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Abstract: In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom
(DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake
of acquiring as more DOFs as possible with a given number of physical sensors, we herein design
a novel sensor array geometry named cascade array. This structure is generated by systematically
connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs
than some exist array structures but less than the upper-bound indicated by minimum redundant
array (MRA). We further apply this cascade array into multiple input multiple output (MIMO)
array systems, and propose a novel joint direction of departure (DOD) and direction of arrival
(DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting
technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and
numerical simulations prove the advantages and effectiveness of the proposed array structure and
the related algorithm.

Keywords: difference co-array; cascade array; angle estimation; weighted subspace fitting; multiple
input multiple output systems

1. Introduction

In the past few decades, research on the theory and algorithms of estimating direction of arrival
(DOA) in array processing usually focused on the overdetermined system model with uniform
linear array (ULA) configuration. A basic piece of knowledge is that the number of sources that
can be resolved by the MUSIC algorithm is N − 1 if adopting a N-element ULA [1,2]. However,
many scenarios imply an underdetermined system model in which the number of unknown sources
may be actually more than the number of physical sensors. To solve such a challenging problem,
most techniques are based on creating the effect of a equivalent array with many more virtual
elements than actual array through suitable spatial-domain, time-domain or frequency-domain
sampling strategies.

The earliest pioneering studies, by exploiting the possible element arrangements, such as space
tapered arrays and fractal-based quasi random array [3–5], are designed for yielding reasonably low
sidelobe level; and, recently, the random array has been integrated into a hardware prototype to
achieve sub-Nyquist sampling in spatial and spectral domains [6]. One of the most popular virtual
arrays is that of synthetic aperture radar (SAR), where the larger artificial aperture is created by means
of the motion of radar antennas [7]. In wide-band array signal processing, all sub-band signals are
usually aligned into one single frequency to antagonize the coherence of signals, which can be viewed
as a special virtual array that takes advantage of the frequency diversity [8,9]. In recent years, one of
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the most popular strategies that can provide the ability of resolving more sources than sensors is the
so-called co-array. For example, in the work of [10], the quasi-stationary signals are considered to
construct a virtual ULA for improving the parameter identifiability. Basically, the concept of co-array
can be categorized into sum co-array and difference co-array. The first one usually appears in some
active sensing systems such as co-located MIMO radar [11], whereas the second one appears in the
passive one such as traditional direction finding system or bistatic MIMO radar [12–19].

Generally speaking, for an N-element array, both the sum co-array and difference co-array can
create up to O(N2) elements, depending on the geometry of the physical sensor array. Theoretically,
minimum redundancy array (MRA) [20] is the optimum linear geometry, which can create the
maximum possible number of elements in difference co-array without any missing elements in
between, but retains some unwilling repeated elements. However, the MRA with a given N has no
closed-form expression either for its structure or the achievable degrees-of-freedom (DOFs), and hence
its geometry is not analytically tractable. By combining two or more ULAs with increasing inter-sensor
spacing, Ref. [13] designs a new array structure named a nested array, which is capable of providing a
dramatic increase in DOFs and hence can resolve more sources than the actual number of sensors. Later,
the coprime sensing array [14] and its generalized versions [15] are designed for efficient sampling
of multidimensional signals, which can be directly applied to the aforementioned underdetermined
model.

Although the above array geometries/structures all can provide O(N2) DOFs, there still exist
quantitative differences. Furthermore, such difference determines the capability of resolving more
sources than sensors. By comparison, in the sense of difference co-array with a given number of
physical sensors, MRA sets an upper-bound of DOFs; the DOFs provided by nested array [13] is
greater than the one of the coprime arrays [14], and both configurations are inferior to the coprime
array with displaced subarrays (CADiS) [15]. However, the CADiS cannot stay consecutive in the whole
co-array because it has holes. Actually, promoting the potential DOFs closely to the upper-bound is still
an open challenge problem, the kernel of which relies on a more effective design for sensors’ positions.

In addition, when we apply the concept of difference co-array into the multiple input multiple
output (MIMO) array systems such as MIMO radar or some wireless communication systems, the other
key point is the parameter estimation algorithm with respect to direction-of-arrival (DOA) or carrier
frequency. For example, Refs. [13,14,21–24] adopt multiple signal classification (MUSIC) spectrum
searching to estimate DOA information, and Refs. [25–29] discuss algorithms with super resolution
from the perspective of sparsity-based recovery. Unfortunately, however, the above algorithms or
tensor-based algorithms [19], Refs. [30,31] will bring huge computational complexity in practice if
more than one-dimensional parameters are considered. There exist non-spectrum-searching choices,
e.g., the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm [32]
and MUSIC-rooting algorithm, which can decrease the calculation amount to some extent, but they are
usually at the cost of reducing angle estimation accuracy.

In this paper, motivated by the need for efficiently solving the aforementioned problems, a series
of work is developed to improve the exist weaknesses. The main contributions are three-fold:

1. A new array structure named cascade array is designed, which is essentially composed of one
ULA and one non-uniform linear array. Through theoretical analysis, the difference co-array of the
designed optimal cascade array is hole-free and can provide more DOFs than some state-of-the-art
sensor array structures. That is to say, it manifests a strengthened resolving capability.

2. We then apply the cascade array into bistatic MIMO array systems to achieve joint
direction-of-departure (DOD) and DOA estimation for multiple targets localization. Furthermore,
by parameterizing the orthogonal projector onto the null space of the equivalent joint steering
matrix, a novel algorithm based on a reduced-dimensional weighted subspace fitting technique
is proposed.

3. The proposed algorithm transforms a two-dimensional estimation problem into a one-dimensional
one. To do so, the DOD information can be acquired by MODE rooting [33,34], and the auto-paired
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DOA information can be extracted from the estimated receiving array manifold. The proposed
algorithm avoids exhausted spectrum searching or tensor decomposition [19,34,35], thus it is
computationally efficient.

