Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers
Abstract
:1. Introduction
2. Smart Aggregate-Based Active Sensing Approach
2.1. Smart Aggregates
2.2. Damage Detection Principle
2.3. Damage Index and Damage Index Matrices
3. Specimen and Experimental Setup
3.1. Test Specimen
3.2. The Experimental Setup
3.3. The Experimental Procedure
4. Experimental Results and Discussion
4.1. The Results of Strain and Acceleration
4.2. The Results of Piezoelectric Active Sensing
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crenshaw, M. Explaining Suicide Terrorism: A Review Essay. Secur. Stud. 2007, 16, 133–162. [Google Scholar] [CrossRef]
- Grant, M.J.; Stewart, M.G. Modelling improvised explosive device attacks in the West—Assessing the hazard. Reliab. Eng. Syst. Saf. 2017, 165, 345–354. [Google Scholar] [CrossRef]
- Wu, K.C.; Li, B.; Tsai, K.C. The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns. J. Constr. Steel Res. 2011, 67, 602–612. [Google Scholar] [CrossRef]
- Ngo, T.; Mendis, P.; Gupta, A.; Ramsay, J. Blast loading and blast effects on structures—An overview. Electron. J. Struct. Eng. 2007, 7, 76–91. [Google Scholar]
- Luccioni, B.M.; Ambrosini, R.D.; Danesi, R.F. Analysis of building collapse under blast loads. Eng. Struct. 2004, 26, 63–71. [Google Scholar] [CrossRef]
- ASCE. Minimum Design Loads for Buildings and Other Structures; ASCE: Reston, VA, USA, 2010; ISBN 9780784410851. [Google Scholar]
- Subramanian, N. Collapse of WTC—Its impact on skyscraper construction. Indian Concr. J. 2002, 76, 165–169. [Google Scholar]
- Osteraas, J.D. Murrah Building Bombing Revisited: A Qualitative Assessment of Blast Damage and Collapse Patterns. J. Perform. Constr. Facil. 2006, 20, 330–335. [Google Scholar] [CrossRef]
- Almusallam, T.; Elsanadedy, H.; Abbas, H.; Ngo, T.; Mendis, P. Numerical Analysis for Progressive Collapse Potential of a Typical Framed Concrete Building. Int. J. Civ. Environ. Eng. 2010, 10, 36–42. [Google Scholar]
- Sasani, M.; Sagiroglu, S. Progressive Collapse Resistance of Hotel San Diego. J. Struct. Eng. 2008, 134, 478–488. [Google Scholar] [CrossRef]
- Bao, X.; Li, B. Residual strength of blast damaged reinforced concrete columns. Int. J. Impact Eng. 2010, 37, 295–308. [Google Scholar] [CrossRef]
- Izzuddin, B.A.; Vlassis, A.G.; Elghazouli, A.Y.; Nethercot, D. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Eng. Struct. 2008, 30, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Vlassis, A.G.; Izzuddin, B.A.; Elghazouli, A.Y.; Nethercot, D.A. Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application. Eng. Struct. 2008, 30, 1424–1438. [Google Scholar] [CrossRef] [Green Version]
- Sasani, M. Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns. Eng. Struct. 2008, 30, 2478–2491. [Google Scholar] [CrossRef]
- Parisi, F. Blast fragility and performance-based pressure-impulse diagrams of European reinforced concrete columns. Eng. Struct. 2015, 103, 285–297. [Google Scholar] [CrossRef]
- Hao, H.; Stewart, M.; Li, Z.X.; Shi, Y. RC Column Failure Probabilities to Blast Loads. Int. J. Prot. Struct. 2010, 1, 571–591. [Google Scholar] [CrossRef]
- Grant, M.; Stewart, M.G. Probabilistic Risk Assessment for Improvised Explosive Device Attacks That Cause Significant Building Damage. J. Perform. Constr. Facil. 2015, 29, B4014009. [Google Scholar] [CrossRef]
- Jiri, S.; Petr, D. Structural damage diagnostics on cement composites after blast load. In Proceedings of the 6th International Conference on Military Technologies (ICMT 2017), Brno, Czech Republic, 31 May–2 June 2017; pp. 211–216. [Google Scholar]
- Štoller, J.; Zezulová, E. Use of ultrasound—The ultrasonic pulse velocity method for the diagnosis of protective structures after the load of TNT explosion. In Proceedings of the ICMT 2017—6th International Conference on Military Technologies, Brno, Czech Republic, 31 May–2 June 2017; pp. 230–235. [Google Scholar]
- Lai, J.; Guo, X.; Zhu, Y. Repeated penetration and different depth explosion of ultra-high performance concrete. Int. J. Impact Eng. 2015, 84, 1–12. [Google Scholar] [CrossRef]
- Sham, J.F.C.; Lai, W.L. Diagnosis of Reinforced Concrete Structures by Ground Penetrating Radar Survey-Case Study. In Proceedings of the 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Edinburgh, UK, 28–30 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Epasto, G.; Proverbio, E.; Venturi, V. Evaluation of fire-damaged concrete using impact-echo method. Mater. Struct. 2010, 43, 235–245. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. Structural health monitoring (SHM) of civil structures. Appl. Sci. 2017, 7, 3–5. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, H.; Wang, D. A study of concrete slab damage detection based on the electromechanical impedance method. Sensors 2014, 14, 19897–19909. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hao, J.; Li, H.; Luo, M.; Guo, W.; Li, W. Experimental Damage Identification of a Model Reticulated Shell. Appl. Sci. 2017, 7, 362. [Google Scholar] [CrossRef]
