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Abstract: This paper presents an unsupervised learning algorithm for sparse nonnegative matrix
factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is
a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence,
Kullback–Leibler divergence and Least Square distance are special cases that correspond to
β = 0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range
of β that includes fractional values. It describes a maximization–minimization (MM) algorithm
leading to the development of a fast convergence multiplicative update algorithm with guaranteed
convergence. The proposed model operates in the time–frequency domain and decomposes an
information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the
spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse
temporal codes through maximizing the likelihood of the observations. The paper also presents a
method to estimate the fractional β value. The method is demonstrated on separating audio mixtures
recorded from a single channel. The paper shows that the extraction of the spectral dictionary and
temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads
to better source separation performance. Experimental tests and comparisons with other factorization
methods have been conducted to verify its efficacy.

Keywords: adaptive signal processing; blind source separation; sensors signal processing; machine
learning; maximization–minimization algorithm; β-divergence; matrix deconvolution

1. Introduction

Blind source separation (BSS) [1–8] is an ill-posed problem that cannot be totally solved without
some prior information. This entails a certain number of assumptions have to be imposed to render the
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problem solvable such as channel type (linear [1] versus nonlinear [2]), mutual statistical independence
among the sources [3], the number of sources [4], how the sources are mixed (instantaneous [5] versus
convolutive [6]), and the location of the sources with respect to the microphones. Several recent
solutions have been developed to mitigate some of these constraints. In the work [7], it was
previously shown that non-Gaussian stationary process can be approximated as non-stationary
Gaussian process which enabled separation involving mixtures of non-Gaussian sources. Of similar
concept, a method is proposed for separation by decorrelating multiple non-stationary stochastic
sources using a multivariable crosstalk-resistant adaptive noise canceller [8]. In a related method,
the problem of speech quality enhancement is tackled using adaptive and non-adaptive filtering
algorithms [9]. A two-microphone Gauss–Seidel pseudo affine projection algorithm combined
with forward blind source separation is proposed. A higher efficiency in speech enhancement
in noisy environment has been attained. The paper [10] proposes rational polynomial functions
to replace the original score functions used in standard independent component analysis (ICA).
The rational polynomials are derived by the Pade approximant from Taylor series expansion of
the original nonlinearities which can be quickly evaluated to enable large-scale multidimensional
sets of data characterized by super-Gaussian distribution to be separated within a short period
of time. Recently, a bi-variate empirical mode decomposition algorithm combined with complex
ICA by entropy bound minimization technique is proposed for convolutive signal separation [11].
In telecommunication problems, neither the direction of arrival (DOA) nor a training sequence is
assumed to be available at the receiver. The only assumption is that the transmitted signals satisfy
the constant modulus property. In the work [12], a multistage space–time equalizer is proposed to
blindly separate signals received by an antenna array from different sources simultaneously. In the
algorithm, each stage consists of an adaptive beamformer, a DOA estimator and an equalizer which
are jointly optimized using the constant modulus property of the sources. Other than statistical
independence and non-Gaussianity, signal separation approach based on second-order statistics of
the speech signals using canonical correlation approach [13] has also been proposed. The work [14]
considers complex-valued mixing matrix estimation and direction-of-arrival estimation of synchronous
orthogonal frequency hopping signals in the underdetermined blind source separation (UBSS).
A mixing matrix estimation algorithm is proposed by detecting single source points where only
one source contributes its power. While traditional algorithms are usually applied in the ideal sparse
environment, the work [15] proposes a solution where multiple input multiple output mixed signals
are insufficiently sparse in both time and frequency domains under noisy conditions. The work [16]
demonstrates the application of UBSS in addresses the mixing of pipe abrasive debris problem and
focuses on the superimposed abrasive debris separation of a radial magnetic field abrasive sensor.
Through accurately separating and calculating the morphology and amount of the abrasive debris,
the abrasive sensor has provided the system with wear trend and sizes estimation of the wear particles.

In recent years, an alternate class of solutions for BSS based on nonnegative matrix factorization
(NMF) [17] has been proposed. Compared to ICA, NMF gives a more part based decomposition and
the decomposition is unique under certain conditions, making it unnecessary to impose the constraints
in the form of orthogonality and independence [18]. These properties have led to a significant interest
in NMF lately for its application in areas of BSS [5,19–24], pattern recognition [25], and dimensionality
reduction [26]. Multiplicative update-based families of parameterized cost functions such as the
Csiszar’s divergences [27,28] were also presented. The NMF is a matrix decomposition technique.
Let the data matrix V be a nonnegative matrix of dimensions I × J. The aim of NMF is to find two
matrices W and H such that:

V = WH (1)

or in scalar form,
Vi,j = ∑

k
Wi,k Hk,j (2)
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where i = 1, 2, ..., k = 1, 2, . . . , K, and j = 1, 2, . . . , J. When W and H are nonnegative matrices of
dimensions I × K and K× J, then is usually chosen such that

I × K + K× J � I × J (3)

A sparseness constraint can be added to the cost function [26–31], and this can be achieved by
regularization using the L1-norm leading to Sparse NMF (SNMF). Here, “sparseness” refers to a
representational scheme where only a few units (out of a large population) are effectively used to
represent typical data vectors. In effect, this implies most units taking values close to zero while only
few take significantly non-zero values. Several other types of prior distribution over W and H can be
defined, e.g., it is assumed that the prior of W and H satisfy the exponential density and the prior for
the noise variance is chosen as an inverse gamma density [27]. In the work [28], Gaussian distributions
are chosen for both W and H. The model parameters and hyper parameters are adapted by using
the Markov chain Monte Carlo (MCMC) [32]. In all cases, a fully Bayesian treatment is applied to
approximate inference for both model parameters and hyper parameters. While these approaches
increase the accuracy of matrix factorization, it only works efficiently when a large sample dataset is
available. Moreover, it consumes significantly high computational complexity at each iteration to adapt
the parameters and its hyper parameters. The NMF with the β-divergence has been previously used in
music signal processing [33,34]. In our previous paper [35], we investigated β-divergence for source
separation problem. It was shown that improved performance has been attained over integer-based
β-divergence. Thus, this motivates research of using β-divergence for music signal processing and
source separation. However, all of these works fixed β to some constant values within 0–2, and have not
presented any method to determine the desired β value. This significantly constrains the performance
of matrix factorization and its ability in separating mixed sources. In addition, these works do not
consider the issue of sparsity of the temporal codes which would undermine the quality of matrix
factorization when the β value is inappropriately chosen. The selection of the β value should consider
the sparseness constraint used in the cost function.