The rest of this paper is organized as follows: in Section 2, we introduce the cascade array and its
optimization. The application in MIMO array systems and related two-dimensional difference co-array
are presented in Section 3. In Section 4, we provide an effective joint DOD and DOA estimation
algorithm. Numerical simulations are shown in Section 5, followed by the conclusions in Section 6.

Notation: (·)∗, (·)T , (·)H , (·)† denote the complex conjugate, transpose, Hermitian transpose,
pseudo-inverse, respectively. Symbol ⊗ represents a Kronecker product and symbol � is Khatri–Rao
product, which is a column-wise Kronecker product. IM is a M×M identity matrix and 0 symbolizes
zero matrix. A(m) is a submatrix of A formed by its last m rows. Operator ∠[·] serves to get the
phase. In addition, as a shorthand notation, the addition between a set and a scalar is defined as
S ± b = {a ± b | ∀ a ∈ S} and the difference set between S1 and S2 is given by Diff(S1,S2) =

{a− b | a ∈ S1, b ∈ S1}.

2. Cascade Array

In this section, we will introduce the detailed structure of our designed cascade array, and then
make a DOF comparison with other types of array configuration. For convenience, we first introduce
the concept of difference co-array and its closed relationship with the Khatri–Rao product of
two steering vectors [10] and [13], which plays an important role in the follow-up content.

2.1. Difference Co-Array

Given a sensor position set P = {pi, 1 ≤ i ≤ N}, the difference co-array with respect to set P can
be created by

Pd = { p̄ | p̄ = pi − pk, pi ∈ P , pk ∈ P}, (1)

which means that each element in Pd represents a virtual sensor.
It is worth mentioning that there exist some repeated values and/or ‘holes’ in this new set, which

is completely determined by the array geometry. The number of DOFs with respect to a real set P is the
cardinality of its difference co-array set. If defining |Pd| be the cardinality of set Pd, i.e., the number of
distinct elements, as we know, |Pd| = 2N − 1 for a ULA, whereas that for MRA, nested array, coprime
array, CADiS, the coprime array with compressed inter-element spacing (CACIS) [15] is O(N2).

To establish a relationship between difference co-array and sensor array manifold C(θ) ∈ CN×K,
let us consider the Khatri–Rao product, C̃(θ) = C∗(θ)� C(θ). If defining p-th column of C(θ) be
c(θp), then correspondingly the p-th column of C̃(θ) is given by

c̃(θp) = c∗(θp)⊗ c(θp) = [c∗1cT(θp), c∗2cT(θp), · · · , c∗NcT(θp)]
T, (2)

where ci is the i-th element of vector c(θp). It can be seen that there is a direct connection between
c̃(θp) and Pd since the elements of c̃(θp) are given by

[c̃]l = ejπ(pi−pk) sin θ , l = (m− 1)N + n. (3)

Obviously, each row of c̃(θp) has a one-to-one correspondence with the element in Pd,
and therefore C̃(θ) implies the manifold of a virtual array whose sensors are located at the positions
indicated by set Pd.

A more effective array geometry means that it should yield as many distinct elements as possible
in concrete natural numbers, which characterizes larger DOFs or a strong capability of resolving more
sources than sensors; and simultaneously it should have no vacancy or holes, which characterizes a virtual
ULA structure and also a free usage of traditional angle estimation algorithms. Both requirements will
also be a criterion in the following designing and comparison.
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2.2. Cascade Array Design

The kernel of designing array geometry is to determine and optimize the array elements’ positions.
As we know, the nested array or coprime array is still rooted in uniform linear geometry with different
element-spacing. Taking a two-level nested array [13], for example, as the array structure is shown
in Figure 1, the second level ULA has a spacing that is determined by the number of the first level
ULA. The biggest advantages of such structure are of easily designing and of easily figuring out the
specific DOFs. However, the pursuit of more DOFs cannot be confined by that uniform feature, e.g.,
MRA, which is a typical example that can achieve the largest DOFs through non-uniform features.
The cascade array in this research essentially borrows the non-uniform feature and meanwhile inherits
the feature of nested array.

Assuming the total number of sensors is N = N1 + N2 and a basic spacing unit d is set as
half-wavelength, i.e., d = λ/2, where λ is the carrier wavelength. Our cascade array can be partitioned
into two parts. Just like the nested array, the first level array is still a N1-element ULA with one spacing
unit, but, on the contrary, the second level array is a N2-element non-uniform linear array.

ULA

Nested Array

Super

Nested Array

Coprime Array

Cascade Array

MR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CACIS

Nested CADiS

Figure 1. An example with total N = 7 sensors for different array configurations: Bullets stand for
physical sensors, boxes for difference coarray in the nonnegative part and stars for holes.

Compared with nested array, there are mainly two modifications. On the one hand, we enlarge
the spacing between two arrays up to (N1 + 1) spacing unit, the purpose of which is to strengthen the
DOF, but it will incur holes; therefore, on the other hand, we further shorten the spacing of the last two
sensors in the second level array, which can mend that defect. In a word, the designed cascade array is
described by a precise definition, i.e.,

Definition 1. Assume N1 and N2 are integers satisfying N1 ≥ 1 and N2 ≥ 2. Second-order cascade array is
specified by the integers set L, defined by

L = L1 ∪ L2 ∪ L3, (4)

where each subset is given as below:

L1 = {0, 1, 2, · · · , N1 − 1},
L2 = {0, (N1 + 1), · · · , (N2 − 2)(N1 + 1)}+ 2N1,

L3 = {(N2 − 2)(N1 + 1) + N1}+ 2N1,
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And its difference co-array set is

PLd = Diff(L,L) = { p̄ | p̄ = pi − pk, pi ∈ L, pk ∈ L}. (5)

In setL, L1 denotes the ULA andL2 ∪L3 denotes the non-uniform one. The typical configurations
for different array geometry with total N = 7 sensors is shown in Figure 1. In this example, we make
a graphical illustration for the designed cascade array, ULA, nested array [13], super nested array [30],
CACIS [15], coprime array [14], nested CADiS (it is an optimum solution of CADiS under the
requirement for highest number of consecutive lags) [15] and MR array [20]. We can see that the
designed cascade array can generate more DOFs than other six array geometries and attain the same
performance as MR array.

