detect harmful movements. The depth data is needed to 
create the personal coordinate system so that motion can be expressed in terms of relative movement 
in the frontal, sagittal and horizontal planes. The proposed total feature representation is represented 
in Figure 7. 
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∏
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Using the forward algorithm, it is possible to calculate the probability that a sequence is generated
by a trained HMM. Calculating the probably for a sequence on N trained HMMs and choosing the
highest probability provides us with a recognition and further assessment of the movement.

4.2. Feature Representation

The Kinect camera is used to extract the three-dimensional coordinates of the main body joints.
Nevertheless, additional data are required for the feature representation. The joint positions only are
not sufficient to create the motion representation. It is also necessary to consider the joint orientation
data and the depth data. The joint orientation is a 4d vector (quaternion) containing the coefficients
to calculate pitch, yaw and roll between two sets of coordinate systems (in this case the joint specific
orientations). These rotations enable us to detect harmful movements. The depth data is needed to
create the personal coordinate system so that motion can be expressed in terms of relative movement
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in the frontal, sagittal and horizontal planes. The proposed total feature representation is represented
in Figure 7.

Figure 7. Proposed feature representation. The green box represents the required processing steps.
The grey boxes indicate minor transformations. And the blue boxes are the sets of features. The arrows
show the direction of the data flow.

The transformation from joint positions to angles is one of the straight forward tasks and can
be computed rapidly utilizing the cosine law (3). The absolute lengths between joints are calculated,
in order to extract an angle as feature. The first features are created to represent the relative pose of the
subject. These are features 1–6 as shown in Figure 7.

Cos (A) =
−a2 + b2 + c2

2bc
(3)

Then, additional vectors are computed in a similar fashion, in order to represent hip rotations in
the sagittal plane (Figure 8). With the floor plane orientation, the Personal Coordinate System (PCS)
can be constructed. The additional data required in this step are the left and right hip joint position
data. The vector that crosses both these points can be translated onto the reference point. Now at this
point two vectors meet at the reference point and enable the third direction to be extracted by finding
the perpendicular of these directions. This can be done by using the cross-product rule (4).

A→ × B→ = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1] (4)

Using the newly found orientations, the absolute coordinates per joint can be translated into
personal coordinates, where the origin is the floor crossing with the earlier mentioned scalar (Figure 8).
Note that the PCS is rotation invariant so that movements can be expressed in terms of front/back,
left/right and up/down. The speeds in the three directions are differences in orientation between
consecutive frames. Here, the speed is calculated as an averaged sum of 15 frames (±0.25 s).
The rotational values (features 34–37) are also calculated using the absolute values.

The rotations that need to be captured are those that resemble the external and internal rotation
of the upper leg. Using the joint orientations, quaternion values can be transformed into different
rotations (x, y, z of parent axis). These values are initially used in animations to easily recreate the
rotation of limbs. A hierarchical bone structure and a coordinate system per joint enables the rotations
to be extracted from the quaternion [24].
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Figure 8. Vectors creating the personal coordinate system with the center floor point being the new
origin. The cyan lines represent the lower limbs. The dotted lines indicate the additional vectors that
are required to calculate hip movements in the sagittal plane.

4.3. Trained HMMs

The features are input into the learning parameters on the level that semantics comply with a
therapist’s analysis of an exercise. Most coarse types of movements (with this semantic similarity) are
incorporated into the HMM representation, where the restrictions of the Skeletonization algorithm
are also taken into account (e.g., no trunk bending possible). This means that the earlier developed
multi HMM assessment has advanced into a 10-fold semantic manifestation, which is represented in
Figure 9. For each of these HMMs, two measures advance into the assessment blueprint. The forward
probabilities are used with a sliding window to indicate the likelihood of each phenomenon
within the movement. This pinpoints the location of an error, if this occurs in one of the HMM
elements. Then, the state transition sequence is passed on to be analyzed on symmetrical values and
coordination between the different HMM elements. When the forward pass provides a low likelihood,
the corresponding state mean values (those containing directional speed) are compared in an absolute
fashion to determine the direction of the error.