- Yang, Y.; Annamdas, V.G.M.; Wang, C.; Zhou, Y. Application of Multiplexed FBG and PZT Impedance Sensors for Health Monitoring of Rocks. Sensors 2008, 8, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Song, H.; Zhu, H. Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Wang, H.; Zhu, H. Experimental study on damage detection in timber specimens based on an electromechanical impedance technique and RMSD-based mahalanobis distance. Sensors 2016, 16, 1765. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wang, T.; Yin, H.; Yang, D.; Li, Y. Bolt Looseness Detection Based on Piezoelectric Impedance Frequency Shift. Appl. Sci. 2016, 6, 298. [Google Scholar] [CrossRef]
- Yin, H.; Wang, T.; Yang, D.; Liu, S.; Shao, J.; Li, Y. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method. Appl. Sci. 2016, 6, 320. [Google Scholar] [CrossRef]
- Song, G.; Qiao, P.Z.; Binienda, W.K.; Zou, G.P. Active Vibration Damping of Composite Beam using Smart Sensors and Actuators. J. Aerosp. Eng. 2002, 15, 97–103. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y. Wave propagation modeling of the PZT sensing region for structural health monitoring. Smart Mater. Struct. 2007, 16, 706–716. [Google Scholar] [CrossRef]
- Song, G.; Zhou, X.; Binienda, W. Thermal deformation compensation of a composite beam using piezoelectric actuators. Smart Mater. Struct. 2004, 13, 30–37. [Google Scholar] [CrossRef]
- Krishna, G.M.; Rajanna, K. Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 2004, 4, 691–697. [Google Scholar] [CrossRef]
- Venugopal, V.P.; Wang, G. Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 2015, 26, 1679–1698. [Google Scholar] [CrossRef]
- Wang, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler-Bernoulli beam theory. J. Intell. Mater. Syst. Struct. 2013, 24, 226–239. [Google Scholar] [CrossRef]
- Yang, Y.; Divsholi, B.S.; Soh, C.K. A reusable PZT transducer for monitoring initial hydration and structural health of concrete. Sensors 2010, 10, 5193–5208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cen, J.; Jiang, F. An Experimental Study on the Performance of a Loop Heat Pipe. Exp. Heat Transf. 2014, 28, 1–8. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. High frequency piezoelectric signatures for diagnosis of seismic/blast induced structural damages. NDT E Int. 2004, 37, 23–33. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An overheight vehicle-bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Liao, W.I.; Gu, H.; Olmi, C.; Song, G.; Mo, Y.L.; Loh, C.H. Structural Health Monitoring of a Concrete Column Subjected to Shake Table Excitations Using Smart Aggregates. In Proceedings of the 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, CA, USA, 3–5 March 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Laskar, A.; Gu, H.; Mo, Y.L.; Song, G. Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates. Smart Mater. Struct. 2009, 18. [Google Scholar] [CrossRef]
- Zou, D.; Liu, T.; Huang, Y.; Zhang, F.; Du, C.; Li, B. Feasibility of water seepage monitoring in concrete with embedded smart aggregates by P-wave travel time measurement. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Y.; Zou, D.; Teng, J.; Li, B. Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22. [Google Scholar] [CrossRef]
- Gu, H.; Moslehy, Y.; Sanders, D.; Song, G.; Mo, Y.L. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater. Struct. 2010, 19. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.; Silva, P.; Mo, Y. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates. Appl. Sci. 2016. [Google Scholar] [CrossRef]
- Li, W.; Kong, Q.; Ho, S.C.M.; Lim, I.; Mo, Y.L.; Song, G. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater. Struct. 2016, 25. [Google Scholar] [CrossRef]
- Moslehy, Y.; Gu, H.; Belarbi, A.; Mo, Y.L.; Song, G. Smart aggregate based damage detection of circular RC columns under cyclic combined loading. Smart Mater. Struct. 2010, 19. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L. Smart aggregates: A distributed intelligent multi-purpose sensor network (DIMSN) for civil structures. In Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control (ICNSC’07), London, UK, 15–17 April 2007; pp. 775–780. [Google Scholar] [CrossRef]
Component | Quantity (Kg/m3) | Description |
---|---|---|
Cement | 500 | Portland cement (Type I) |
Sand | 479 | Standard sand |
Aggregate | 1231 | 16 mm size angular limestone |
Water | 190 | Water |
Test No. | TNT Charge Mass | Standoff Distance | Description |
---|---|---|---|
B0 | - | - | Healthy status |
B1 | 40 g | 50 cm | Blast 1 |
B2 | 40 g | 40 cm | Blast 2 |
B3 | 40 g | 30 cm | Blast 3 |
B4 | 40 g | 20 cm | Blast 4 |
B5 | 40 g | 0 cm | Blast 5 |
Propagation Path No. | Schematic | Propagation Direction | Propagation Distance |
---|---|---|---|
P1 | From SA-4 to SA-3 | 20 cm | |
P2 | From SA-2 to SA-3 | 20 cm | |
P3 | From SA-2 to SA-1 | 20 cm | |
P4 | From SA-4 to SA-1 | 60 cm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Deng, Q.; Cai, L.; Ho, S.; Song, G. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers. Sensors 2018, 18, 1377. https://doi.org/10.3390/s18051377
Xu K, Deng Q, Cai L, Ho S, Song G. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers. Sensors. 2018; 18(5):1377. https://doi.org/10.3390/s18051377
Chicago/Turabian StyleXu, Kai, Qingshan Deng, Lujun Cai, Siuchun Ho, and Gangbing Song. 2018. "Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers" Sensors 18, no. 5: 1377. https://doi.org/10.3390/s18051377
APA StyleXu, K., Deng, Q., Cai, L., Ho, S., & Song, G. (2018). Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers. Sensors, 18(5), 1377. https://doi.org/10.3390/s18051377