To completely exploit the DOFs of the cascade array, we summarize the properties of PLd in the
following theorem.

Theorem 1. The second-order cascade array in Definition 1 is a kind of restricted array [13], i.e, its difference
co-array is hole-free; and it can provide DOFs with the number of 2N2(N1 + 1) + 2N1 − 3.

Proof. The strict and detailed derivations are shown in Appendix A.

According to the above theorem, we can further reach a new corollary with respect to the problem
that optimizes the distribution of sensors in the configuration of cascade array by finding N1 and N2 to
maximize the total DOFs under a fixed number of sensors.

Corollary 1. Given N physical sensors, e.g., N = N1 + N2, the optimal choices of N1 for the 1st level array
and N2 for the 2nd level array in the designed cascade array configuration are verified as

N Optimal N1 and N2 The Number of DOFs

Even N1 = N2 = N
2

N2

2 + 2N − 3

Odd N1 = N−1
2 , N2 = N+1

2
N2−1

2 + 2N − 3

Proof. The solution is easily obtained by utilizing arithmetic mean-geometric mean (AM-GM)
inequality, and we skip it for simplicity.

The detailed comparison with respect to the DOFs, parameter identifiability and estimation
accuracy of the designed cascade array will be introduced in Section 5.

3. MIMO Array Systems with Cascade Array

In this section, we will apply the aforementioned results into MIMO array systems to achieve
higher accuracy of parameters estimation, and mainly focus on the problem of targets localization, i.e.,
the joint direction of departure (DOD) and direction of arrival (DOA) estimation.

3.1. Data Model

We herein consider a MIMO array systems with cascade array configuration at both transmitting
and receiving end, in which M and N antenna elements are arranged, respectively. The whole system
is frequency synchronization or fully calibrated [36]. It is also assumed that there are K targets, and the
output baseband signal of the matched filters at the receiving end can be written as [18,19]

y(t) = [b(φ1)⊗ a(θ1), · · · , b(φK)⊗ a(θK)]h(t) + w(t), (6)
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where the transmitting steering vector a(θk) and the receiving steering vector b(φk), for k = 1, 2, · · · , K,
are assumed to be unchanged during a coherent processing interval (CPI), and θk, φk are the DOD
and DOA of the k-th target, respectively. We herein adopt a Swerling I target model, so the signal
vector h(t) = [γ1(t), · · · , γK(t)]T relies on the Doppler frequency fdk and the radar cross section
(RCS) coefficient βk, i.e., then γk(t) = βkej2π fdk(t−1). Note that a(θk) = [ejπl1 sin θk , · · · , ejπlM sin θk ]T

and b(φk) = [ejπp1 sin φk , · · · , ejπpN sin φk ]T are mutilated Vandermonde vectors, where {lm}M
m=1 and

{pn}N
N=1 is the antennas’ position defined by the cascade array configuration. w(t) is the additive

zero-mean Gaussian noise with covariance σ2
n .

Defining A = [a(θ1), · · · , a(θK)] ∈ CM×K, B = [b(φ1), · · · , b(φK)] ∈ CN×K, and after collecting
Q consecutive pulses, Label (6) can be rewritten by the following compact form:

Y = (B�A)S + W, (7)

where Y = [y(1), y(2), · · · , y(Q)], S = [h(1), h(2), · · · , h(Q)] and W = [w(1), w(2), · · · , w(Q)].

3.2. Two-Dimensional Difference Co-Array

Assuming the Doppler frequencies of all K targets are all different and also well separated.
The covariance matrix of the received data y(t) is given by

R = E[y(t)yH(t)] = (B�A)Λ(B�A)H + σ2
nIMN . (8)

Due to the K target reflected signals in {γk(t)}K
k=1 are sinusoidal signals with different frequencies

and attenuation coefficients, they are temporally uncorrelated. If sampling them by a sufficient large
snapshot rate (at least twice the maximum Doppler frequency), then the signal autocorrelation matrix
Λ is diagonal, and Λ = diag[p] with p = [β2

1, · · · , β2
K]

T.
We vectorize R to get the following vector:

r = vec(R) = [(B�A)∗ � (B�A)]p + σ2
n1, (9)

where vec(·) denotes the vectorizing operator. 1 = [eT
1 , · · · , eT

MN ]
T with ei being a vector of all zeros

except a 1 at the i-th position.
Compared with one-dimensional scenario, it is a little more complicated when achieving

difference co-array under the two-dimensional scenario, such as Label (9). Hence, we introduce
the following lemma:

Lemma 1. Consider a auxiliary matrix defined by Π = IN ⊗ Γ⊗ IM, where

Γ =


∆

0M×1 ∆
...

...
. . .

0M×1 0M×1 . . . ∆


MN×MN

and ∆ =


1

01×N 1
...

...
. . .

01×N 01×N . . . 1


M×[N(M−1)+1];

then, the following result will hold:

Π[(B�A)∗ � (B�A)] = (B∗ � B)� (A∗ �A). (10)

The above conclusion utilizes some properties of the Khatri–Rao product of multiple matrices,
and one can refer to [37] for more detail.