Regardless of the cost function and sparseness constraint being used, the standard NMF or SNMF
models are only satisfactory for solving source separation provided that the spectral frequencies of
the analyzed audio signal do not change over time. However, this is not the case for many realistic
signals such as music and speech. As a result, the spectral dictionary obtained via the NMF or
SNMF decomposition is not adequate to capture the temporal dependency of the frequency patterns
within the signal. To remedy the situation, a pragmatic approach is to work on a more holistic model
based on matrix factor deconvolution [21–24]. In this paper, we work with NMF model extended
to two-dimensional time–frequency deconvolution of W and H where (W, H) are considered as the
matrix factors [22]. Mathematically, this is expressed as

Vi,j =
K
∑

k=1

τmax
∑

τ=0

φmax

∑
φ=0

Wτ
i−φ,k Hφ

k,j−τ

V =
τmax
∑

τ=0

φmax

∑
φ=0

↓φ
Wτ
→τ

Hφ

(4)

where i and i represent the frequency and time index, respectively, k indicates the factor number,
τ represents the temporal shift and φ is the frequency shift. The terms τmax and φmax are the maximum
temporal and frequency shift, respectively. With this definition, both Wτ

i,k and Hφ
k,j have tensorial

structures with dimension I × K × τmax and K × J × φmax, respectively. Thus, Wτ
i,k represents the

τth-slice of the kth-spectral basis while Hφ
k,j represents the associated φth-slice of the kth-temporal

code. The downward and rightward arrow signs denote the corresponding shifting direction of each
column in Wτ and each row in Hφ by the amount indicated by τ and φ, respectively.

Model (4) represents both temporal structure and the pitch change which occur when an
instrument plays different notes. In the log-frequency spectrogram, the pitch change corresponds
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to a displacement on the frequency axis. Where previous NMF methods needed one component
to model each note for each instrument, Model (4) represents each instrument compactly by a
single time–frequency profile convolved in both time and frequency by a time–pitch weight matrix.
This model dramatically decreases the number of components needed to model various instruments
and effectively solves the blind single channel source separation problem for certain classes of musical
signals. When polyphonic music is modeled by factorizing the magnitude spectrogram with NMF,
each instrument is modeled by an instantaneous frequency signature which can vary over time.
However, the NMF requires multiple basis functions to represent tones with different pitch values.
The two-dimensional time–frequency deconvolution model implicitly solves the problem of grouping
notes. Thus, all notes for an instrument is an identical pitch shifted time–frequency signature, Model
(4) will give better estimates of these signatures, because more examples of different notes are used to
compute each time–frequency signature. In the event when this assumption does not hold, it might
still hold in a region of notes for an instrument. Furthermore, the two-dimensional time–frequency
deconvolution model can explain the spectral differences between two notes of different pitch by the
two-dimensional deconvolution of the time–frequency signature.

The novelty of this paper can be summarized as follows: Firstly, a new algorithm is developed
for sparse nonnegative matrix factor time–frequency deconvolution optimized with fractional
β-divergence. Secondly, the maximization–minimization algorithm is developed to derive the auxiliary
cost function which caters for any β value. The paper shows that the optimal β that leads to the desired
performance is not necessarily limited to the special cases of integer β but extends to fractional values.
Thirdly, it is analytically shown that the convergence of the proposed algorithm is guaranteed under
the auxiliary function. Fourthly, a method is proposed to estimate the fractional β within the context of
monoaural source separation. Finally, the paper proposes an adaptive method to estimate the sparsity
parameter for each of the individual temporal code.

The remainder of the paper is organized as follows: In Section 2, the new algorithm for matrix
factor time–frequency deconvolution model with β-divergence based on the maximization–minimization
algorithmic framework is derived. Real application of blind source separation using the proposed
method and comparisons with other matrix factorization methods are presented in Section 3.
Finally, Section 4 concludes the paper.

2. Background

2.1. β-Divergence Cost Function

The NMF problem can be written as the minimization of an objective function:

D(V|WH) = ∑
i,j

dβ

(
Vi,j|Λi,j

)
(5)

The general β-divergence [24,31] is defined as:

dβ(y|x) =


yβ

β(β−1) +
xβ

β −
yxβ−1

β−1 , β→ R/{0, 1}
y(log y− log x) + (x− y), β = 1
y
x − log y

x − 1 β = 0

(6)

when β = 2, this matches with the first β-divergence and the update algorithm is referred to as the
“Least Square” [17]. When we use the second β-divergence with β = 1, the update algorithm is
referred to as the “Kullback–Leibler” [17]. When the third β-divergence with β = 0 is used, the update
algorithm is referred to as the “Itakura–Saito” [33]. These algorithms have their own advantages and
disadvantages. If the sources have large dynamic difference in the power, the Itakura–Saito divergence
would have better performance than other NMF algorithms. The Least Square and Kullback–Leibler
NMFs are more suited when the power of sources are close to other. However, it is difficult to define
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the difference of power between the sources, and therefore it is difficult to choose the algorithms.
In this paper, we present the results to show that the best results are not necessarily limited to the
above integer β special cases. The use the fractional β-divergence is expected to yield more realistic and
optimized results than the previous NMF algorithms. For completeness of presentation, the following
section briefly reviews the update function based on the Least Square and Kullback–Leibler criterion.

2.1.1. Least Square Distance

The Least Square NMF algorithm introduced by Lee and Seung [17] defines the β-divergence as
Least Squares divergence when β = 2. First, we consider the least square cost function:

CLS = 1
2 ||V−Λ||2F = ∑

i,j
d2(Vi,j|Λi,j)

= 1
2 ∑

i,j

(
Vi,j −Λi,j

)2 (7)

Differentiating CLS with respect to Wτ
i,k and Hφ

k,j, and plugging the multiplicative update algorithm

for θ =

{
(Wτ

i,k)I×K×τmax
, (Hφ

k,j)K×J×φmax

}
:

θ ← θ·
([
∇dβ(y|x)

]
−[

∇dβ(y|x)
]
+

)

where ∂dβ(y|x)/∂θ =
[
∇dβ(y|x)

]
+
−
[
∇dβ(y|x)

]
−, which leads to the following Wτ and Hφ updates:

Wτ = Wτ ·
∑φ

↑φ←τ

V ·
→τ

Hφ
T

∑φ

↑φ←τ

Λ ·
→τ

Hφ
T (8)

Hφ = Hφ·∑τ

↓φ
Wτ

T

·
↑φ←τ

V

∑τ

↓φ
Wτ

T

·
↑φ←τ

Λ

(9)

where “A·B” represents element-wise multiplication.

2.1.2. Kullback–Liebler Divergence

When β = 1, the β-divergence is identical to the Kullback–Leibler divergence. The Kullback–Leibler
divergence is expressed as:

CKL = ∑
i,j

d1
(
Vi,j|Λi,j

)
= ∑

i,j
Vi,j log

Vi,j

Λi,j
−Vi,j + Λi,j (10)

By following similar steps as the Least Square, we can derive the update function as follow:

Wτ = Wτ ·
∑φ

(
↑φ←τ

V
Λ

)
·
→τ

Hφ
T

∑φ 1·φT (11)

Hφ = Hφ·
∑τ

↓φ
Wτ

T

·
(
↑φ←τ

V
Λ

)

∑τ

↓φ
Wτ

T

·1
(12)
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where “ A
B ” represents element-wise division and “1” is a column vector of unit elements.