Figure 9. The 10 HMMs that are trained on specific features to identify a determined error in the
movement (in brackets the used features per HMM).
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5. Experiment 1

An automatic assessment of the quality of the performed exercises is implemented according to a
Hidden Markov Models (HMM) approach [25]. This technique provides insights into the ontological
structure of the rehabilitation exercises and represents a probabilistic interpretation of the correctness of
movement execution [22,26]. Here, the ontology of different compensatory movements associated with
an exercise of hip abduction of the right leg are evaluated from an experiment on healthy participants.
Compensation strategies are commonly used by patients to make exercises easier [27]. However,
these compensatory movements limit functional improvements from therapy of the affected limb
and can cause pain [28,29]. This is the reason why several motor rehabilitation support systems
were interested in identifying and limiting these compensations, in order to recover a normal joint
coordination for an appropriate use of the limb in everyday life activities [13,14]. The accuracy of
the proposed algorithm is validated by a comparison with the assessment made simultaneously by
physiotherapists, as it is suggested by other studies to evaluate e-rehabilitation systems [13,15].

5.1. Setup and Protocol

Nine subjects took part in the study. The experiment consisted of executing a rehabilitation
exercise of hip abduction. This exercise was repeated eight times per participant. Simultaneously,
five therapists rated the movement on three different aspects. These aspects were range of motion
(ROM), coordination, and compensation. ROM corresponds to the amplitude of the movement.
Coordination is related with the synchronicity of different body parts during the execution of an
exercise. Compensations were defined as undesired movements, which were not expected to be
performed. Subjects received feedback regarding the correctness of their performance after the fifth
repetition. Then, each of the three-remaining repetitions was followed by systematic feedback from
the therapists.

The representation of the Kinect’s skeletal data is based on the degrees of freedom per joints.
The created feature vector contains four variables (Table 2). Two of these features are the absolute value
of the linear speeds of the hip center joint and the shoulder center joint (features F0–F1, in Table 2).
The speeds are calculated using a buffer of 15 frames (around 0.25 s) as a denoising method. The speed
is the average of the values contained in the buffer. This buffer gets updated at every frame by
discarding the oldest data point and adding the newest one. In this sense the data stream becomes
available after the buffer is filled. Also, the angles of the upper legs in frontal planes (feature F3,
in Table 2) are integrated into the model. The angles are calculated with the cosine law. At last, the speed
paths of this last feature (feature F2, in Table 2) are created in the same fashion as stated previously.

Table 2. Feature vector.

F0 F1 F2 F3

Hip center speed (m/s) Shoulder center speed (m/s) Right hip speed (θ/s)
Frontal plane

Right hip angle (θ)
Frontal plane

5.2. Models Training

HMM is a probabilistic approach that aims to model a given signal into hidden states. These states
represent an arbitrary decomposition of the whole movement into successive phases. For instance,
the states for hip abduction of the right upper leg are: beginning pose (state 0), moving up (state 1),
hold leg up (state 2), and leg down (state 3). Here, two HMMs are independently trained: (i) one on
the movement of the trunk (HMM II, in Table 3); and (ii) another on the movement of the hip in the
frontal plane (HMM V, in Table 3). Table 3 shows the feature set and the number of states used for
training each HMM. The states are used in the next stage to create values to assess synchronicity and
symmetry. For a determined individual, HMMs were trained by using the correct trials (according
to the therapists labelling) of the other eight participants. Thus, a total of eight HMMs per subject
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were trained. Each model can predict the state of a specific joint or joint group (as the trunk in the
skeleton representation is rigid). This is useful as a fault can occur in one of these groups only, while
the rest can be correctly executed. In addition, every part of a movement can be correctly executed,
but badly synchronized. Such structure enables us to identify if a movement in one joint initialized
and stopped earlier or later, as state transitions are easy to obtain. The characteristic pattern of a
movement expressed in states leads to the knowledge of which state is associated with the movement
initialization and termination.