Sensors 2018, 18, 1557 7 of 20

According to the lemma above, after left-multiplying the permutation matrix Π on Label (9),
we can acquire a new constructed data with the following form:

r̄ = Πr = [(B∗ � B)� (A∗ �A)]p + σ2
nΠ1. (11)

The vector r̄ can be viewed as one-pulse baseband observationof a virtual MIMO radar with
equivalent transmitting steering matrix (A∗ �A) and equivalent receiving steering matrix (B∗ � B) in
a deterministic noise environment.

We define Ã and B̃ as the virtual transmitting and the virtual receiving steering matrices after
deleting the redundant items (It can be achieved by deleting the corresponding row observations in r̄).
Therefore, Label (11) can be further rewritten as:

r̃ = [B̃� Ã]p + σ2
ne. (12)

The k-th column of B̃ and Ã, respectively, is represented as:

b̃(φk) = [e−jπN̄sinφk , · · · , 1, · · · , ejπN̄sinφk ]T, (13)

ã(θk) = [e−jπM̄sinθk , · · · , 1, · · · , ejπM̄sinθk ]T, (14)

where M̄ = lM, N̄ = pN . e is a zero column vector, except a 1 in the middle.

3.3. Identifiability Analysis

Now, we have to discuss the parameter identifiability for data model Label (12), i.e., the maximal
number of targets that can be uniquely identified without noise because it is a prerequisite for
a well-posed parameter estimation. Generally speaking, the identifiability for a given data model is
acting like a theoretical upper bound. We herein only consider the angle estimation algorithms based
on signal/noise subspace technique.

Actually, most signal subspace based algorithms for parameter estimating require no rank
deficiency in the observation matrix; however, we can see that the data r̃ is rank one. Therefore,
we have to make a spatial smoothing before signal subspace decomposition.

Define the following (M̄ + 1)(N̄ + 1)× (M̄ + 1)(N̄ + 1) selection operator

Ξn,m = [0(N̄+1)×(N̄+1−n) I(N̄+1) 0(N̄+1)×(n−1)]⊗ [0(M̄+1)×(M̄+1−m) IM̄+1 0(M̄+1)×(m−1)], (15)

where 1 ≤ n ≤ N̄ + 1, 1 ≤ m ≤ M̄ + 1. If we stack the selected observation vector r̃ as follows, we have

R(r̃) = [Ξ1,1 r̃ · · · Ξ1,M̄+1 r̃ Ξ2,1 r̃ · · · Ξ2,M̄+1 r̃ · · · ΞN̄+1,M̄+1 r̃]. (16)

Then, the above two-dimensional virtual spatial smoothing operation yields

Ȳ = R(r̃) = [B �A]S̄ + σ2
nI(M̄+1)(N̄+1) = ĀS̄ + σ2

nI(M̄+1)(N̄+1), (17)

where the equivalent signal matrix is
S̄ = Λ[B �A]H. (18)

For convenience, we let B = B̃(N̄+1), A = Ã(M̄+1), and their k-th column is denoted by b̄(φk) and
ā(θk), respectively.
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Theorem 2. For a MIMO array systems with cascade array configuration, see Label (7), if we perform
two-dimensional difference co-array by Lemma 1 to get Label (12) and further to get Label (17), the parameter set
(θk, φk), k = 1, 2, · · · , K, can be uniquely identified if{

K ≤ (N̄ + 1)(M̄ + 1)− 1, for 2D-MUSIC,
K ≤ N̄(M̄ + 1), for 2D-ESPRIT,

(19)

where the parameters’ set is drawn from a continuous distribution with respect to the Lebesgue measure in L2K,
L := [−π/2, π/2].

Proof. Suppose the parameters are all drawn from a continuous distribution. To view in retrospect
the model described in Label (17) and illuminating this by the almost surely full column rank
of the Khatri–Rao product of two Vandermonde matrices [37–39], i.e., rank[CM1×K

1 � CM2×K
2 ] =

min(M1M2, K), we know that, providing (N̄ + 1)(M̄ + 1) ≥ K, Ā and ĀH are all almost surely K rank.
The spectrum searching algorithms, such as two-dimensional MUSIC algorithm: φ, θ ∈ [−π

2 , π
2 ]

P(φ, θ) =
1

[b̄(φ)⊗ ā(θ)]HU0UH
0 [b̄(φ)⊗ ā(θ)],

(20)

where U0 denotes the noise subspace of Ȳ, and it usually must be at least one-dimension; therefore,
K ≤ (N̄ + 1)(M̄ + 1)− 1 can guarantee the parameter identifiability with probability one. In addition,
in the ESPRIT algorithm [18], partitioning the signal subspace Us for calculating steering matrix has to
require K ≤ N̄(M̄ + 1).

Remark 1. In some very special cases, it has rank(Ã) < K even though K ≤ (N̄ + 1)(M̄ + 1)− 1; however,
the theorem tells us that such cases are measure-zero events, that is to say, Ã is almost surely full column rank.

Previous results on the maximum upper bound of the parameter identifiability such as MUSIC-like
or rotational invariance algorithms are MN − 1 when the uniform array configuration is used. Due to
the non-uniform feature in the cascade array, it usually satisfies M̄ > M and N̄ > N so that a much
stronger identifiability is acquired. It is worth mentioning that, although the upper-bound of parameter
identifiability is derived under the noise-less case, it still works under the limited snapshot number
and low signal-to-noise ratio (SNR) case.

4. Joint DOD and DOA Estimation

In this section, we mainly focus on introducing a new computational efficiency joint DOD and
DOA estimating algorithm, which is based on a subspace fitting technique.

4.1. Weighted Subspace Fitting

As we know, an asymptotically statistically efficient estimation under a large number of snapshots
or high signal-to-noise ratio (SNR) can be obtained by minimizing a weighted subspace fitting [1]:

F (θ, φ) = tr
{

P⊥B�AUsWUH
s

}
, (21)

where θ = [θ1, θ2, · · · , θK]
T and φ = [φ1, φ2, · · · , φK]

T; the diagonal weighted matrix

W = (Σs − σ̂2
nI)2Σ−1

s (22)
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with the estimated noise variance

σ̂2
n =

1
(M̄ + 1)(N̄ + 1)− K

(M̄+1)(N̄+1)

∑
i=K+1

λi (23)

Us is the signal subspace of Ȳ, and its corresponding eigenvalues {λi}K
i=1 forms Σs.