2.2. Auxiliary Cost Function of Fractional β-Divergence for Matrix Factors Time–Frequency Deconvolution

In this subsection, we introduce the cost function for the fractional β-divergence matrix factors
time–frequency deconvolution model. The algorithm allows the user to choose a fractional β value
instead of using the previous NMF algorithms which constrain β to special cases of integer value.
After the derivation, this paper shows the steps on how the update function of the fractional
β-divergence is obtained for the parameters. Firstly, the first derivative of dβ(y|x) are given by

d′(y|x)β = yβ−2(y− x) (13)

This shows that y is continuous in β and thus the second derivative of dβ(y|x) is given by

d
′′(y|x)
β = yβ−3[(β− 1)y− (β− 2)x] (14)

The second derivative shows that the β-divergence is convex for y in β ∈ [1, 2]. Outside of this
range, dβ(y|x) can be expressed as:

dβ(y|x) = ď(y|x) + d̂(y|x) + d(x) (15)

where ď(y|x) is a convex function of y, d̂(y|x) is a concave function of y, and d(x) is a constant of y.
Table 1 shows the various functions for ď(y|x), d̂(y|x) and d(x). The problem we want to tackle is to

minimize the following function with respect to θ =

{(
Wτ

i,k

)
I×K×τmax

,
(

Hφ
k,j

)
K×J×φmax

}
where β can

assume fractional number:

G(θ) = ∑
i,j

dβ

(
Vi,j|∑K

k=1 ∑τmax
τ=0 ∑

φmax
φ=0 Wτ

i−φ,k Hφ
k,j−τ

)
= 1

β(β−1) ∑
i,j

Vβ
i,j + ∑

i,j

1
β

(
∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ

)β

︸ ︷︷ ︸
G1(β)

+ ∑
i,j

Vi,j

(
− 1

β− 1 ∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ

)β−1

︸ ︷︷ ︸
G2(β)

(16)

Table 1. Differentiable Convex-Concave-Constant Decomposition of β-Divergence.

Range ď(y|x) d̂(y|x) d(x)

β < 1 and β 6= 0 − 1
β−1 xyβ−1 1

β yβ yβ−1

β = 0 xyβ−1 log y y−1

1 ≤ β ≤ 2 dβ(x|y) 0 0
β > 2 1

β yβ − 1
β−1 xyβ−1 −xyβ−2

In Equation (16), G1(β) is convex for β ≥ 1 and concave for β < 1, and G2(β) is convex for β ≤ 2
and concave for β > 2. Thus, there is a need to alleviate this problem by decomposing the above
function into several terms to be either convex or concave depending on the value of β and use the
appropriate inequalities to build an auxiliary function.

Lemma 1. For the case of β ≥ 1, we have

1
β

(
∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ

)β

≤ 1
β ∑

k,τφ

ωi,j,k,τ,φ

Wτ
i−φ,k Hφ

k,j−τ

ωi,j,k,τ,φ

β

= P(β)
i,j (17)
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where ωi,j,k,τ,φ ≥ 0 for all k, τ, φ and ∑
k,τφ

ωi,j,k,τ,φ = 1. The equality holds when

ωi,j,k,τ,φ =
Wτ

i−φ,k Hφ
k,j−τ

∑k′ ,τ′ ,φ′ Wτ′
i−φ′ ,k′H

φ′

k′ ,j−τ′

(18)

Proof. Let f : R→ R be a convex function. If αk(k = 1, 2, . . . , K) satisfies ∀k, αk > 0 and ∑
k

αk = 1,

then for any xk(k = 1, 2, . . . , K) ∈ R,

f

(
∑
k

xk

)
≤∑

k
αk f
(

xk
αk

)

and with equality holds if and only if αk = xk/ ∑
k

xk. Substituting f (·) = 1
β (·)

β with

β ≥ 1, xk = Wτ
i−φ,k Hφ

k,j−τ and αk = ωi,j,k,τ,φ yields Equation (16). �

Lemma 2. For the case of β < 1, we have

1
β

(
∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ

)β

≤ Λβ−1
i,j

(
∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ −Λi,j

)
+

Λβ
i,j

β
= Q(β)

i,j (19)

The equality holds when
Λi,j = ∑

k,τφ

Wτ
i−φ,k Hφ

k,j−τ (20)

Proof. Let f : R→ R be a continuously differentiable and concave function. Then, for any point z,

f (x) ≤ f ′(x)(x− z) + f (z)

and with equality holds if and only if x = z. Substituting f (·) = 1
β (·)

β with

β < 1, x = ∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ and z = Λi,j yields Equation (17). �

Using Lemmas 1 and 2, we may proceed with the following analysis. When β < 1, we use Q(β)
i,j

instead of G1(β) and Vi,jP
(β−1)
i,j instead of G2(β), then the cost function becomes a convex function.

Let us denote G+(θ|θ̂) as an auxiliary function for and θ̂ =

{(
ωi,j,k,τ,φ

)
I×J×K×τmax×φmax

,
(
Λi,j
)

I×J

}
as

the auxiliary variables. For G+(θ|θ̂) to qualify as auxiliary function, it must satisfy G(θ) = min
θ̂

G+(θ|θ̂).

Thus, the cost function can be shown to be bounded by the auxiliary function G+(θ|θ̂):

G(θ) ≤ G+(θ|θ̂) = ∑
i,j

Vβ
i,j

β(β− 1)
+ Q(β)

i,j −Vi,jP
(β−1)
i,j (21)

when 1 ≤ β ≤ 2, we use P(β)
i,j instead of G1(β) and Vi,jP

(β−1)
i,j instead of G2(β), then the cost function

becomes a convex function and is bounded by the auxiliary function G+(θ|θ̂):

G(θ) ≤ G+(θ|θ̂) = ∑
i,j

Vβ
i,j

β(β− 1)
+ P(β)

i,j −Vi,jP
(β−1)
i,j (22)
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Finally, when β > 2, we use P(β)
i,j instead of G1(β) and Vi,jQ

(β−1)
i,j instead of G2(β), then the cost

function is bounded by

G(θ) ≤ G+(θ|θ̂) = ∑
i,j

Vβ
i,j

β(β− 1)
+ P(β)

i,j −Vi,jQ
(β−1)
i,j (23)

From above, we can conclude that

G(θ) ≤ G+
(
θ|θ̂
)
= ∑

i,j

Vβ
i,j

β(β− 1)
+ {

Q(β)
i,j −Vi,jP

(β−1)
i,j , (β < 1)

P(β)
i,j −Vi,jP

(β−1)
i,j , (1 ≤ β ≤ 2)

P(β)
i,j −Vi,jQ

(β−1)
i,j , (β > 2)

(24)

The equality holds when θ̂ satisfies Equations (18) and (20). The above function yields three
different sub-functions which depend on the β value. In different β range, we use different cost
function in the algorithm. This allows the user to choose the optimal β value to separate the mixture
and caters for more flexibility than the previous algorithms.