Table 3. Feature sets and amount of states.

HMM II HMM V

Features
- Shoulder center (m/s)
- Hip center (m/s)

- Right hip frontal (θ/s)
- Right hip frontal (θ)

Amount of States 3 4

Name Trunk Movement Right Hip Frontal

5.3. Results

Here, the performance of three subjects after the execution of a movement of hip abduction
are presented. The result of the labelling shows a global consensus, but also some inconsistences
between the therapists. Table 4 shows the labels for this sample of three participants. For each subject,
the first row is the ROM rating, the second row is the coordination rating, and the third row is the
compensation level.

Table 4. Labels (G for ‘good’, F for ‘fair’, and B for ‘bad’) for a sample of three subjects. The digits
correspond to the Id number of the trial.

Subjects Movement Therapist 1 Therapist 2 Therapist 3 Therapist 4 Therapist 5

Parameters G F B G F B G F B G F B G F B

1
ROM 1–8 1–8 1–8 1–8 1–8

Coordin. 1–8 1–8 1–8 1–8 1–8
Compens. 1–8 1–8 1–8 1–8 1–8

2

ROM 1–8 1–8 1–8 1–8 1–8

Coordin. 1–6
8 7 1, 5, 8 2–4

6, 7
1–5
7, 8 6 3, 4

6, 8
1, 2
5, 7 1–8

Compens. 1, 3–5
7, 8 2, 6 1–8 4 2–6

8 1, 7 3–5
7, 8

1,2
6

2–4
6, 8

1, 5
7

3

ROM 1–8 1–8 1–8 2–8 1 1–8

Coordin. 1–8 1, 3–5
7, 8 2, 6 1–8 2, 4

6, 8
1, 3
5, 7

1, 2
4–8 3

Compens. 1, 3–8 2 1, 3–8 2 2
6–8

1
3–5

2, 4
6, 8

1, 3
5, 7

2–4
7, 8

1, 5
6

The compensation is estimated through the symmetry of the movement, because it provides us
with an insight on the motor control over the execution, which must be characterized by an even
distribution of the agonist and antagonist muscular load in case of symmetry. It is first calculated by
extracting the signal of the shoulder center joint on both terminations: beginning and end of the rest
state (0).

As shown in Figure 10a,b, this processing provides a middle area (shown in green, HMM II)
where the minimum value corresponds to the center of the total movement of the shoulder center.
Then, the symmetry is expressed in differences in length (or number of frames) between the left and
right side in relation to this minimum value. A ratio is obtained by dividing the time took to reach the
maximum amplitude where speed ≈ 0 (inversion of the direction of the movement represented by
the green valley in Figure 10a,b) and the time took to return to the initial pose (end of the movement).
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Table 5 shows these ratios. Values > 1 mean that returning to the initial pose took longer than reaching
the maximum amplitude of the movement and inversely for ratios < 1.
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Figure 10. Speed path of the shoulder center (dotted lines) and angular speed of the right hip
(continuous lines), for two different trials of an exercise of hip abduction: trial 7 of subject 2 (a)
and trial 2 of subject 1 (b). The linear speed of the shoulder center is 1500 times magnified in this
representation. The x-axis represents the number of frames, where every frame has a period of time
of 1/60 s. The y-axis represents the velocity in m/s for the shoulder movement and θ/s for the
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Table 5. Synchronicity between shoulder movement and symmetry of shoulder movement. Values close
to 1 resemble a perfect synchronicity or symmetry. For synchronicity, values < 1 mean that the shoulders
moved before the hip abduction and values > 1 mean that the shoulder center moved after the hip
abduction. For symmetry, scores < 1 mean the shoulder center reached the maximum amplitude faster
than it returned to the beginning pose and the opposite for scores > 1. For values > 1 an inverse
value (1/value) is given in parenthesis, in order to calculate the average value for synchronicity
and symmetry.