In addition, P⊥B�A in Label (21) stands for the orthogonal projector onto the null space of (B�A)H,
the expression of which is given by,

P⊥B�A = I− (B �A)[(B �A)H(B �A)]−1(B �A)H. (24)

For minimizing function Label (21), two-dimensional searching in the whole angle-domain is
a very direct approach, but it is of computational inefficiency. We herein adopt a MODE-like algorithm
that makes use of polynomial rooting. The MODE algorithm was originally proposed in [40] to deal
with one-dimensional parameters estimation. For our two-dimensional case, the biggest difficult
relies on how to parameterize P⊥B�A because B and A are coupling. Therefore, we have to introduce
an substitute.

To begin, we first try to parameterize the above projector by a coefficient vectors b =

[b0, b1, · · · , bK]
T. These coefficients construct a polynomial with the following form:

K

∑
i=0

bizK−i = b0

K

∏
i=1

(z− ejπ sin φi ), b0 6= 0. (25)

If we introduce the following set

L =

{
{bi} | C(z) =

K

∑
i=0

bizK−i 6= 0 for | z |6= 1

}
, (26)

it can be seen that the mapping from {φi} ∈ R to {bi} ∈ L is one-to-one providing we eliminate the
non-uniqueness implied by the introduction of b0 6= 1.

Let Gb ∈ C(N̄+1)×(N̄+1−K) be the following Toeplitz matrix:

GH
b =

 bK · · · b1 b0 · · · 0

0
. . . . . . . . . . . . 0

0 · · · bK · · · b1 b0

 . (27)

It is observed that rank{Gb} = N̄ + 1− K, and

GH
b B = 0. (28)

Based on the above relation, we can conclude the following theorem that can be utilized to
estimate all the DOA information.

Theorem 3. Let the columns of Gb span the null space of BH, and if defining G = Gb ⊗ IM̄+1, then
span{G} ⊂ span{U0}.

Proof. According to Label (28), the columns of G span a column space that can guarantee the
following result:

GH(B �A) = (GH
b B)�A = 0.
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On the other hand, if considering the rank of matrix G, it is shown that

rank{G} = rank{Gb} × rank{IM} = (N̄ + 1− K)(M̄ + 1). (29)

As we know, the rank of noise subspace U0 is rank{U0} = (M̄ + 1)(N̄ + 1)−K. Obviously, if and
only if M̄ ≥ 1, then

rank{U0} > rank{G}. (30)

Such result directly demonstrates that the column space spanned by the columns of G is included
in the null space spanned by U0. This completes the proof.

Therefore, we can construct a projection matrix

PG = G(GHG)−1GH = PGb ⊗ IM̄+1, (31)

where PGb = Gb(GH
b Gb)

−1GH
b ; then, we substitute PG for P⊥B�A in Label (21), and, correspondingly,

a new objective function that needs to be minimized is reformulated as

F (b) = tr
{
(PGb ⊗ IM)UsWUH

s

}
. (32)

If comparing function F (θ, φ) with function F (b), we can see that: on the one hand, the original
two-dimensional optimization problem is transformed into an one-dimensional problem, that is to say,
it greatly decreases the complexity; on the other hand, the projector matrix P⊥B�A is parameterized
by a series of coefficients. However, such operation combined with the subsequent angle estimation
algorithm inevitably incurs performance loss if comparing with the two-dimensional spectrum
searching method for optimizing F (θ, φ). The related analysis and comparison for such performance
loss will be reserved for future work.

4.2. Angle Estimation

In order to implement the minimization of Label (32) more conveniently, we define

Ū = UsWUH
s =

 Ū11 · · · Ū1N
...

. . .
...

ŪN1 · · · ŪNN

 , (33)

where Ūuv is a (M̄ + 1)× (M̄ + 1) matrix, u, v = 1, · · · , N̄ + 1. Furthermore, we can get

b̂ = arg min tr

PGb

 tr(Ū11) · · · tr(Ū1N)
...

. . .
...

tr(ŪN1) · · · tr(ŪNN)


 . (34)

In addition, we also exert such constraints on the unknown parameters {bi}N̄+1
i=1 , i.e., bi = b∗N̄+1−i.

The detailed discussion with respect to the above constraint and procedures for minimizing the above
quadratic function can be found in [33,41].

Once we get b̂, the angular phase of the roots of the estimated polynomial in Label (25) will give
the DOA information of all targets, i.e., {φ̂i}K

i=1.
For DOD information, the following method is adopted. We convert the two-dimensional MUSIC

algorithm, see Label (20), into two optimization problems [42,43]

max
φ

eTE−1(φ)e, (35)

min
θ

ā(θ)HE(φ)ā(θ), s.t. eTā(θ) = 1, (36)
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where E(φ) = [b̄(φ)⊗ IM̄+1]
HU0U0

H[b̄(φ)⊗ IM̄+1] and e = [1, 0, · · · , 0]T.
Due to the fact that we have obtained DOA information {φk}K

k=1 through coefficient vector b̂,
the auto-paired DOD information θk can be drawn from the estimated transmit steering vectors, i.e.,

¯̂a(θk) =
E(φ̂k)

−1e
eTE(φ̂k)−1e

, (37)

which can be achieved easily by utilizing Lagrange multiplier method to Label (36), and consequently

θ̂k = arcsin
{

1
πM̄

M̄

∑̄
m=1

∠
āk[m̄ + 1]

āk[m̄]

}
, (38)

where āk[m̄] denotes the m̄-th element of ¯̂a(θk).