2.3. Auxiliary Update Function of “Fractional” β-Divergence

To minimize G+(θ|θ̂), we formulate the derivative of G+(θ|θ̂) with respect to θ. First, we consider
the derivative for Wτ

i,k:
∂G+(θ|θ̂)

∂Wτ
i,k

= Vw −Ww (25)

where

Vw =


∑
j,φ

Λβ−1
i,j Hφ

k,j−τ , (β < 1)(
Wτ

i,k

)β−1
∑
j,φ

ω
1−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β
, (β ≥ 1)

(26)

Ww =


(Wτ

i,k)
β−2 ∑

j,φ
Vi+φ,jω

2−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β−1
(β ≤ 2)

∑
j,φ

Vi+φ,jΛ
β−2
i+φ,jH

φ
k,j−τ , (β > 2)

(27)

The second derivative of G+(θ|θ̂) with respect to Wτ
i,k in then expressed as:

∂2G+(θ|θ̂)
∂Wτ

i,k∂Wτ′
i′ ,k′

= (Vw
′ −Ww

′)δi,i′δk,k′δτ,τ′ (28)

where δi,j = 1 if i = j and δi,j = 0 if i 6= j, and

V ′w =


0, (β < 1)

(β− 1)
(

Wτ
i−φ,k

)β−2
∑
j,φ

ω
1−β
i+φ,j,k,τ,φ(Hφ

k,j−τ)
β

, (β ≥ 1) (β ≥ 1) (29)

W ′w =

 (β− 2)(Wτ
i,k)

β−3 ∑
j,φ

Vi+φ,jω
2−β
i+φ,j,k,τ,φ(Hφ

k,j−τ)
β−1

, (β ≤ 2)

0, (β > 2)
(30)
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We can see G(θ|θ̂) is a convex function in Wτ
i,k, so by setting

∂G(θ|θ̂)
∂Wi,k

to 0, we can then express the
update function for Wτ

i,k as:

Wτ
i,k =



(
∑j,φ Vi+φ,j ω

2−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β−1

∑j,φ Λβ−1
i,j Hφ

k,j−τ

) 1
2−β

, (β < 1)

∑j,φ Vi+φ,j ω
2−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β−1

∑j,φ ω
1−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β , (1 ≤ β ≤ 2)(
∑j,φ Vi+φ,j Λβ−2

i+φ,j Hφ
k,j−τ

∑j,φ ω
1−β
i+φ,j,k,τ,φ

(
Hφ

k,j−τ

)β

) 1
β−1

, (β > 2)

(31)

We next consider the auxiliary variables θ̂. Since both Equations (17) and (18) minimize G+(θ|θ̂)
with respect to θ̂, substituting these into Equation (30) gives the following update rule:

Wτ
i,k = Wτ

i,k

∑j,φ Vi+φ,j Λβ−2
i+φ,j Hφ

k,j−τ

∑j,φ Λβ−1
i+φ,j Hφ

k,j−τ

δ(β)

(32)

where

δ(β) =


1

2−β , (β < 1)
1, (1 ≤ β ≤ 2)

1
β−1 , (β > 2)

(33)

The above can be written in the matrix form:

Wτ = Wτ ·


∑φ

↑φV·
↑φ

Λ(β−2)

→τ

Hφ
T

∑φ

↑φ
Λ(β−1)

→τ

Hφ
T



δ(β)

(34)

Similarly, for Hφ
k,j update function, first we have

∂G+(θ|θ̂)
∂Hφ

k,j

= VH −WH (35)

where

VH =


∑
i,τ

Λβ−1
i,j+τ Wτ

i−φ,k , (β < 1)

(Hφ
k,j)

β−1
∑
i,τ

ω
1−β
i,j+τ,k,τ,φ(W

τ
i−φ,k)

β , (β ≥ 1)
(36)

WH =


(

Hφ
k,j

)β−2
∑
i,τ

Vi,j+τ ω
2−β
i,j+τ,k,τ,φ(W

τ
i−φ,k)

β−1 , (β ≤ 2)

∑
i,τ

Vi,j+τΛβ−2
i,j+τWτ

i−φ,k , (β > 2)
(37)
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From Equations (17)–(31), we can minimize the cost-function by setting
∂Gs(θ|θ̂)

∂Hϕ
k,j

= 0 and obtain

Hφ
k,j as:

Hφ
k,j =



(
∑i,τ Vi,j+τ ω

2−β
i,j+τ,k,τ,φ

(
Wτ

i−φ,k

)β−1

∑i,τ Λβ−1
i,j+τ Wτ

i−φ,k

) 1
2−β

(β < 1)

∑i,τ Vi,j+τ ω
2−β
i,j+τ,k,τ,φ

(
Wτ

i−φ,k

)β−1

∑i,τ ω
1−β
i,j+τ,k,τ,φ

(
Wτ

i−φ,k

)β (1 ≤ β ≤ 2)(
∑i,τ Vi,j+τΛβ−2

i,j+τWτ
i−φ,k

∑i,τ ω
1−β
i,j+τ,k,τ,φ

(
Wτ

i−φ,k

)β

) 1
β−1

, (β > 2)

(38)

Again, since both Equations (19) and (20) minimizes G+(θ|θ̂) with respect to θ̂, substituting these
into Equation (38) gives the following update rule for Hφ

k,j:

Hφ
k,j = Hφ

k,j

∑i,τ Vi,j+τ Λβ−2
i,j+τ Wτ

i−φ,k

∑i,τ Λβ−1
i,j+τ Wτ

i−φ,k

δ(β)

(39)

In matrix form, the above can be written as

Hφ = Hφ·


∑τ

↓φ
Wτ

T(←τ
V ·

←τ

Λ(β−2)

)

∑τ

↓φ
Wτ

T ←τ

Λ(β−1)


δ(β)

(40)

2.4. Sparsity-Aware Optimization

The cost-function in Equation (21) can be augmented with a regularization term to render sparsity
to the solution. We can define a prior on H as an exponential distribution with independent decay
parameters, namely,

p(H|λ) = ∏
φ

p
(
Hφ|λφ

)
= ∏

φ
∏

k
∏

j
p
(

Hφ
k,j|λ

φ
k,j

)
(41)

where p
(

Hφ
k,j|λ

φ
k,j

)
= ∏

φ
∏
k

∏
j

λ
φ
k,j exp

(
−λ

φ
k,jH

φ
k,j

)
. The negative log prior on H is defined as

− log p(H|λ) = f (H) = ∑
φ,k,j

(
λ

φ
k,j H

φ
k,j − log λ

φ
k,j

)
. It is worth pointing out that each individual element in

H is constrained to an exponential distribution with independent decay parameter λ
φ
k,j so that each

element in H can be driven to be optimally sparse in the L1-norm. Other forms of sparseness exist19

but the proposed L1-norm is computationally favourable. First, we define Gs(θ) and Gs(θ|θ̂) as follow:

Gs(θ) , G(θ) + α f (H)

≤ G+(θ|θ̂) + α f (H)

= Gs(θ|θ̂)
(42)

where α is the regularization constant. To avoid the scaling misbehavior when incorporating the
sparseness for H, we reformulate the cost function to work with normalized matrix for Wτ i.e.,

