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Abstract: The post-anesthesia care unit (PACU) is the central hub for recovery after surgery, especially
when the surgery is performed under general anesthesia. Aside from clinical aspects, respiratory
impairment is one of the major causes of morbidity and affected recovery in the PACU and
should therefore be monitored. In previous studies, infrared thermography was applied to assess
the breathing rate (BR) of healthy volunteers. Here, the transferability of published methods for
postoperative patients in the PACU was examined. Video recordings of 28 patients were acquired
using a long-wave infrared camera, and analyzed offline. For validation purposes, BRs derived from
body surface electrocardiography were measured simultaneously. In general, a close agreement
between the two techniques (r = 0.607, p = 0.002 upon arrival, and r = 0.849, p < 0.001 upon discharge
from the PACU) was obtained. In conclusion, the algorithm was demonstrated to be feasible and
reliable under these challenging conditions.
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1. Introduction

The post-anesthesia care unit (PACU) is the central hub for recovery after surgery, especially
when the surgery is performed under general anesthesia [1]. During stays in the PACU, patients have
to be monitored (clinically, and by assessing vital parameters) and stabilized in terms of potential
volume deficits, pain, and body temperature, if necessary, before being transferred to a normal
unit [2]. Respiratory complications are a major cause of morbidity and impaired recovery in the PACU,
as respiratory function is already affected by general anesthesia. Thus, impaired oxygenation and a
reduction of up to 50% in functional residual capacity when compared with pre-anesthesia values were
reported. In addition, various critical respiratory events (CREs) can occur during stays in the PACU,
including hypoxemia, where one’s oxygen saturation (SpO2) lies below 90%; hypoventilation, where
one’s breathing rate (BR) rests below 8 breaths per minute (bpm), or one’s partial pressure of carbon
dioxide in arterial blood (pCO2) rises above 50 mmHg; and upper airway obstruction. The factors
contributing to these respiratory complications can be patient-, surgical-, or anesthesia-related.
Therefore, early detection of these CREs is very important for a prompt and appropriate medical
intervention, such as a physical treatment (e.g., insertion of an oral or nasal supraglottic airway device,
oxygen insufflation, or even tracheal reintubation) or pharmacological therapy (e.g., opioid antagonism
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or muscle relaxant reversal) [3,4]. In addition, the monitoring of breathing function is essential because
altered breathing patterns such as tachypnea (high BR), bradypnea (low BR), apnea (suspension
of breathing), or irregular breathing (e.g., Cheyne–Stokes respiration or Kussmaul breathing) may
indicate impaired recovery [4–7]. For these reasons, BR and other vital parameters, such as heart rate
and temperature, should be assessed continuously in PACUs.

Although BR is a solid indicator, and one of the earliest indicators of physiological distress, studies
have reported that it is also commonly neglected due to the shortcomings of current clinical monitoring
techniques [8]. The current methods used to monitor vital signs require the attachment of sensors
to the patient’s body, which frequently leads to discomfort and stress [9]. Therefore, the demand
for contactless monitoring techniques in clinical settings is increasing, not only for vital parameter
detection, but also for diagnostic tools [10–15]. Several research groups have demonstrated that infrared
thermography (IRT) may be a promising technology for the monitoring of BR [16], heart rate [17],
temperature [18], and perfusion [19]. It combines various advantages, such as passive, contactless,
and radiation-free measurement procedures, as well as independence from a light source [19].

In 2015, a robust and effective algorithm for BR detection in thermal videos was introduced by
Pereira et al. It ensured automatic detection and tracking of the nose, which was the region of interest
(ROI). Furthermore, successful extraction and processing of breathing waveforms was demonstrated
in an experimental study involving healthy volunteers [20]. We strongly believe that PACU patients
may benefit from contactless BR estimation. Therefore, in this paper, the performance of the approach
developed by Pereira et al. was evaluated in terms of reliability and feasibility on postoperative
patients in the PACU. To the best of our knowledge, this is the first study in which IRT was used to
monitor BR in a real clinical scenario involving adult patients.

2. Materials and Methods

2.1. Study Design

All subjects gave their informed consent for inclusion before participating in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of the RWTH Aachen Faculty of Medicine, Germany (EK 041/14). The observational
study was performed in the PACU from January 2016 to April 2016 at the University Hospital Aachen.

Twenty-eight patients receiving general anesthesia for non-emergency surgeries were enrolled in
this observational study. Inclusion criteria were age over 18 years, the ability to give written consent,
and a postoperative stay planned in the PACU. Exclusion criteria resulted from the inclusion criteria:
underage patients, the inability to give written consent, and a postoperative stay planned in the
intensive care unit or intermediate care unit.

2.2. Monitoring and Data Assessment

After admission to the PACU, all patients were connected to a Philips IntelliVue MP30 monitor
(Philips Electronics N.V., Amsterdam, The Netherlands) for continuous assessment of vital data
(electrocardiography (ECG), noninvasive blood pressure, BR, and oxygen saturation).