Synchronicity Subject 1 Subject 2 Subject 3

Trial 1 0.93 0.79 0.95
Trial 2 1.06 (0.94) 1.16 (0.86) 0.74
Trial 3 0.86 0.91 1.21 (0.82)
Trial 4 0.73 0.61 0.64
Trial 5 1.54 (0.65) 0.74 0.73
Trial 6 0.93 0.93 0.71
Trial 7 0.74 0.72 2.14 (0.46)
Trial 8 1.01 (0.99) 0.84 0.87

AVERAGE 0.85 0.8 0.74

Symmetry Subject 1 Subject 2 Subject 3

Trial 1 1.09 (0.92) 0.79 0.95
Trial 2 1.29 (0.78) 1 0.94
Trial 3 0.82 0.93 1.4 (0.71)
Trial 4 0.85 0.6 0.87
Trial 5 1.54 (0.65) 0.78 0.82
Trial 6 1.01 (0.99) 0.83 0.76
Trial 7 0.78 0.68 3.4 (0.29)
Trial 8 1.16 (0.86) 0.76 1

AVERAGE 0.83 0.79 0.79

The coordination is calculated by using the target movement (HMM V) and the relative shift in
time of the movement of the trunk (HMM II). The shift in time is calculated by taking the midpoint of
the sequenced state 2 (where maximum amplitude is reached) of HMM V and the relative difference
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in lengths of the shoulders clipping points on the left and the right side of this point. Figure 10a,b
show an example of an incorrect and correct coordination of the movements, respectively. Figure 10a
corresponds to the trial 7 of subject 2, which was classified by three therapists out of five as not perfectly
coordinated (see Table 4). It can be noted on this trial a minor shift of the speed paths of the shoulder
center to the left with respect to the angular speed of the hip abduction (ratio = 0.72, which is lower
than the average value of 0.8 for this individual). In contrast, Figure 10b shows a trial that is almost
perfectly synchronized (ratio = 0.94) as both valleys (movement of shoulder center and movement of
abduction) are close to align.

6. Experiment 2

The second experiment is set up to study the applicability of the HMM models in assessing the
quality of the self-rehabilitation movements in real-time and in clinical conditions. The quality is
evaluated as correct or incorrect, with compensation faults that cover the most common errors during
a regular rehabilitation program. Such an experiment is justified by the fact that unfortunately a
large majority of the prototypes that aim to support physical rehabilitation are not tested on the end
users [30].

6.1. Setup and Protocol

Two patients (74 and 77 years of age) and one healthy subject participated in this experiment.
The patients were attending their regular session of physiotherapy for their rehabilitation. Both patients
had undergone hip replacement surgery at their right hip. This surgery took place 1.5 and 3 weeks
prior to the experiment (i.e., early stage recovery). All the participants were informed and gave
their consent on the gathering of their exercise data and later use for scientific research purposes.
Ethics clearance for this study was granted by the Nova University of Lisbon. Videos of the whole
session were created as well as in depth images for further extraction of the skeleton and applying
the input transformation into the desired feature representation. The participants were asked to
perform five different exercises, which were repeated eight times (i.e., total of 120 recordings).
The executed exercises were: hip abduction, hip extension, hip flexion in standing position, hip flexion
in sitting position, and a three-step exercise (step forward followed by step to the side and later step
backwards). Two therapists were asked to rate the quality of the movements performed by the subjects.
Three aspects were evaluated: range of motion (ROM), compensation, and coordination. Table 3
describes the characteristics of the trained HMMs that were used in this experiment (HMM II and
HMM V) to classify the movements of a patient and compare the results to the healthy subject. Then,
the therapists’ evaluations were used to determine if the compensatory movements were correctly
identified by the HMMs.