Wτ
i,k =

Wτ
i,k√

∑τ,i

(
Wτ

i,k

)2
=

Wτ
i,k

||Wk||2
(43)
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and
Λi,j = ∑

k,τ,φ
Wτ

i−φ,k Hφ
k,j−τ (44)

Thus, the cost function takes the following form:

Gs(θ) ≤ Gs(θ|θ̂)

= ∑
i,j

Vβ
i,j

β(β−1) + α ∑
φ,k,j

(
λ

φ
k,j H

φ
k,j − log λ

φ
k,j

)
+


Q(β)

i,j −Vi,jP
(β−1)
i,j , (β < 1)

P(β)
i,j −Vi,jP

(β−1) ,
i,j (1 ≤ β ≤ 2)

P(β)
i,j −Vi,jQ

(β−1) ,
i,j (β > 2)

(45)

where

Q(β)
i,j = Λβ−1

i,j

(
∑
k,τφ

Wτ
i−φ,k Hφ

k,j−τ −Λi,j

)
+

Λβ−1
i,j

β

and

P(β)
i,j =

1
β ∑

k,τ,φ
ωi,j,k,τ,φ

Wτ
i−φ,k Hφ

k,j−τ

ωi,j,k,τ,φ

β

To obtain λ
φ
k,j, we minimize the cost function with respect λ

φ
k,j and set it to zero which results:

λ
φ
k,j =

1

Hφ
k,j

(46)

provided that Hφ
k,j 6= 0. However, it has been observed in many cases that optimizing the factor

matrices with β-divergence and the sparseness in Equation (46) increases the likelihood for some
Hφ

k,j to converge very close to zero, thus leading to numerical divergence when dividing by zero.

Other practices introduced a small constant to Hφ
k,j to prevent direct division by zero. Unfortunately,

such approach is identical to constant sparsity and no longer preserves the L1-norm optimal solution.
In this paper, we adopt the maximum likelihood approach to formulating the adaptive estimation of
sparsity parameter λ

φ
k,j. Considering the following maximum likelihood criterion [31,36]:

λML = arg max
λ

ln p(v|λ, W̌) (47)

where ln p(v|λ, W̌) is the log-likelihood conditional probability of the observations given W̌ and λ.
By using the Jensen’s inequality, for any distribution Q(h), the log-likelihood function satisfies the
following:

λML = arg max
λ

∫
Q(h) ln p(v, h|λ, W̌)dh

= arg max
λ

∫
Q(h)(ln p(v|h, W̌) + ln p(h|λ))dh

= arg max
λ

∫
Q(h) ln p(h|λ)dh

(48)

Since each element of H is constrained to be exponential distributed with independent decay
parameters, Equation (48) becomes:

λML
g = arg max

λ

∫
Q(h)

(
ln λg − λghg

)
dh (49)

Thus, we have

λML
g =

1∫
hgQ(h)dh

(50)
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One can easily check that the distribution that maximizes the maximum likelihood is given by
Q(h) = p(h|v,λ, W̌) = p(v|h,λ, W̌)p(h|λ)/p(v|λ, W̌) which is the posterior distribution of h and
p(v|h,λ, W̌) is the log-likelihood function of the observation which is usually expressed by a Gaussian
density function with mean centered at ∑

k,τ,φ
Wτ

i−φ,k Hφ
k,j−τ . However, as Hφ

k,j is directly acquired from

the original code matrix H0
k,j, we can simply work with τmax = 0. This allows us to express the

log-likelihood function of the posterior distribution of h up to a constant as

ln p(h|v,λ, W̌)
.
= ln p(v|h,λ, W̌) + ln p(h|λ)
.
= 1

2 ||vec(V)−∑
φ

(
I
⊗ ↓φ

W

)
vec
(
Hφ
)
||2F + α ∑

φ

{(
λφ
)Tvec

(
Hφ
)
−
(
log λφ

)T1
}

= F(H,λ)
(51)

where “ .
=” denotes equality up to a constant, “

⊗
“ is the Kronecker product, 1 is vector contains

unit elements, I is the identity matrix, α assumes the role of a regularization constant to balance
the cost function fit and smoothness of H. For ease of presentation, we simplify the above terms

as v = vec(V), W̌ =

[
I
⊗ ↓0

W . . . I
⊗ ↓φmax

W

]
, h =

{
hg
}

=
[

vec
(
H0)T · · · vec

(
Hφmax

)T
]T

,

λ =
{

λg
}
=
[

λ0T . . . λφmax T
]T

which enables us to rewrite Equation (46) as

F(H,λ) =
1
2
||v− W̌h||2F + α

(
λTh− (log λ)T1

)
(52)

For ease of analysis, Q(h) is represented using Gibbs distribution as Q(h) = 1
Z exp(−F(h)) where

Z =
∫

exp(−F(h))dh. Let P represents the index set of inactive code i.e., P =
{

φ, k, j|Hφ
k,j = 0

}
and

M the index set of active code i.e., M =
{

φ, k, j|Hφ
k,j 6= 0

}
. Thus, Q(h) can be factorized as

Q(h) = 1
Z exp(−F(h, λ))

≈ 1
ZP

exp(−F(hP, λP))
1

ZM
exp(−F(hM, λM))

= QP(hP)QM(hM)

(53)

Since hM corresponds to the original non-zero value of h, it then follows that QM(hM) is not of
interest to us. We are only interested in hP and therefore, to characterize QP(hP), we need to allow
some positive deviation to hP. A suitable distribution is to use the factorized exponential distribution
given by

Q̂P(hP ≥ 0) = ∏
p∈P

1
up

exp
(
−

hp

up

)
(54)

as the approximate distribution. The variational parameters u =
{

up
}

are determined by minimizing
the Kullback–Leibler divergence between true QP and approximate Q̂P:

u = arg min
u

∫
Q̂P(hP) ln Q̂P(hP)

QP(hP)
dhP

= arg min
u

∫
Q̂P(hP)

{
ln Q̂P(hP)−QP(hP)

}
dhP

(55)

which leads to the following optimization:

min
up

bT
Pu +

1
2

uTCu− ∑
p∈P

ln up (56)
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where bP = (Ch− W̌Tv + λ)P and C = CP + diag(CP) with C = W̌TW̌, CP = W̌T
PW̌P. Solving

Equation (56) for up leads to the following update:

up ← up

−bp +

√
b2

p + 4
(Cu)p

up

2(Cu)p
(57)

Once up is obtained and re-arranged to the original form uφ
k,j, the final update for λ

φ
k,j takes the

form of:
λ

φ
k,j =

1

Hφ
k,j + δ

φ
k,j

(58)

where

δ
φ
k,j =

{
0 if Hφ

k,j 6= 0

uφ
k,j if Hφ

k,j = 0
(59)

Equipped with above, we obtain the multiplicative update for the normalized W as

Wτ = Wτ ·


∑
φ

↑φV · ↑φΛΛΛ
(β−2)

→τ

Hφ
T

+Wτdiag

∑
τ

1

 ↑φ

ΛΛΛ
(β−1)→τ

Hφ
T
·Wτ


∑
φ

↑φ

ΛΛΛ
(β−1) →τ

Hφ
T
+Wτdiag

∑
τ

1

↑φV · ↑φΛΛΛ
(β−2)

 →τ

Hφ
T
·Wτ




−δ(β)

(60)

for τ = 0, 1, . . . , τmax. By using the same approach, we can obtain the update for the sparse H as
follows:

Hφ = Hφ·


∑τ

↓φ
Wτ

T←τ
V ·

←τ

ΛΛΛ
(β−2)


∑τ

↓φ
Wτ

T ←τ

ΛΛΛ
(β−1)

+αλφ


δ(β)

(61)

for φ = 0, 1, . . . , φmax. In Equation (61), α assumes the role of a regularization constant to balance the
cost function fit and smoothness of H. In this work, we set α ∈ [0.5, 1] which has been found to give
satisfactory results.