According to clinical standards, vital signs were collected and documented every 15 min.
Additionally, a 2-minute IRT video (after calibration) was acquired in 15-minute phases, focusing on
the patient’s face. Vital signs were recorded simultaneously. However, in this study, only two thermal
videos were analyzed per patient. These corresponded to the first (upon admission to the PACU) and
last measurements (upon discharge from the PACU).

IRT sequences were recorded with an uncooled, long-wave infrared camera, VarioCAM® HD
head 820 S/30 mm (Infratec GmbH, Dresden, Germany), using the software IRBIS 3 plus. Its spatial
resolution covers 1024 × 768 pixels, the spectral range is between 7.5 µm and 14 µm, and the thermal
sensitivity is 50 mK at 30 ◦C. In addition, sequences were acquired at a rate of 30 frames per second.



Sensors 2018, 18, 1618 3 of 12

The experimental setup, assuring quality of data acquisition, was placed in the PACU, which was
air-conditioned. The infrared camera was mounted on a tripod head, which was fixed on a rolling rack.
The rolling rack was positioned at the foot of the bed. All patients laid in the bed with an elevated
upper body, wearing patient hospital clothing and no jewelry. All patients were sober after their
surgical procedures (Figure 1).
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The first step of this approach consisted of manually selecting the ROI (i.e., the nose of the 
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Mei et al. [23]. It is a particle filter-based object tracker that integrates sparse representation. The 
tracking algorithm considers two models: a state transition model, (x௧|x௧ିଵ), and an observation 
model, (y௧|x௧) . The former, (x௧|x௧ିଵ) , uses conditional density to compute the temporal 
correlation of a state transition between two consecutive frames. Here, x௧  is calculated using the 
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displacement along the two axes, x and y. Finally, (ݒଵ,  ଶ) correspond to the velocities of bothݒ

Figure 1. The experimental setup in the post-anesthesia care unit (PACU). (1) Long-wave infrared
camera, VarioCAM® HD head 820 S/30 mm (Infratec GmbH, Dresden, Germany). (2) Laptop.
(3) Philips IntelliVue MP30 monitor (Philips Electronics N.V., Amsterdam, the Netherlands). (4) Patient
bed. (5) Rolling rack.

2.3. IRT Image Analysis

The approach used to assess BR relies on the temperature variation around the nose during the
respiratory cycle. During inspiration, cold air from the environment is inhaled, and during expiration,
warm air from the lungs is exhaled. As demonstrated in several pilot studies [16,20–22], thermal
imaging is capable of accurately detecting this temperature modulation. Figure 2 shows the main
steps used to assess BR from thermal videos. These are explained in the following section in more
detail. As described by Pereira et al. [20], the algorithm was implemented in MATLAB (MATLAB
2014a, The MathWorks Inc., Natick, MA, USA). The collected data were analyzed offline, using a
standardized protocol.
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Figure 2. Representation of the five major steps used to extract breathing rate (BR) from thermal videos.
(1) Video acquisition. (2) Manual selection and tracking of the nose, which is the region of interest
(ROI). (3) Manual selection and tracking of the region of measurement (ROM), which encloses the
nostrils. (4) Extraction of the breathing waveform. (5) Breathing rate estimation.

2.3.1. Region Selection and Tracking

The first step of this approach consisted of manually selecting the ROI (i.e., the nose of the patient).
Afterward, a rough tracking of the nose was carried out using the algorithm proposed by Mei et al. [23].
It is a particle filter-based object tracker that integrates sparse representation. The tracking algorithm
considers two models: a state transition model, p

(
xt|x t−1

)
, and an observation model, p(yt|xt) .

The former, p(xt|xt−1) , uses conditional density to compute the temporal correlation of a state
transition between two consecutive frames. Here, xt is calculated using the affine transformation
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parameters (α1, α2, α3, α4, t1, t2), and velocities (v1, v2), where (α1, α2, α3, α4) are the deformation
parameters, and (t1, t2) stand for the translation parameters, which describe displacement along
the two axes, x and y. Finally, (v1, v2) correspond to the velocities of both translation parameters.
The latter, p(yt|xt) , compares the similarity between the target model and target candidate at each
time, t. The maximum observation likelihood is given by Equation (1):

p(yt|x t) = ∏
j=1,...,d

N (ỹt(j); 0, σ2). (1)

Here, yt is the observation, N (·) stands for the Gaussian distribution, and σ2 represents its variance.
Additionally, j denotes the jth pixel, d is the number of pixels in the appearance model, and ỹt stands
for the approximation residual of the observation, yt by the target model.

To improve the signal-to-noise ratio, a second ROI, labeled the region of measurement (ROM),
was defined and tracked.

2.3.2. Extraction of the Respiratory Waveform and Signal Processing

After the tracking procedure, the mean temperature value, s(t), of the ROM was calculated for
each frame of the video according to Equation (2):

s(t) =
1

m·n
m−1

∑
i=0

n−1

∑
j=0

s(i, j, t). (2)

In this equation, m and n stand for the width and length of the ROM, and s(i, j, t) corresponds to the
temperature at pixel (i, j) of frame t. The variable s(t) represents the temperature waveform around the
nostrils. The next step was its preprocessing, by applying a second-order Butterworth bandpass filter.