6.2. Results

6.2.1. Conditioning

As the patients were relatively old, the therapists demonstrated the exercises a couple of times
with a clear and slow description of the action itself. The first patient had problems with memorizing
the order of the three-step exercise, showing that cognitive abilities play an import role in the selection
of suitable exercises in the rehabilitation plan. Both patients wore baggy clothing that did not afflict
with the therapist’s assessment. However, it led the tracking of the skeleton to be slightly corrupted
and created data that were unsuitable for the analysis of several movements executed by patient 1.
The second patient needed to perform the exercises with a walking chair as she still had stability issues.
This chair did not impact the skeleton extraction on the same level as the clothing did. This is the
reason why the analyses will focus on patient 2. Figure 11 shows the patients performing an exercise.
Minor feedback was provided after every execution. This feedback mostly consisted of reducing
compensatory behaviors (e.g., stand up straight and let the force be applied from the hip).



Sensors 2018, 18, 1344 16 of 21
Sensors 2018, 18, x  16 of 21 

 

 
(a) 

 
(b) 

Figure 11. The two patients executing a therapeutic exercise of hip abduction: (a) is patient 1; (b) is 
patient 2. 

6.2.2. Classification Comparison 

An analysis is performed on the executions of patient 2 regarding hip abduction. This is 
compared with the trials executed by the heathy subject. As shown in Table 6, both therapists agree 
on the fact that executions 4 and 5 have a lesser quality (i.e., containing compensation to some extend). 

Table 6. Therapist labelling of hip abduction for each trial (1–8). 

 Therapist 1 Therapist 2 
 Good Fair Bad Good Fair Bad 

ROM  1–8  7, 8 1–6  
Coordination 1–6, 8 7  1–8   

Compensation 1–3, 6–8 5 4 1–3, 6–8 5 4 

Figure 12 shows the classifications performed by the HMMs for both patient and healthy subject. 
The average probability of correct labelled exercises is 1261 for the patient vs. 1474 for the healthy 
subject, which indicates an average better execution by the healthy individual than the patient. The 
most relevant result of this analysis is the very low value (about 0) attributed by the HMM II to  
trial 4. It means that the model is able to identify that an error occurred in this trial. The fact that a 
similar assessment is made by the therapists (this trial received the lowest score) suggests that the 
automatic evaluation is as accurate as the human one. 

 
Figure 12. HMM II (trunk model) classification for the 8 trials of patient 2 (blue) and healthy subject 
(orange). 

Figure 11. The two patients executing a therapeutic exercise of hip abduction: (a) is patient 1; (b) is
patient 2.

6.2.2. Classification Comparison

An analysis is performed on the executions of patient 2 regarding hip abduction. This is compared
with the trials executed by the heathy subject. As shown in Table 6, both therapists agree on the fact
that executions 4 and 5 have a lesser quality (i.e., containing compensation to some extend).

Table 6. Therapist labelling of hip abduction for each trial (1–8).

Therapist 1 Therapist 2

Good Fair Bad Good Fair Bad

ROM 1–8 7, 8 1–6
Coordination 1–6, 8 7 1–8

Compensation 1–3, 6–8 5 4 1–3, 6–8 5 4

Figure 12 shows the classifications performed by the HMMs for both patient and healthy subject.
The average probability of correct labelled exercises is 1261 for the patient vs. 1474 for the healthy
subject, which indicates an average better execution by the healthy individual than the patient.
The most relevant result of this analysis is the very low value (about 0) attributed by the HMM II to
trial 4. It means that the model is able to identify that an error occurred in this trial. The fact that a
similar assessment is made by the therapists (this trial received the lowest score) suggests that the
automatic evaluation is as accurate as the human one.

Figure 12. HMM II (trunk model) classification for the 8 trials of patient 2 (blue) and healthy
subject (orange).

6.2.3. Error Analyses

Further details on the compensation in executions 4 and 5 are provided in this section.
The compensation is estimated through the symmetry of the movement, because it provides us