2.5. Optimizing the Fractional β

To determine the optimal value for β, we perform the investigation from the source separation
viewpoint. Mathematically, the single-channel signal separation (SCSS) [37–39] problem can be treated
as one mixture of N unknown source signals:

y(t) = x1(t) + x2(t) + . . . + xN(t) (62)

where t = 1, 2, . . . , T denotes time index and the goal is to estimate the sources xk(t), ∀k ∈ N of length
T when only the observation signal y(t) is available. For simplicity, we consider only N = 2 sources
in the mixture. We also use 50 different pieces of piano music, 50 different pieces of trumpet music
and 50 different pieces of violin music from the RWC [40] database to generate different mixtures.
The signal-to-distortion (SDR) [41] is used to measure the performance. The SDR results and its
corresponding β value that produces the best performance in the separation of mixtures are shown
in Table 2. From these experiments, we can propose some general ideas of how to choose a suitable
β value: (i) The mixtures from same type of music share similar β value, e.g., the best results of piano
and trumpet mixture occur around β = 2 but the best results of piano and violin mixture occur around
β = 1. (ii) If the power of one source is clearly weaker than the other source, then a smaller β value
should be selected. (iii) When there is a large amount of overlap between the two sources in the in the
time–frequency domain, a larger β value should be selected.
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Table 2. Results using different sources.

Mixtures SDR (dB) β

Piano + trumpet

16.11 2.11
9.19 2.13
9.43 1.93
7.73 1.82

12.21 2.09

Piano + violin

13.07 1.07
8.15 1.23
6.25 0.92
9.33 1.20
8.19 0.89

Trumpet + violin

14.63 0.68
8.14 0.62
7.81 0.67
9.81 0.51
7.55 0.52

Table 2 strongly suggests that the β value depends on the mixture of original sources. Generally,
it depends mainly on the two factors: (i) the weight of each source in the mixture; and (ii) the frequency
spread of each source which the frequency band contains most weight of the signal. Firstly, we define
weight of each source in the mixture by the following function:

γk = 1− |xk(t)− y(t)|
∑N

l=1 |xl(t)− y(t)|2
(63)

for k = 1, . . . , N. The term γk is nonnegative and bounded to unity. It measures the dominance of k-th
source in the mixture. The higher value of γk, the greater the contribution from the k-th source is to the
mixture. Secondly, we consider the separability of each source in the time–frequency domain by the
following function:

ηk =
||Mk(i,j)Xk(i,j)||2F−||Mk(i,j)∑N

l=1,l 6=k Xl(i,j)||2F
||Xk(i,j)||2F

(64)

where ||·||F is the Frobenius norm, Xk(i, j) is the short-time Fourier Transform (STFT) of xk(t) with i
representing the frequency bins and j the timeslot, and Mk(i, j) is the binary mask Obtained from the
k-th source as

Mk(i, j) =

{
1 if|Xk(i, j)|2 > |Xl(i, j)|2

0 otherwise
(65)

The function ηk is also nonnegative and determines the degree separability of the signal in each
frequency band. Based on the experiments conducted, both γk and ηk have an inverse relation to β.
Thus, one possible empirical approach to determine β is proposed as follows:

β(n + 1) = ρ(n)β(n) + (1− ρ(n))min
[(

∑N
k=1

ε1·ηk+(1−ε1)·γk
γkηk

)
, ε2

]
(66)

where ρ(n) is step size, ε1 is a constant to weight the effects of ηk and γk. For example, in the
experiments conducted, we have given more emphasis to γk and set ε1 = 1/3. The term ε2 is a
constant to control the value of β(n + 1) to ensure its value is bounded within an interval chosen by
the user (for example, in the experiments conducted we have set ε2 = 4 as normally does not exceed 4).
Equation (66) is inserted into the update funtions in Equations (60) and (61) to update β at every
iteration in conjunction with the update of W and H. In this case, β can be optimized based on the
type of sources and the separation process. This enables the separation process to be fully automated
and enables more accurate performance. In the case of SCSS, the sources are unknown and these are
estimated from the mixture as:

X̂k(i, j) = Mk(i, j)Y(i, j) (67)
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where

Mk(i, j) =

{
1 i f |X̌k(i, j)|2 > |X̌l(i, j)|2

0 otherwise
(68)

and
|X̌k(i, j)|2 =

τmax
∑

τ=0

φmax

∑
φ=0

Wτ
i−φ,k Hφ

k,j−τ (69)

The expression in (69) is computed using the time–frequency deconvolution model. The main
steps of the proposed algorithm have been summarized in Algorithm 1.

Algorithm 1. Overview Proposed Algorithm

1. Initialize Wτ and Hφ with non-negative random values.
2. Compute the STFT:

Y(i, j) = STFT(y(t)), and let Vi,j = |Y(i, j)|2.

3. Compute Λi,j = ∑
k,τ,φ

Wτ
i−φ,k Hφ

k,j−τ .

4. Compute up ← up

{(
−bp +

√
b2

p + 4
(Cu)p

up

)
/2(Cu)p

}

5. Assign λ
φ
k,j =

1
Hφ

k,j+δ
φ
k,j

where δ
φ
k,j =

{
0 if Hφ

k,j 6= 0

uφ
k,j if Hφ

k,j = 0

6. Update Hφ = Hφ·


∑τ

↓φ

Wτ

T(
←τ
V ·

←τ

ΛΛΛ
(β−2)

)

∑τ

↓φ

Wτ

T ←τ

ΛΛΛ
(β−1)

+αλφ


δ(β)

7. Compute Λi,j = ∑
k,τ,φ

Wτ
i−φ,k Hφ

k,j−τ .