To estimate the instantaneous respiratory frequencies, the approach presented by Brüser et al. was
used [24]. Firstly, a short adaptive analysis window, wi[v], centered at ni, was slid across the respiratory
signal, s[n]. Secondly, for each window position, the local breath-to-breath interval, Ti, was computed
using three estimators: EAC[m], EAMDF[m], and EMAP[m]. The adaptive window autocorrelation
estimator, EAC[m], calculates, for all interval lengths, the correlation between m samples to the right,
w[v], and to the left, w[v−m], of the window center, w[0], and was defined as shown in Equation (3):

EAC[m] =
1
m

m

∑
v=0

w[v]·w[v−m]. (3)

The adaptive window average magnitude difference function, EAMDF[m], computes, in turn,
the absolute difference between samples for all interval lengths as defined by Equation (4):

EAMDF[m] =

(
1
m

m

∑
v=0
|w[v]·w[v−m]|

)−1

. (4)

The third and last estimator, the adaptive maximum amplitude pairs, EMAP[m], is an indirect
peak detector because it calculates the maximum amplitude of any two samples for each lag, [m],
as shown in Equation (5):

EMAP[m] = max
v∈{0,...,m}

(w[v]·w[v−m]). (5)

After computing the three estimators, Bayesian fusion was applied. Given EAC[m], EAMDF[m],
and EMAP[m], the conditional probability of m being the correct breath-to-breath interval is governed
by Equation (6):

p(m|EAC, EAMDF, EMAP) ∝ p(m|EAC)p(m|EAMDF)p(m|EMAP). (6)
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Note that the estimators EAC[m], EAMDF[m], and EMAP[m] can be regarded as probability density
functions: p(m|EAC), p(m|EAMDF), and p(m|EMAP).

2.4. Statistical Analysis

No power analysis was performed due to the observational nature of this study.
All data were analyzed with SPSS Statistics 23 for Windows (SPSS Inc., IBM Business Analytics

Software, Armonk, NY, USA). The statistical significance level was set at p < 0.05. The Kolmogorov–Smirnov
test confirmed the non-normal distribution of the data. Therefore, Spearman’s rho correlation coefficients
were presented for the time points “arrival at the PACU” and “discharge from the PACU” separately,
in order to consider intra-individual dependencies within one dataset.

The Bland–Altman plot (Figure 3) compares the BR obtained with IRT, and the ground truth (GT,
which is the BR derived from body surface ECG). For subgroup analysis, patients were assigned to
category A (BR < 12 bpm), category B (BR: 12–15 bpm), or category C (BR > 15 bpm). Since the number
of resulting datasets was relatively low, correlation analysis was performed over both time points.

3. Results

In total, 28 patients were included in the study. Thus, in this work, 56 datasets (two datasets
per patient) were analyzed. No patient declined measurements after participation in the study.
Forty-seven datasets were included in the data analysis. Nine datasets were unable to be analyzed
and were therefore excluded, either because the ROI (nose) was not visible, or because of the patient’s
constant movement. The study population had an age of 70 years (interquartile range (IQR) 51–77),
and consisted of 24 female and 4 male patients.

The Bland–Altman plot (Figure 3) shows the comparison between the two measurement
techniques. It compares the BR obtained with IRT (BR IRT) with the BR of the GT (BR GT). The
plot shows a bias of 1.75 bpm, and limits of agreement ranged from −2.74 bpm to 6.23 bpm.
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Figure 3. Difference against mean for breathing rate (BR). The figure compares the breathing rate (BR)
obtained with infrared thermography (BR IRT) with the corresponding BR measured with the ground
truth (BR GT). The plot shows a bias of 1.75 bpm, and limits of agreement range from −2.74 bpm to
6.23 bpm.

Table 1 shows the performance of the algorithm in terms of correlation coefficients and p-values,
for the three BR categories (A to C). On average, Spearman’s rho correlation coefficient (r) between the
BR estimated using IRT, and using the GT was r = 0.607 (p = 0.002) upon arrival and r = 0.849 (p < 0.001)
upon discharge from the PACU. The highest correlation was obtained for category A (BR < 12 bpm,
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r = 0.845, and p = 0.034), and the lowest performance was obtained for higher BRs (BR > 15 bpm,
category C, r = 0.458, and p = 0.024).

Table 1. Algorithm performance for different breathing rate (BR) categories.

Category BR Range Number of Datasets Spearman’s Rho Correlation p Value

A <12 bpm 6 0.845 0.034
B 12–15 bpm 17 0.651 0.005
C >15 bpm 24 0.458 0.024

Figure 4 shows the correlation between BRs obtained with IRT and the GT, depending on the
breathing categories, A to C.
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Figure 4. Correlation between breathing rates (BRs) obtained with the ground truth (BR GT) and IRT
(BR IRT). The scatter plot shows the relationship between BRs obtained with the GT and IRT for three
BR categories (A: BR < 12 bpm, black dots; B: BR 12–15 bpm, green dots; C: BR > 15 bpm, red dots).