4.3. Computational Complexity

We now analyze the computational complexity of the above algorithm. By neglecting some trivial
operations, Table 1 lists the number of flops required in major steps. Here, the SVD is assumed to be
performed by the Golub–Reinsch SVD algorithm [44]. For convenience, let M̃ = M̄ + 1 and Ñ = N̄ + 1.

Table 1. Computational complexity analysis.

Operation Dimension Size Required Flops

Eigenvalue Decompositon of Ȳ: Us and Σs MN ×Q QM2N2 + M̃3Ñ3

Matrix Ū Partition in Label (34) M̃Ñ × M̃Ñ 1
2 M̃Ñ2

Minimization of F (b) Ñ × Ñ 1
2 ζK(Ñ − K)(20K2 + 33K + 17)

ā(θ) Estimation M̃× M̃ M̃3

Total flops O{M̃3Ñ3}

In Table 1, parameter ζ denotes the iterative number for optimization of MODE algorithm, which
is usually selected as 4 [33]. Compared with the proposed algorithm, tensor-based algorithms [34,35]
have to pay out large computational cost for calculating high-order singular value decomposition;
and they also have to afford two-times of computational burden because two quadratic functions need
separately minimization in the procedures of performing MODE algorithm. Consequently, the angle
pairing is inevitable. In addition, the proposed algorithm requires more flops than two-dimensional
ESPRIT algorithm (it requires QM2N2 + M̃3Ñ3 + 3N̄M̃K2 + 26K3 + M̃ÑK2 flops) and much less than
the two-dimensional MUSIC algorithm.

5. Numerical Simulation

In this section, we will fully demonstrate the effectiveness of the designed array configuration
and the proposed angle estimation algorithm by Monte Carlo simulations. In the following examples,
the Doppler frequency fdk is generated by fdk = (2πυkTp)/λ, where υk is the target velocity,
Tp = 5× 10−6 is the pulse duration in seconds, and λ = 3× 108/ fc with fc = 3 GHz. The average
root mean square error (RMSE) vs. signal-noise-ratio (SNR) is used as our performance assessment,
where the SNR is defined according to Lable (7):

SNR = 10 log10
‖(B�A)H‖2

MNσ2
n

,
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and the average root-mean-square error (RMSE) is defined as

(1/K)
K

∑
k=1

√
E
[
(θ̂k − θk)2 + (φ̂k − φk)2

]
.

5.1. DOF Comparison

We first compare different array configurations from the perspective of maximum consecutive
DOFs. As the results shown in Figure 2, we can conclude that the designed cascade array can generate
more DOFs than other exist arrays such as ULA, nested array [13], super nested array [16], CACIS and
nested CADiS [15]; and reaches a closed performance to the DOFs upper bound of the MR array [20].
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Figure 2. The number of DOFs comparison with different array configurations.

5.2. Identifiability Performance for Cascade Array

In order to sufficiently examine the identifiability performance of the designed cascade array
under the underdetermined and normal scenarios, we present a one-dimensional DOA case and MIMO
DOD-DOA case through the following examples.

1D underdetermined scenario: We arrange such a underdetermined scenario that nine far-field
narrow-band uncorrelated signals impinge an array with only N = 5 sensors from direction-of-arrival
(DOA) of {−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦}. The sources are modeled as random
Gaussian processes and all with equal power. The signal-to-noise ratio is 10 dB and the number
of snapshots is 500. From Figure 3, we can see that all sources can be resolved sufficiently well
by cascade array: {0, 1, 4, 7, 9}. However, other array geometries cannot provide enough DOFs to
fulfill the requirement of such spectrum estimation, e.g., the nested array: {0, 1, 2, 5, 8}; the CACIS:
{0, 1, 2} and {0, 3, 6}; the ULA: {0, 1, 2, 3, 4}; the super nested array cannot be constructed due to its
requirement for n ≥ 7. In addition, the nested CADiS: {0, 1, 2, 6, 9} can perform the same resolving
ability as our cascade array under that underdetermined case, but its identifiability becomes smaller
than the cascade array when sensor number n increases (see Figure 2).

2D underdetermined scenario: We consider an underdetermined MIMO array systems with
M = N = 5 sensors. For traditional MIMO array with ULA configuration, according to the almost
surely full column rank of the Khatri–Rao product of two Vandermonde matrixes, the upper bound
of the parameter identifiability is MN − 1 = 24; however, the virtual MIMO array based on the
cascade array is (N̄ + 1)(M̄ + 1) − 1 = 99. We set 25 targets with reflected signals coming from
two-dimensional angle-domain uniformly, the RCS coefficients of which are set as {βk}25

k=1 = 1.
The SNR is 10 dB and the number of snapshots is 500. The MUSIC spectrum P(φ, θ) we used is given
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by Label (20). From Figure 4, we can see that, under such two-dimensional underdetermined scenario,
the designed cascade array can distinguish all 30 targets successfully.

2D normal scenario: Furthermore, Figure 5 plots the two-dimension MUSIC spectrum under
a normal scenario: K = 5 targets with θ = {40◦, 35◦, 30◦,−40◦, 65◦} and φ = {20◦, 25◦, 30◦, 50◦,−45◦},
i.e., for three closely spaced targets and two targets widely spaced from the others. The other
parameters are {βk} = {1, 1, 1, 1, 1}, Q = 50 and SNR= 8 dB. In this simulation, we also consider the
random array configuration. According to [28,29], the total aperture for both transmitting and receiving
array is set as 10 half-wavelengths. To ensure the aperture length, we fixed the location of two elements
at the extremities and placed the rest of the elements uniformly at random in between. In this single
realization of random array, the transmitting array is {0, 2.7581, 3.1378, 4.7333, 10} and the receiving
array is {0, 0.6562, 2.8234, 7.8127, 10}. From the simulation results, one can see that: (1) for M = N = 5
ULA configuration, the two-dimensional MUSIC spectrum cannot give a accurate localization for that
three closely spaced targets because that three peaks merged, while the other targets are well located;
(2) for M = N = 5 random array configuration, the distinguishing performance goes better; (3) for
the cascade array configuration, it significantly improves the spatial resolution not only in the closely
spaced targets becoming distinguishable, but also in the sidelobe suppression.
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Figure 3. MUSIC spectrum in one-dimensional underdetermined case: nine uncorrelated signals
impinge on 5-element cascade array, SNR = 10 dB and Q = 500.