8. Update the spectral bases:

Wτ = Wτ ·


∑φ

↑φV·
↑φ

Λ
(β−2)

→τ

Hφ
T

+ Wτdiag

∑
τ

1

 ↑φ

Λ
(β−1)

→τ

Hφ
T
·Wτ


∑
φ

↑φ

Λ
(β−1)→τ

Hφ
T
+ Wτdiag

∑
τ

1

↑φV·
↑φ

Λ
(β−2)

→τ

Hφ
T
·Wτ




9. For k = 1, . . . , N, compute:

|X̌k(i, j)|2 =
τmax

∑
τ=0

φmax

∑
φ=0

Wτ
i−φ,k Hφ

k,j−τ

Mk(i, j) =

{
1 i f |X̌k(i, j)|2 > |X̌l(i, j)|2

0 otherwise
X̂k(i, j) = Mk(i, j)Y(i, j)
x̂k(t) = STFT−1[X̂k(i, j)

]
γk = 1− |x̂k(t)−y(t)|

∑N
l=1 |x̂l(t)−y(t)|2

ηk =
Mk( f ,t)X̂k( f ,t)2

F−Mk( f ,t)∑N
l=1,l 6=k X̂l( f ,t)2

F

X̂k( f ,t)2
F

β← ρβ + (1− ρ)min
[(

N
∑

k=1

ε1ηk+(1−ε1)γk
γkηk

)
, ε2

]

10. Repeat Steps 3–9 until it converges or reaches the pre-defined number of iteration.
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3. Experiments, Results and Analysis

In this section, we conduct in-depth investigations of the proposed algorithm to analyze the
impact of fixed and adaptive sparsity, the adaptive behavior of the sparsity parameter, and the
analysis of fractional β-divergence. The analysis is necessary as the issue of sparsity of the temporal
codes would undermine the quality of matrix factorization when the β value is inappropriately
chosen. The selection of the β value should consider the sparseness constraint used in the cost
function. In addition, the proposed algorithm based on matrix factor time–frequency deconvolution
is also compared to conventional NMF models. This allows us to quantify the impacts of fractional
β-divergence and sparsity behaviors when using the time–frequency deconvolution model.

3.1. Experimental Set-Up

To investigate the proposed method, we use the algorithm to separate several pieces of mixed
music signals. Several experimental simulations under different conditions have been designed to
investigate the efficacy of the proposed method. All simulations were performed using MATLAB as
the programming platform and performed using a PC with dual core processor @ 2.4 GHz (i7 Intel
processor) 8 GB RAM and 320 GB HDD. The tested signals are generated by mixing several music
sources. The polyphonic music is 4 s long and the sampling frequency is 16 kHz. In this experiment,
we randomly chose 50 different pieces of piano music, 50 different pieces of trumpet music and 50
different pieces of violin music from the RWC database to produce the different mixtures. The mixed
signal was then generated by adding the chosen sources. In all cases, the sources were mixed with
equal average power over the duration of the signals. The time–frequency (TF) representation was
obtained by first normalizing the time-domain signal to unit power and then by computing the STFT
using 2048 point Hanning window FFT with a 50% overlap. We evaluated our separation performance
in terms of the signal-to-distortion ratio (SDR) which is one form of perceptual measure. This is
a global measure that unifies source-to-interference ratio (SIR), source-to-artifacts ratio (SAR) and
source-to-noise ratio (SNR). The definition and mathematical expression and MATLAB routines for
computing these criteria can be obtained online [42].

3.2. Analysis of Adaptive and Fixed Sparsity

In this implementation, we conducted several experiments to compare the performance of the
proposed method using different β values. Our aim was to investigate the impact of β value used in
the separation. Figure 1 shows the time and TF domains of the original trumpet, piano music and its
mixture. The TF domain is displayed using the log-frequency spectrogram. The trumpet and the piano
play a different short melodic passage each consisting of three distinct notes. However, both trumpet
and piano overlap in time, and the piano notes are interspersed in frequency with the trumpet notes.
Hence, this is a challenging task for single channel separation which tests the impact of flexible β for
matrix factorization.
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the trumpet music (middle panels); and the mixed signal (bottom panels).

Figure 2 shows the estimation of bases Wτ and temporal codes Hφ when using different λ values.
In Figure 2a, we set λ = 0 which renders non-sparse solution. There is obvious spreading of the
estimated temporal codes, as shown in the red part of the figure. In Figure 2b, when λ = 0.1, there are
some improvements over the spreading but they still exist in the red parts. Here, the sparseness
is not strong enough and, as a result, the estimated mixture becomes under-sparse. In Figure 2c,
when λ = 100, it is visibly shown in the blue parts that some information has been lost in the
estimated temporal codes and the resulting estimated mixture becomes very noisy. Finally, Figure 2d
shows the case where the sparseness parameters are adaptively and individually estimated using the
prior information of H. The obtained result has shown that the estimated temporal codes are just
appropriately sparse and, by visual inspection, the resulting estimated mixture retains all information,
as evidenced by the musical notes, while the noise level has been kept small, which very closely
resembles the original mixture.
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3.3. Adaptive Behavior of Sparsity Parameter

In this section, we use the piano and trumpet mixture, and fix β value to 1 and the λ value ranges
from 0 to 3 with each step of 0.1 to show the results. The adaptive behavior of the sparsity parameters
using the proposed method is demonstrated. Figure 3 presents the convergence trajectory of four
adaptive sparsity parameters, λ

φ=0
1,1 , λ

φ=0
1,5 , λ

φ=0
1,10 and λ

φ=0
1,15 , corresponding to their respective element

codes, hφ=0
1,1 , hφ=0

1,5 , hφ=0
1,10 and hφ=0

1,15 . All sparsity parameters are initialized as λ = 1. After 150 iterations,
the above sparsity parameters converge to their steady-states. By examining Figure 3, it is noted
that the converged steady-state values are significantly different for each sparsity parameter, e.g.,
λ

φ=0
1,1 = 0.9, λ

φ=0
1,5 = 0.18, λ

φ=0
1,10 = 0.29 and λ

φ=0
1,15 = 0.08, even though they started at the same initial

condition. This shows that each element code has its own sparseness.
In Figure 4, we compare the SDR results of using different λ values. In the figure, we can see

the λ value that can get the best result changes with the mixture. For each different mixture, the best
λ values are different. In Figure 4, we can see the best separation results of piano and trumpet mixture
occurs near λ = 1, and the SDR = 14.7 dB. However, as λ increases, the SDR performance begins to
deteriorate rapidly due to over-sparseness of the temporal code Hφ.
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Figure 4. SDR results of piano and trumpet mixture when using different λ values.

Although the SDR performance in Figure 4 seems to suggest good performance, it may not
necessary refer to the optimum setting. In fact, when λ is fixed to a constant value, the matrix factors
deconvolution process may still be subjected to under- and over-fitting. In the previous sparsity
algorithm, λ is fixed for the whole process and this sparsity may not necessarily suited for the whole
signal. This calls for the need to allow each temporal code to have its own sparsity parameter. In the
adaptive sparsity algorithm in Equation (53), the sparsity parameter λ is updated alongside Wτ and
Hφ in the process. Therefore, the sparsity parameter is optimized for each element of the temporal
code. In addition, we plot the histogram of the converged adaptive sparsity parameters in Figure 5.
The plot strongly suggests that the histogram can be represented as a bimodal distribution. We have
used the Gaussian mixture model (GMM) [43] to learn the distribution of this histogram and the result
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produces two Gaussian distributions with mean 0.16 and 1.1. The global mean of the GMM is given
by 0.92.
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With the GMM analysis, we can proceed to further investigate the assignment of sparsity
parameters and compare them with the adaptive approach. We considered the following
sparseness assignments:

Case (1): No sparseness λ = 0.
Case (2): Uniform and constant sparseness λ = 0.16 corresponding to the mean of the first Gaussian

distribution of the GMM.
Case (3): Uniform and constant sparseness λ = 1.1 corresponding to the mean of the second Gaussian

distribution of the GMM.
Case (4): Uniform and constant sparseness λ = 0.92 corresponding to the global mean of the converged

adaptive sparsity.
Case (5): Uniform and constant sparseness λ = 1 corresponding to the global mean of the converged

adaptive sparsity.
Case (6): Maximum likelihood adaptive sparseness, i.e., Equation (55).