Table 2 compares the correlation between IRT and the GT for both cases: oxygen insufflation
and no insufflation. The algorithm’s performance was only slightly lower when the patient needed
insufflation with a nasal cannula. Additionally, the correlation between BRs obtained with the GT and
with IRT is presented in the scatter plot (Figure 5).

Table 2. Algorithm performance for insufflation with nasal cannula and with no insufflation.

Category Number of Datasets Spearman’s Rho Correlation p Value

No Insufflation 20 0.774 <0.001
Insufflation 27 0.690 <0.001
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insufflation with nasal cannula (green dots), and no insufflation (black dots).

Assessing each patient individually, it was clear that the algorithm performed better for regular,
deep breathing patterns than for shallow breathing (Table 3).

Table 3. Performance of the algorithm for each patient (n.a.; not applicable).

Patient
Time
Point

BR (bpm)
Relative

Error Insufflation
Region of Interest
(ROI)—Fraction of

Image (%)

Breathing
Pattern/Patient

Movement

Ground
Truth
(GT)

Infrared
Thermography

(IRT)

1
1 16.00 11.54 0.28 no 0.03 shallow
2 14.00 13.68 0.02 no 0.06 normal

2
1 24.00 n.a. n.a. no n.a. shallow
2 16.00 16.03 0.00 no 0.07 normal

3
1 16.00 12.54 0.22 no 0.09 normal
2 18.00 n.a. n.a. no n.a. movement

4
1 20.00 n.a. n.a. no n.a. movement
2 12.00 n.a. n.a. no n.a. movement

5
1 14.00 13.48 0.04 no 0.20 normal
2 14.00 12.35 0.12 no 0.20 normal

6
1 18.00 17.11 0.05 yes 0.13 normal
2 20.00 18.64 0.07 yes 0.14 normal

7
1 16.00 12.60 0.21 no 0.16 shallow/movement
2 16.00 n.a. n.a. no n.a. movement

8
1 20.00 15.94 0.20 yes 0.25 irregular
2 20.00 16.49 0.18 yes 0.21 irregular

9
1 15.00 15.68 0.05 no 0.12 normal
2 18.00 17.50 0.03 no 0.10 normal

10
1 15.00 14.72 0.02 yes 0.12 normal
2 14.00 13.10 0.06 yes 0.13 normal

11
1 17.00 16.00 0.06 yes 0.08 normal
2 11.00 11.17 0.02 yes 0.07 normal

12
1 12.00 11.01 0.08 no 0.18 normal
2 12.00 10.49 0.13 no 0.14 normal

13
1 17.00 17.37 0.02 no 0.12 normal
2 10.00 10.01 0.00 no 0.20 normal

14
1 18.00 15.45 0.14 no 0.10 normal
2 16.00 15.85 0.01 no 0.19 normal
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Table 3. Cont.

Patient
Time
Point

BR (bpm)
Relative

Error Insufflation
Region of Interest
(ROI)—Fraction of

Image (%)

Breathing
Pattern/Patient

Movement

Ground
Truth
(GT)

Infrared
Thermography

(IRT)

15
1 16.00 15.51 0.03 yes 0.14 normal
2 16.00 15.04 0.06 yes 0.06 normal

16
1 20.00 n.a. n.a. yes n.a. no signal
2 18.00 15.72 0.13 yes 0.08 normal

17
1 10.00 n.a. n.a. no n.a. movement
2 12.00 13.80 0.15 no 0.24 normal

18
1 20.00 14.90 0.26 no 0.05 irregular
2 18.00 16.88 0.06 no 0.07 normal

19
1 10.00 9.02 0.10 yes 0.06 normal
2 12.00 11.48 0.04 yes 0.05 normal

20
1 16.00 12.68 0.21 yes 0.04 irregular
2 12.00 12.09 0.01 yes 0.05 normal

21
1 16.00 11.35 0.29 yes 0.13 apnea
2 16.00 10.08 0.37 yes 0.07 apnea

22
1 12.00 11.26 0.06 yes 0.06 normal
2 16.00 15.05 0.06 yes 0.04 normal

23
1 20.00 7.93 0.60 yes 0.10 apnea
2 10.00 9.43 0.06 yes 0.07 normal

24
1 10.00 10.38 0.04 yes 0.16 normal
2 13.00 9.79 0.25 yes 0.13 apnea

25
1 n.a. n.a. n.a. no n.a. lateral position
2 n.a. n.a. n.a. no n.a. lateral position

26
1 20.00 16.34 0.18 yes 0.09 movement
2 12.00 11.31 0.06 yes 0.07 normal

27
1 12.00 9.33 0.22 no 0.06 movement
2 8.00 7.63 0.05 no 0.11 normal

28
1 14.00 11.35 0.19 yes 0.08 normal
2 12.00 10.83 0.10 yes 0.09 normal

4. Discussion

In this paper, the reliability and feasibility of a new algorithm for BR estimation from thermal
videos of postoperative patients in the PACU was examined. The key result was that this IRT-based
approach, which was previously validated in a study involving healthy volunteers, was capable of
accurately assessing BR in a realistic clinical scenario, typically found in the PACU.