Figure 4. MUSIC spectrum in two-dimensional underdetermined case: 25 uncorrelated targets’
reflected signals in M = N = 5 MIMO array system (adopting cascade array configuration),
SNR = 10 dB and Q = 500.
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(a) (b)

(c)

Figure 5. MUSIC spectrum in two-dimensional normal case, SNR = 8 dB, Q = 100, K = 5 targets:
(a) ULA with M = N = 5; (b) random array with M = N = 5; (c) cascade array with M = N = 5.

5.3. RMSE Performance for Joint DOD and DOA Estimation

In Figure 6, we compare the performance of some existing algorithms, including the tensor
MODE algorithm with M = N = 8 uniform linear array configuration [34], 2D-ESPRIT algorithm with
M = N = 7 nested array configuration [13] (Note that the super nested array [16] has the same DOF as
the nested array when the number of antenna is larger than 7, so we herein just consider the nested array
configuration), 2D-ESPRIT algorithm [19] with M = N = 8 coprime array configuration [14] (It consists
of two ULAs with five sensors and 2× 2 sensors, respectively, and their first sensors are of coincidence)
and the proposed algorithm with M = N = 7 cascade array configuration. In addition, we also
compare our earlier proposed method [18], which is based on the MR array. We consider two cases,
i.e., K = 6 widely separated targets: (θ, φ) = {(−80◦, 70◦), (−60◦, 10◦), (−40◦, 50◦), (−20◦,−30◦),
(0◦,−10◦), (20◦, 30◦)}with the RCS coefficients {βk} = {1, 0.9, 0.8, 0.7, 0.6, 0.5} and closely separated
targets: (θ, φ) = {(−80◦, 70◦), (−75◦, 65◦), (−40◦, 50◦), (−35◦, 45◦), (0◦,−10◦), (5◦,−15◦)} with the
RCS coefficients {βk} = {1, 0.85, 0.7, 0.55, 0.4, 0.25}. We fix the number of pulses Q = 200 for
both cases. For the average RMSE performance evaluation, the global bound—Ziv–Zakai bound
(ZZB) [45,46] and the local bound, Cramér–Rao lower bound (CRLB) [47]—are all provided
as benchmarks.

From the first simulation results in Figure 6, we can see that the designed cascade array with
the proposed algorithm performs the same as the method based on the MR array [18] for the
widely separated targets, and performs a little worse for the closely separated targets. However,
it outperforms other types of array configurations. The major manifestation lies in the lower average
RMSE of DOD-DOA estimation can be attained. Furthermore, in the second example, the performance
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gap between the nested array and cascade array when M = N = 8 is larger than the one when
M = N = 7. Such advantage benefits from the strengthened DOF generated by the designed cascade
array. According to Section 2, for transmitting array or receiving array, the DOF difference of the
co-arrays between cascade array and nested array is 4 when M = N = 7 (The cascade array provides
35 DOFs and the nested array provides 31 DOFs); then, it increases to 6 when M = N = 8 (The cascade
array provides 45 DOFs and the nested array provides 39 DOFs). On the other hand, such advantage
cannot persist in the case with many more antennas. For instance, seeing the case of M = N = 9 in
the second example, the performance improvement will become smaller and smaller with the SNR
increasing. The major reason behind this phenomenon is that there exists a model error during the
procedures of achieving co-array, i.e., the matrix Λ of Label (8) is approximately diagonal in estimating
the actual correlation matrix R so that it plays a dominant adverse role in the high SNR region. In the
second example, undoubtedly, the method based on the MR array [18] is optimal because it has
an upper-bound of DOFs. For the RMSE lower bound, in calculating ZZB, the prior distribution of
the DOD and DOA (sin θ and sin φ) are uniform on the unit disc with covariance 1

4 I [46]. For the
widely separated targets scenario in Figure 6a, the ZZB merges with the CRLB, but it becomes a loose
bound under the closely separated targets scenario. The reason is that the ZZB depends on the prior
distribution of parameters rather than the parameters so that both scenarios share the same ZZB;
however, the CRLB varies with different scenarios. In addition, we do not plot the performance at
much lower SNR. The reason comes from Figure 7, that is to say, the detection of targets number,
which is a prerequisite for angle estimation, cannot guarantee being absolutely right when the SNR is
very low.

It is worth mentioning that the above result does not mean the ZZB is inferior to the CRLB. As we
know [45,46,48], the performance of angle estimation is characterized by the presence of distinct SNR
regions. Besides the asymptotic region we consider in this simulation, there still exist the a priori
performance region (characterized by small snapshots and/or lower SNR) and an additional ambiguity
region (or transition region). The ZZB can provide a much tighter bound in all regions and even can
accurately identify the SNR thresholds, whereas the CRLB is not qualified.
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Figure 6. Performance comparison with different array configurations and algorithms for widely
separated targets and closely separated targets respectively, Q = 200, K = 6 targets: (a) the first
simulation example, M = N = 7; (b) the second simulation example.