Sensors 2018, 18, 1344 17 of 21

with an insight on the motor control over the execution, which must be characterized by an even
distribution of the agonist and antagonist muscular load in case of symmetry. This symmetry is defined
by the difference in length (or number of frames) between the left and right side in relation to this
minimum value. A ratio is obtained by dividing the time took to reach the maximum amplitude where
speed ≈ 0 (inversion of the direction of the movement represented by the green valley in Figure 13,
right panel) and the time took to return to the initial pose (end of the movement). Analyzing the video
of trial 4 shows a clear compensation. This compensation was an uncontrolled deviation of the hip
(center) moving to the left at the end of the movement. This is shown in Figure 13, where the yellow
line represents the speed of the hip center during this trial (left panel), and for a correct execution
(right panel) by the patient. This compensation can be referred to as adduction and occurred on
the left hip. It suggests that the joint did not present the stability required to correctly perform the
exercise, because the muscles of the opposite hip could not support the body while returning to the
initial posture.
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Figure 13. Trunk (green dotted lines) and hip (yellow unbroken lines) movements of patient 2 during a
hip abduction exercise. (a) A wrong execution (trial 4), in which a compensation occurred at the end of
the movement. (b) The example of a movement identified as correct (trial 3).

Trial 5 was classified as fair, only. Figure 14 (left panel) represents the velocity of the trunk
movement for a correct (healthy subject) vs. an incorrect (trial 5 of patient 2) execution. An additional
spike can be seen in the patient’s signal. The video shows that while approaching the maximal range
within the execution the patient lost balance resulting in a minor fall. However, she was able to
correct this in time and successfully terminated the exercise. This imbalance can be clearly seen when
predicting the state transitions path (Figure 14, right panel). A correct execution should have two
‘bumps’, only. However, the HMM detects an extra ‘bump’ in the mid-section, which corresponds to an
additional state transition into state 2 (broken line). This result demonstrates that the state transition
predictions are good indicators of compensation.

Sensors 2018, 18, x  17 of 21 

 

6.2.3. Error Analyses 

Further details on the compensation in executions 4 and 5 are provided in this section. The 
compensation is estimated through the symmetry of the movement, because it provides us with an 
insight on the motor control over the execution, which must be characterized by an even distribution 
of the agonist and antagonist muscular load in case of symmetry. This symmetry is defined by the 
difference in length (or number of frames) between the left and right side in relation to this minimum 
value. A ratio is obtained by dividing the time took to reach the maximum amplitude where speed ≈ 
0 (inversion of the direction of the movement represented by the green valley in Figure 13, right 
panel) and the time took to return to the initial pose (end of the movement). Analyzing the video of 
trial 4 shows a clear compensation. This compensation was an uncontrolled deviation of the hip 
(center) moving to the left at the end of the movement. This is shown in Figure 13, where the yellow 
line represents the speed of the hip center during this trial (left panel), and for a correct execution 
(right panel) by the patient. This compensation can be referred to as adduction and occurred on the 
left hip. It suggests that the joint did not present the stability required to correctly perform the 
exercise, because the muscles of the opposite hip could not support the body while returning to the 
initial posture. 

 
(a) 

 
(b) 

Figure 13. Trunk (green dotted lines) and hip (yellow unbroken lines) movements of patient 2 during 
a hip abduction exercise. (a) A wrong execution (trial 4), in which a compensation occurred at the end 
of the movement. (b) The example of a movement identified as correct (trial 3). 

Trial 5 was classified as fair, only. Figure 14 (left panel) represents the velocity of the trunk movement 
for a correct (healthy subject) vs. an incorrect (trial 5 of patient 2) execution. An additional spike can 
be seen in the patient’s signal. The video shows that while approaching the maximal range within the 
execution the patient lost balance resulting in a minor fall. However, she was able to correct this in 
time and successfully terminated the exercise. This imbalance can be clearly seen when predicting the 
state transitions path (Figure 14, right panel). A correct execution should have two ‘bumps’, only. 
However, the HMM detects an extra ‘bump’ in the mid-section, which corresponds to an additional 
state transition into state 2 (broken line). This result demonstrates that the state transition predictions 
are good indicators of compensation. 

 
(a)  

(b) 

Figure 14. (a) Representation of the velocity of the trunk movement for a correct execution by the
healthy subject (orange line) and an incorrect execution by the patient (blue line). (b) Description of the
predicted state transitions for the trial 5 of patient 2, which is provided by the HMM II. To note the
additional state transition (dashed line) caused by the compensatory behavior.