In our study, thermal videos from postoperative patients staying in the PACU were acquired.
The estimated BR was compared with the BR derived from body surface ECG (ground truth). A high
degree of agreement between both measurement techniques was observed, even though the nostril
region (ROI) represented a relatively small portion of the image (smaller than 1%). In category A
(BR < 12 bpm) and category B (BR 12–15 bpm) in particular, the strength of the relationship was
high. A lower correlation coefficient was observed for higher breathing frequencies (category C,
BR > 15 bpm), surely influenced by outliers (Figure 4). One possible explanation may be the shallow
breathing accompanying tachypnea.

In some cases, the reference method may have failed to detect episodes of shallow breathing and
bradypnea, contributing to higher errors. Because the assessment of BR was only conducted at one
defined time point, and several measures were obtained from IRT sequence analysis, correlation was
impaired for irregular breathing (Table 3). Broens et al. claimed that ECG-derived BR monitoring is
error-prone and might lead to underdetection of respiratory events [6]. In addition, it is very prone to
motion artefacts, poor electrode placement, and physiologic events that induce thoracic movements
unrelated to respiration (e.g., coughing) [25]. Fortunately, no disruptive influence factors were present
in the analyzed IRT sequences of this study. In total, IRT-based BR detection may be superior to
ECG-derived BR monitoring in particular situations. Extreme perspiration also complicates ECG
electrode attachment. Additionally, postoperative patients with reduced awareness of their situation,
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confused patients, or patients with senile dementia tend to remove sensors. In all these situations,
remote monitoring techniques may be advantageous.

At this time, we know that the algorithm used, based on IRT, worked accurately in healthy
volunteers in a laboratory setting, even under challenging conditions. Here, the healthy participants
were asked to move, as well as to simulate various types of breathing disorders (e.g., Kussmaul
breathing, Cheyne–Stokes respiration, tachypnea, etc.). The results of the study demonstrated
that this approach was able to compensate for the patient’s movement, and to accurately estimate
BR. A good agreement between IRT and piezoplethysmography (reference measurement) was
reported. Additionally, the approach seemed to be robust against motion as well as various breathing
patterns [20]. Overall, localization of selected features, analysis of thermal images, and image
segmentation of the face are always challenging [26–28]. However, other approaches in the literature
show promising results using IRT for BR estimation. Specifically, Lewis et al. published an IRT-based
approach for the estimation of BR and relative tidal volume in participants. In this case, a variety of
breathing protocols were performed and then analyzed. Similar close correlations between thermal
and mechanical BRs were obtained [16]. Additionally, Fei et al. introduced a thermal imaging approach
using wavelet analysis for filtering out breathing information. Here, a high correlation between the
IRT approach and the reference method was also demonstrated [21]. In 2010, Al-Khalidi proposed
an algorithm that also used skin temperature changes around the nose during a respiration cycle for
respiration monitoring. In contrast to our approach, it computed the position of the nose (region
of interest) for every single frame [29]. This method is probably computationally costly, but is less
sensitive to sudden and unpredictable strong movements of the object. In 2017, Alkali presented an
improved version of this approach [30].

In this paper, we used a more sophisticated tracking algorithm which employs a motion
model describing how the target may change for various possible motions of the object. Here,
the tracking always relies on prior information to estimate the new position of the object. Furthermore,
Chauvin et al. demonstrated that real-time measurements during exercising are possible using a
thermal camera [31]. In 2018, a case report was published showing an acceptable performance of
thermal cameras for BR estimation during nighttime measurements [32]. Another study demonstrated
accurate robustness, despite different amounts of thermal changes and motion [33].

Despite the high correlation between the IRT-based approach and the GT, all introduced studies
worked with voluntary participants under laboratory conditions. Even if participants were instructed
to perform various movements and breathing patterns during data acquisition, an experimental setting
does not reflect a clinical scenario. In our study, we analyzed, for the very first time, the capability of
IRT to estimate the BR of adult patients in a postoperative clinical setting. Here, the patients arrived
for treatment in the PACU after a variety of surgical procedures. Postoperative pain and state of
consciousness varied. Additionally, some patients needed an oxygen supply via a nasal cannula.
The data recording was performed without instructions or restrictions for the patients. Nevertheless,
close correlations between the IRT-based approach and the GT were obtained, despite the challenging
conditions that characterize the typical clinical environment.

As referred to in Section 2.3.1, the ROI (nose) was manually selected. Thus, our next goal is to improve
the current approach to work automatically. Some pathologies, such as Raynaud’s phenomenon, must be
considered since they can negatively affect the segmentation of the ROI (patients suffering from this
syndrome may have a lower temperature in the nose due to extreme vasoconstriction). In the future, such
phenomena must be focused on to ensure robust ROI segmentation.

However, our study had some limitations. Because of the fixed camera position at the foot of
the bed, nostril regions were not tracked when patients moved to a lateral sleeping position, or when
patients were agitated with strong urges to move. Additionally, with changing breathing patterns,
such as extreme tachypnea or shallow breathing, the approach had difficulties distinguishing between
inspiration and expiration.
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In total, the IRT-based algorithm performed in a robust and reliable manner in a postoperative
clinical setting, without disturbing postoperative care. In particular, the advantages of IRT, such as
independence from a light source and the ability to handle motion artefacts, make it interesting for
prospective daily use. Additionally, the reproducibility of IRT measurements is high when quality
assurance (e.g., including data protocols) is given [34–37].