5.4. Other Related Performance

Targets number Estimation: In the aforementioned simulation examples, the targets number is
assumed to be known as a prior condition. In Figure 7, we try to consider the targets number detection



Sensors 2018, 18, 1557 16 of 20

performance under several different sensor array configurations. In this simulation, the second order
statistic of the eigenvalues (SORTE) algorithm [49] is adopted, which is an eigenvalue-based strategy.
The all parameters setting is the same as the previous example, that is to say, the targets number K = 6
that needs to be detected. The detection probability (DP), NK/Ntol , versus SNR is depicted, in which
the Ntol is the total trials and NK is the number of times that K is successfully detected. From the
simulation results, we can see that the designed cascade array configuration outperforms the nested
array, coprime array and ULA with the same number of antennas.

Performance with different M, N and different snapshot number: In the following, we first
fix the total number of transmitting-receiving antennas, i.e., M + N = 14, to examine which
combination of {M, N} can provide the optimal average RMSE performance. The angle setting
is (θ, φ) = {(45◦, 50◦), (35◦, 30◦), (15◦, 10◦), (−15◦,−10◦), (−25◦,−30◦)}. From Figure 8, we can
see that the simulation results under M = N = 7 have the least average RMSE. In addition, we also
consider the angle estimation performance versus different number of pulses, as is shown in Figure 9,
which demonstrates that the increase of pulse number can also improve the target’s localization
accuracy. It is worth mentioning that a large pulse number will make matrix Λ much more diagonally
dominant; consequently, it can diminish to some extent the model error.
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Figure 7. The detection probability of target number comparison with different array configurations.
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Figure 9. The average RMSE performance with a different number of snapshots.

6. Conclusions

In this paper, we mainly focus on two problems in the multiple input multiple output array
systems: one is to design a new linear array structure, which can provide more degrees of freedom than
some existing arrays from the perspective of different co-arrays; the other is to propose a new targets’
localization algorithm with respect to DOA and DOD, which contains only one-time polynomial rooting
and two-dimension angle estimation auto-pairing. We not only analyze systematically the optimal
configuration of the designed cascade array under a given number of antennas and the maximal
parameter identifiability when applying it into the MIMO array systems, but also provide some
simulation proofs from the angle estimation accuracy and the target’s number detection probability
to verify the effectiveness and advantages of the designed array structure and the proposed targets’
localization algorithm.

In the future work, we will mainly focus on three aspects. First, more efficient angle estimation
algorithms should be devised because there exists an obvious performance gap with the Cramér–Rao
lower bound; second, the cascade array or other array geometries should be optimized or designed to
generate more DOFs because there exists a DOF gap with the MR array; finally, the applications to
other different scenarios with the proposed algorithm and array geometry are also worth considering.
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Appendix A. The DOF of Cascade Co-Array PLd
The statement that a kind of array configuration is a restricted array is equivalent to the argument:

for every i ranging from −N2(N1 + 1) − N1 + 2 to N2(N1 + 1) + N1 − 2, there exists one physical
sensor locating at i or at least one pair of physical sensors with sensor separation i. Nevertheless, it is
not necessary to inspect all possible is because of the two properties:

1. If i belongs to the co-array, then its counterpart, i.e., −i, is also in the same co-array.



Sensors 2018, 18, 1557 18 of 20

2. i = 0 is in the co-array that is determined by the first physical sensor or by the self-difference of
any one of the physical sensors.

Hence, it is reasonable to evaluate the scenario that 1 ≤ i ≤ N2(N1 + 1) + N1 − 2. We consider
the following cases:

If 1 ≤ i ≤ N1 − 1, it comes from L1 and its self-difference set Diff(L1,L1).
If i = (q− 1)(N1 + 1) + N1, q = 1, 2, · · · , N2 − 1, we should check set

Diff(L3,L2)

= {(N2 − 2)(N1 + 1) + N1}+ 2N1 − {0, (N1 + 1), · · · , (N2 − 2)(N1 + 1)} − 2N1

= {(N2 − 2)(N1 + 1) + N1, (N2 − 3)(N1 + 1) + N1, · · · , N1}.

If q(N1 + 1) ≤ i ≤ q(N1 + 1) + N1 − 1, q = 1, 2, · · · , N2 − 1, we should turn to calculate set

Diff(L2,L1)

= {0, (N1 + 1), 2(N1 + 1), · · · , (N2 − 2)(N1 + 1)}+ 2N1 − {0, 1, 2, · · · , N1 − 1}
= {(N1 + 1), 2(N1 + 1), · · · , (N2 − 1)(N1 + 1)}+ (N1 − 1)− {0, 1, 2, · · · , N1 − 1}
= [q(N1 + 1) + (N1 − 1)]− {0, 1, 2, · · · , N1 − 1}
= {q(N1 + 1) + (N1 − 1), q(N1 + 1) + (N1 − 2), · · · , q(N1 + 1)},

where q = 1, 2, · · · , N2 − 1.
If (N2− 1)(N1 + 1) + N1 ≤ i ≤ (N2− 1)(N1 + 1) + 2N1− 1, i.e., N2(N1 + 1)− 1 ≤ i ≤ N2(N1 + 1) +

N1− 2, we can consider set

Diff(L3,L1)

= {(N2 − 2)(N1 + 1) + N1}+ 2N1 − {0, 1, 2, · · · , N1 − 1}
= {(N2 − 1)(N1 + 1) + 2N1 − 1, (N2 − 1)(N1 + 1) + 2N1 − 2, · · · , (N2 − 1)(N1 + 1) + N1}
= {N2(N1 + 1) + N1 − 2, · · · , N2(N1 + 1)− 1}.

Based on the above results, we can sum up that the union of L ∪Diff(L3,L2) ∪Diff(L2,L1) ∪
Diff(L3,L1) and its counterpart set cover the consecutive integers from −N2(N1 + 1) − N1 + 2 to
N2(N1 + 1) + N1 − 2 with no integer absence, that is to say, the co-array functions like a enlarged
ULA. Furthermore, it is easy to verify that the total number of DOFs generated by such virtual array is
2N2(N1 + 1) + 2N1 − 3. This completes the proof.
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