The SDR results are tabulated in Table 3 where we can see the separation results of all the six cases.
The obtained results readily informed that the source separation with adaptive sparsity has rendered
the best separation result.

Table 3. Results of separation for different mixture.

Methods SDR (dB)

Case (1) 12.77
Case (2) 13.01
Case (3) 14.60
Case (4) 14.62
Case (5) 14.70
Case (6) 15.60
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3.4. Analysis of Fractional β-Divergence

Figure 6 shows the SDR values of the separation results using different values of β values. In this
implementation, we fixed the sparsity parameter λ to 0, and the value of β ranges from 0 to 4, and each
step is 0.1. In the figure, we can observe that the SDR value changes as the β value is increased.
The best result is obtained at when β = 2.5, where SDR = 14.26 dB. The SDR value keeps increasing
for values of β value within the range of 0 ≤ β < 2.5, and, after the best performance is attained,
the performance deteriorates as β increases. In this figure, we can see that the best performance does
not necessarily occur at value of β used other algorithms, i.e., β = 2, 1, 0. This means, if we choose the
best β to carry out the separation, we can obtain better results than the other algorithms.
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Figure 6. SDR values of the separation results of mixture using different β values.

We also conducted several experiments to compare the performance of the proposed method
with the non-sparse and normal sparse methods using different β value. To investigate the impact
of β and λ value used in the separation, we used β that ranges from 0 to 4 (with every increment
of 0.1), and λ was set to several configurations, i.e., non-sparse, best fixed sparsity that is obtained
in Figure 4 and the proposed adaptive sparsity. The results are plotted in Figure 7, which shows the
mutual influence between λ and λ. It is noted that the SDR performance of non-sparse algorithm
is the lowest of which its best result occurs when β = 2.5 with SDR = 14.26 dB. The normal sparse
algorithm using best λ value gives better performance than the non-sparse method with its best result
occuring when β = 0.5 with SDR = 15.96 dB. On the other hand, the proposed algorithm with adaptive
λ delivers the best performance where β occurs around 0.3 with SDR = 16.71 dB. It is also noted that
the worst SDR performance given by β = 2.9 with adaptive λ is still higher than the highest SDR when
β = 2.5 without sparsity optimization λ = 0.

All the above experiments used the pre-determined β that are fixed for the whole process.
In this section, we present the results of experiments where β is adaptively tuned alongside with
the adaptation of Wτ , Hφ and λφ. We applied this method to the source separation problem and
compared the results with the situation where β = 1 and β = 2 corresponding to the Kullback–Leibler
divergence and Least Square cost function, respectively. In the update of adaptive β, the step size
ρ(n) = 0.95n is selected which represents an exponential decay update process. The SDR results of
the top five best performance are tabulated in Table 4. It is interesting to note from the table that the
proposed algorithm with adaptive β delivers better performance by about 2.1 dB compared to that
when β = 1 (Kullback–Leibler divergence) and 1.9 dB compared to that when β = 2 (Least Square
distance). The obtained performance improvement is attributed to the fact that the joint optimization
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of β with Wτ , Hφ and λφ has enabled the current estimate of β to better fit mixture of sources and thus
rendered better source separation performance.Sensors 2018, 18, x FOR PEER REVIEW  21 of 24 
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Figure 7. SDR values of the separation results of mixture using different β values and sparse methods.

Table 4. SDR (dB) results of adaptive β versus fixed β.

Mixtures SDR (dB) Using
Adaptive β

SDR (dB)
Using β = 1

SDR (dB)
Using β = 2

Piano + Trumpet

16.85 14.11 15.93
10.74 7.95 9.01
9.93 8.12 9.11
8.95 6.57 7.44

13.64 10.26 12.03

Piano + Violin

14.17 12.12 11.67
9.04 7.95 7.11
8.13 6.09 5.81
10.4 9.08 8.71
9.59 7.85 7.19

Trumpet + Violin

15.40 12.49 12.13
8.87 6.23 6.31
9.14 6.87 7.17

10.51 7.92 8.11
9.17 7.77 7.95

3.5. Comparison with Other Nonnegative Factorization Models

In this section, we compare the proposed algorithm with other signal separation algorithms,
in both time-domain representation and analysis the SDR results of all algorithms. The signal chosen
was the same piano and trumpet mixture music used in Section 3.4. We compared the Least Square
NMF (NMF-LS) and Kullback–Leibler NMF (NMF-KLD) algorithms introduced in the earlier sections
of this paper, NMF with temporal continuity and sparseness criteria (NMF-TCS) [23], and NMF with
automatic relevance determination (NMF-ARD) [44]. The obtained results are summarized in Table 5.
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Table 5. Performance comparison of proposed method with NMF models.

Algorithm SDR (dB)

NMF-LS 4.17
NMF-KLD 3.47
NMF-TCS 5.12
NMF-ARD 3.98

NMF using proposed method 7.63
Proposed method using matrix

factor time–frequency
deconvolution

12.02

When using the various NMF models, it is seen that the average improvement per source of about
3 dB has been gained by leveraging the fractional β value and adaptive sparsity. In addition, a step
jump of approximately 5–8 dB in performance improvement is further obtained when the model is
switched to the matrix factor time–frequency deconvolution. This is attributed to the latter model
which represents both temporal structure and the pitch change which occur when an instrument plays
different notes. The pitch change corresponds to a displacement on the frequency axis. Where NMF
methods needed one component to model each note for each instrument, the time–frequency
deconvolution model represents each instrument compactly by a single time–frequency profile
convolved in both time and frequency by a time–pitch weight matrix [45]. The model dramatically
decreases the number of components needed to model various instruments and effectively solves the
blind single channel source separation problem for certain classes of musical signals.

4. Conclusions

This paper presents an adaptive fractional β-divergence with sparsity-aware optimization for
non-negative factor time–frequency deconvolution algorithm. The impetus behind this work is that the
previous β-divergence algorithms are all limited to special cases of β, and the previous sparsity methods
are limited to a fixed sparsity parameter which are determined manually. Thus, these algorithms
may not always produce the best results. In the proposed method, β is made adaptive and takes on
fractional value. The sparsity parameter is also concurrently updated along with the estimation of
β and model parameters. The convergence is theoretically proven for any β based on the auxiliary
function method. This paper has shown that the proposed method is more general and can deliver
better performance than other algorithms, as demonstrated using real audio recordings.
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