5. Conclusions

According to the current state of relevant studies as well as our experience, IRT may be a promising
technique for contactless BR estimation. Our results showed that a feasible and reliable use of the
presented approach was possible, even under challenging conditions in a postoperative clinical setting
in the PACU. Furthermore, a close correlation between the IRT-based approach and the GT were
obtained, especially for low and normal breathing frequencies. Further analysis should focus on the
inferior performance of the algorithm for higher breathing rates. It is possible that a modification
or development of the algorithm may improve the correlation between the IRT-based approach and
the GT under this condition. Additionally, the recognition of shallow breathing or apnea must be
examined in further studies. A fusion of newly-developed parameters (e.g., open-mouth respiration or
shoulder and thorax movement) may improve the algorithm for further clinical studies.

Author Contributions: M.C., R.R., and S.L. conceived and designed the experiments; N.H. and C.B.P. performed
the experiments; N.H., M.C., and C.B.P. analyzed and interpreted the data; N.H. and C.B.P. wrote the paper. M.C.,
R.R., and S.L. substantively revised the paper. All authors have approved the submitted version.

Funding: The project was funded by the Federal Ministry for Economic Affairs and Energy (Bundesministerium
für Wirtschaft und Energie), abbreviated BMWi.

Acknowledgments: C.B.P. wishes to acknowledge the FCT (Foundation for Science and Technology in Portugal)
for her PhD grant SFRH/BD/84357/2012. Additionally, we would like to express our appreciation of the efforts
of our PACU team.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Feldman, L.S.; Lee, L.; Fiore, J. What outcomes are important in the assessment of Enhanced Recovery after
Surgery (ERAS) pathways? Can. J. Anaesth. 2015, 62, 120–130. [CrossRef] [PubMed]

2. Lalani, S.B.; Ali, F.; Kanji, Z. Prolonged-stay patients in the PACU: A review of the literature. J. Perianesthesia Nurs.
2013, 28, 151–155. [CrossRef] [PubMed]

3. Rose, D.K.; Cohen, M.M.; Wigglesworth, D.F.; DeBoer, D.P. Critical respiratory events in the postanesthesia
care unit. Patient, surgical, and anesthetic factors. Anesthesiology 1994, 81, 410–418. [CrossRef] [PubMed]

4. Karcz, M.; Papadakos, P.J. Respiratory complications in the postanesthesia care unit: A review of
pathophysiological mechanisms. Can. J. Respir. Ther. 2013, 49, 21–29. [PubMed]

5. Cavalcante, A.N.; Martin, Y.N.; Sprung, J.; Imsirovic, J.; Weingarten, T.N. Low minute ventilation episodes
during anesthesia recovery following intraperitoneal surgery as detected by a non-invasive respiratory
volume monitor. J. Clin. Monit. Comput. 2017. [CrossRef] [PubMed]

6. Broens, S.J.; He, X.; Evley, R.; Olofsen, E.; Niesters, M.; Mahajan, R.P.; Dahan, A.; van Velzen, M. Frequent
respiratory events in postoperative patients aged 60 years and above. Ther. Clin. Risk Manag. 2017, 13,
1091–1098. [CrossRef] [PubMed]

7. Sun, Z.; Sessler, D.I.; Dalton, J.E.; Devereaux, P.J.; Shahinyan, A.; Naylor, A.J.; Hutcherson, M.T.; Finnegan, P.S.;
Tandon, V.; Darvish-Kazem, S.; et al. Postoperative Hypoxemia Is Common and Persistent: A Prospective
Blinded Observational Study. Anesth. Analg. 2015, 121, 709–715. [CrossRef] [PubMed]

8. Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected
vital sign. Med. J. Aust. 2008, 188, 657–659. [PubMed]

9. Al-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H.; Tan, S. Respiration rate monitoring methods: A review.
Pediatr. Pulmonol. 2011, 46, 523–529. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12630-014-0263-1
http://www.ncbi.nlm.nih.gov/pubmed/25391733
http://dx.doi.org/10.1016/j.jopan.2012.06.009
http://www.ncbi.nlm.nih.gov/pubmed/23711311
http://dx.doi.org/10.1097/00000542-199408000-00020
http://www.ncbi.nlm.nih.gov/pubmed/8053592
http://www.ncbi.nlm.nih.gov/pubmed/26078599
http://dx.doi.org/10.1007/s10877-017-0093-0
http://www.ncbi.nlm.nih.gov/pubmed/29260449
http://dx.doi.org/10.2147/TCRM.S135923
http://www.ncbi.nlm.nih.gov/pubmed/28894372
http://dx.doi.org/10.1213/ANE.0000000000000836
http://www.ncbi.nlm.nih.gov/pubmed/26287299
http://www.ncbi.nlm.nih.gov/pubmed/18513176
http://dx.doi.org/10.1002/ppul.21416
http://www.ncbi.nlm.nih.gov/pubmed/21560260