Sensors 2018, 18, 1344 18 of 21

7. Discussion

This study demonstrates that HMMs permit a discrimination between accurately and wrongly
executed movements of self-rehabilitation. The assessment module seems to capture to some extent the
levels of synchronicity and compensation perceived by the therapists. In such an approach, the state
transition sequences provide an important clue about the occurrence of compensations. Thus, it is
imperative that the trained models learn the distribution of the states over time so that missing/added
or elongated/shortened states are directly used as predictor of the correctness of the movement.
Figure 15 shows an example of the probabilistic-based method applied in the HMM approach to detect
a possible sequence mismatching. This technique of evaluation can also provide a qualitative insight
regarding the stability and flexibility of the human body across the recovery process.

However, the algorithm could be substantially improved by including the total displacement
of the trunk during the movement and a symmetric value for the distribution of the displacement,
in which the total displacement would aid in detecting the allowed movements (not considered as
compensation) and symmetry in displacement would provide an insight regarding the smoothness
of the movements. In addition, the precision of the synchronicity could be increased by applying
a curve fitting to the middle section of the speed paths (for shoulder and hip) and calculating the
shift between the minimum of each curve. Also, more information on the compensatory movements
could be obtained by determining the movement of the subjects regarding both the sagittal and the
frontal planes. The evaluation of the force recovery was not developed in this study, since it is difficult
to assess it using the Kinect. A possible option to overcome this limitation would be to implement
a multimodal system using both a Kinect and a haptic device that could simulate the pressure the
therapist applies to the limbs during a regular session [14].

Figure 15. Versioned detection of being in an unlikely state (red line). The transition path of an incorrect
execution (trial 5 by patient 2) is used as an example to illustrate the distribution over time of the
expected current state. Here, an undesired state is clearly identified in the middle of the sequence.

From a computational point of view, the algorithm could be adapted to Hidden Semi-Markov
Models (HSMMs), in which the sequences are modelled in terms of duration distributions [31].
This approach allows for a higher flexibility of the transition probability than in the HMMs,
which should increase the classification accuracy [32]. It is also to mention the fact that the HMM
predictions can sporadically contain noise. This issue was partially caused by the patient’s clothing
that reduced the accurate detection of the skeleton. Thus, the use of tight clothes must be preferred
and advised while patients perform exercises. The mentioned learned state duration distributions
could be applied as a signal pre-processing to identify possible misclassifications caused by a noisy
input, or to discard the exercise from evaluation.

It is important to highlight the fact that our approach is an extensive blueprint, which can be
applied to a large scope of physical rehabilitations (including upper limbs). As the assessment is
based on joint specific HMMs, the method can be crafted in numerous ways for implementation in
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any possible clinical setting or even field of motion analysis (e.g., sport, dancing, performance . . . ).
To do so, the only requirement is to collect new measures regarding the kinematic of the joint-based
features involved in the specific exercises of each therapeutic program. Then, these data will be used
to train pertinent HMMs that will enable the system to identify possible faults in the execution of
the movement, such as reduced ROM, compensation strategies, problems of coordination . . . or any
other incompliance that will disturb the recovery process. These errors could be handled by a pipeline
of assessment, in which the most serious errors will be tackled primarily in the form of a targeted
feedback for the patient.

In order to facilitate this process, current work is focused on the development of an application
to enable the therapists to easily create new assessment models that could be applied on any kind of
rehabilitation exercises (see prototype interface in Figure 16). CSV files can be loaded by clicking an
HMM button. Before doing so, the features that are going to be used in training need to be assigned by
typing them in the features section. To analyze the optimal amount of states that a dataset requires,
Bayesian Information Criteria (BIC) can be performed. This creates a score using cross validation
for states 2–10 (as a HMM exists at least out of 2 states). The amount of states to be used during the
training can be declared in the states section. When all the parameters are set, the training button
appears and the training can take place. When this step is done, the models can be saved.

Figure 16. User graphic interface of the HMM trainer.
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