Sensors 2018, 18, 1618 11 of 12

10. Droitcour, A.D.; Seto, T.B.; Park, B.-K.; Yamada, S.; Vergara, A.; El Hourani, C.; Shing, T.; Yuen, A.;
Lubecke, V.M.; Boric-Lubecke, O. Non-contact respiratory rate measurement validation for hospitalized
patients. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC 2009), Minneapolis, MN, USA, 3–6 September 2009; pp. 4812–4815. [CrossRef]

11. Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem.
Physiol. A. Mol. Integr. Physiol. 2016, 202, 78–98. [CrossRef] [PubMed]

12. Ko, L.N.; Raff, A.B.; Garza-Mayers, A.C.; Dobry, A.S.; Ortega-Martinez, A.; Anderson, R.R.; Kroshinsky, D. Skin
Surface Temperatures Measured by Thermal Imaging Aid in the Diagnosis of Cellulitis. J. Investig. Dermatol. 2018,
138, 520–526. [CrossRef] [PubMed]

13. Drucker, A.M.; Piguet, V. Hot Stuff: Thermal Imaging Aids in Cellulitis Diagnosis. J. Investig. Dermatol. 2018,
138, 482–484. [CrossRef] [PubMed]

14. Koprowski, R. Automatic analysis of the trunk thermal images from healthy subjects and patients with
faulty posture. Comput. Biol. Med. 2015, 62, 110–118. [CrossRef] [PubMed]

15. Snekhalatha, U.; Rajalakshmi, T.; Gopikrishnan, M.; Gupta, N. Computer-based automated analysis of X-ray
and thermal imaging of knee region in evaluation of rheumatoid arthritis. Proc. Inst. Mech. Eng. Part H J.
Eng. Med. 2017, 231, 1178–1187. [CrossRef] [PubMed]

16. Lewis, G.F.; Gatto, R.G.; Porges, S.W. A novel method for extracting respiration rate and relative tidal volume
from infrared thermography. Psychophysiology 2011, 48, 877–887. [CrossRef] [PubMed]

17. Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-free measurement of cardiac pulse based on the analysis
of thermal imagery. IEEE Trans. Biomed. Eng. 2007, 54, 1418–1426. [CrossRef] [PubMed]

18. Knobel, R.B.; Guenther, B.D.; Rice, H.E. Thermoregulation and thermography in neonatal physiology and
disease. Biol. Res. Nurs. 2011, 13, 274–282. [CrossRef] [PubMed]

19. Pereira, C.B.; Czaplik, M.; Blanik, N.; Rossaint, R.; Blazek, V.; Leonhardt, S. Contact-free monitoring of
circulation and perfusion dynamics based on the analysis of thermal imagery. Biomed. Opt. Express 2014, 5,
1075–1089. [CrossRef] [PubMed]

20. Pereira, C.B.; Yu, X.; Czaplik, M.; Rossaint, R.; Blazek, V.; Leonhardt, S. Remote monitoring of breathing
dynamics using infrared thermography. Biomed. Opt. Express 2015, 6, 4378–4394. [CrossRef] [PubMed]

21. Fei, J.; Pavlidis, I. Thermistor at a distance: Unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng.
2010, 57, 988–998. [CrossRef] [PubMed]

22. Pereira, C.B.; Yu, X.; Blazek, V.; Leonhardt, S. Robust remote monitoring of breathing function by using
infrared thermography. In Proceedings of the 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4250–4253.
[CrossRef]

23. Mei, X.; Ling, H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 2259–2272. [CrossRef] [PubMed]

24. Brüser, C.; Winter, S.; Leonhardt, S. Robust inter-beat interval estimation in cardiac vibration signals. Physiol. Meas.
2013, 34, 123–138. [CrossRef] [PubMed]

25. Gaucher, A.; Frasca, D.; Mimoz, O.; Debaene, B. Accuracy of respiratory rate monitoring by capnometry
using the Capnomask(R) in extubated patients receiving supplemental oxygen after surgery. Br. J. Anaesth.
2012, 108, 316–320. [CrossRef] [PubMed]

26. Marzec, M.; Koprowski, R.; Wróbel, Z. Methods of face localization in thermograms. Biocybern. Biomed. Eng.
2015, 35, 138–146. [CrossRef]

27. Koprowski, R. Some selected quantitative methods of thermal image analysis in Matlab. J. Biophotonics 2016,
9, 510–520. [CrossRef] [PubMed]

28. Arunachalam, H. Motwani Image Segmentation for the Extraction of Face Using Haar Like Feature. Int. Arab
J. Inf. Technol 2016, 13, 951–958.

29. AL-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H. Tracking human face features in thermal images for
respiration monitoring. In Proceedings of the 2010 IEEE/ACS International Conference on Computer
Systems and Applications (AICCSA), Hammamet, Tunisia, 16–19 May 2010; pp. 1–6.

30. Alkali, A.H.; Saatchi, R.; Elphick, H.; Burke, D. Thermal image processing for real-time non-contact
respiration rate monitoring. IET Circuits Devices Syst. 2017, 11, 142–148. [CrossRef]

http://dx.doi.org/10.1109/IEMBS.2009.5332635
http://dx.doi.org/10.1016/j.cbpa.2016.02.022
http://www.ncbi.nlm.nih.gov/pubmed/26945597
http://dx.doi.org/10.1016/j.jid.2017.09.022
http://www.ncbi.nlm.nih.gov/pubmed/28951240
http://dx.doi.org/10.1016/j.jid.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29477190
http://dx.doi.org/10.1016/j.compbiomed.2015.04.017
http://www.ncbi.nlm.nih.gov/pubmed/25929672
http://dx.doi.org/10.1177/0954411917737329
http://www.ncbi.nlm.nih.gov/pubmed/29076764
http://dx.doi.org/10.1111/j.1469-8986.2010.01167.x
http://www.ncbi.nlm.nih.gov/pubmed/21214587
http://dx.doi.org/10.1109/TBME.2007.891930
http://www.ncbi.nlm.nih.gov/pubmed/17694862
http://dx.doi.org/10.1177/1099800411403467
http://www.ncbi.nlm.nih.gov/pubmed/21586499
http://dx.doi.org/10.1364/BOE.5.001075
http://www.ncbi.nlm.nih.gov/pubmed/24761290
http://dx.doi.org/10.1364/BOE.6.004378
http://www.ncbi.nlm.nih.gov/pubmed/26601003
http://dx.doi.org/10.1109/TBME.2009.2032415
http://www.ncbi.nlm.nih.gov/pubmed/19789102
http://dx.doi.org/10.1109/EMBC.2015.7319333
http://dx.doi.org/10.1109/TPAMI.2011.66
http://www.ncbi.nlm.nih.gov/pubmed/21422491
http://dx.doi.org/10.1088/0967-3334/34/2/123
http://www.ncbi.nlm.nih.gov/pubmed/23343518
http://dx.doi.org/10.1093/bja/aer383
http://www.ncbi.nlm.nih.gov/pubmed/22157953
http://dx.doi.org/10.1016/j.bbe.2014.09.001
http://dx.doi.org/10.1002/jbio.201500224
http://www.ncbi.nlm.nih.gov/pubmed/26556680
http://dx.doi.org/10.1049/iet-cds.2016.0143


Sensors 2018, 18, 1618 12 of 12

31. Chauvin, R.; Hamel, M.; Brière, S.; Ferland, F.; Grondin, F.; Létourneau, D.; Tousignant, M.; Michaud, F.
Contact-Free Respiration Rate Monitoring Using a Pan-Tilt Thermal Camera for Stationary Bike Telerehabilitation
Sessions. IEEE Syst. J. 2016, 10, 1046–1055. [CrossRef]

32. Hu, M.; Zhai, G.; Li, D.; Fan, Y.; Duan, H.; Zhu, W.; Yang, X. Combination of near-infrared and thermal
imaging techniques for the remote and simultaneous measurements of breathing and heart rates under sleep
situation. PLoS ONE 2018, 13, e0190466. [CrossRef] [PubMed]

33. Cho, Y.; Julier, S.J.; Marquardt, N.; Bianchi-Berthouze, N. Robust tracking of respiratory rate in high-dynamic
range scenes using mobile thermal imaging. Biomed. Opt. Express 2017, 8, 4480–4503. [CrossRef] [PubMed]

34. Zaproudina, N.; Varmavuo, V.; Airaksinen, O.; Närhi, M. Reproducibility of infrared thermography
measurements in healthy individuals. Physiol. Meas. 2008, 29, 515–524. [CrossRef] [PubMed]

35. Ring, E.F.J.; Ammer, K.; Wiecek, B.; Plassmann, P.; Jones, C.; Jung, A.; Murawski, P. Quality assurance for
thermal imaging systems in medicine. Thermol. Int. 2007, 17, 103–106.

36. Ring, E.F.J.; Ammer, K. The Technique of Infrared Imaging in Medicine. Thermol. Int. 2000, 10, 7–14.
[CrossRef]

37. Fernández-Cuevas, I.; Bouzas Marins, J.C.; Arnáiz Lastras, J.; Gómez Carmona, P.M.; Piñonosa Cano, S.;
García-Concepción, M.Á.; Sillero-Quintana, M. Classification of factors influencing the use of infrared
thermography in humans: A review. Infrared Phys. Technol. 2015, 71, 28–55. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSYST.2014.2336372
http://dx.doi.org/10.1371/journal.pone.0190466
http://www.ncbi.nlm.nih.gov/pubmed/29304152
http://dx.doi.org/10.1364/BOE.8.004480
http://www.ncbi.nlm.nih.gov/pubmed/29082079
http://dx.doi.org/10.1088/0967-3334/29/4/007
http://www.ncbi.nlm.nih.gov/pubmed/18401069
http://dx.doi.org/10.1088/978-0-7503-1143-4ch1
http://dx.doi.org/10.1016/j.infrared.2015.02.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Design 
	Monitoring and Data Assessment 
	IRT Image Analysis 
	Region Selection and Tracking 
	Extraction of the Respiratory Waveform and Signal Processing 

	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

