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Abstract: Lane marking detection and localization are crucial for autonomous driving and lane-based
pavement surveys. Numerous studies have been done to detect and locate lane markings with
the purpose of advanced driver assistance systems, in which image data are usually captured by
vision-based cameras. However, a limited number of studies have been done to identify lane markings
using high-resolution laser images for road condition evaluation. In this study, the laser images
are acquired with a digital highway data vehicle (DHDV). Subsequently, a novel methodology is
presented for the automated lane marking identification and reconstruction, and is implemented in
four phases: (1) binarization of the laser images with a new threshold method (multi-box segmentation
based threshold method); (2) determination of candidate lane markings with closing operations and
a marching square algorithm; (3) identification of true lane marking by eliminating false positives
(FPs) using a linear support vector machine method; and (4) reconstruction of the damaged and dash
lane marking segments to form a continuous lane marking based on the geometry features such as
adjacent lane marking location and lane width. Finally, a case study is given to validate effects of
the novel methodology. The findings indicate the new strategy is robust in image binarization and
lane marking localization. This study would be beneficial in road lane-based pavement condition
evaluation such as lane-based rutting measurement and crack classification.

Keywords: laser sensor; line scan camera; lane marking detection; support vector machine (SVM);
image binarization; lane marking reconstruction

1. Introduction

Road lane markings deteriorate from routine use, which can lead to unexpected traffic accidents
for road users [1]. Usually, lane marking data can be acquired by various approaches, such as visual
cameras, GPS sensors, radar sensors, and laser sensors [2–4]. Each acquisition method has its own
advantages and limitations in different application fields. Previous studies indicate that lane marking
data captured by visual cameras are widely used for autonomous driving navigation and traffic
surveillance [2,5,6], based on which numerous efforts have been made to detect, locate, and track lane
markings in the spatial domain. However, the study of lane marking detection and location for use in
road condition evaluation is neglected.

Generally the detection and localization of lane markings can be roughly implemented in
a three-step process: (1) extraction of the lane marking features though pre-processing operations
(i.e., exposure correction and shadow removal . . . ) [7–9]; (2) obtaining the location of true lane marking
through a series of related process (i.e., thresholding, particle filtering, model fitting . . . ) [10,11];
and (3) tracking the detected lane marking with different techniques (i.e., temporal consistency,
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position consistency, Hough transform...) [12–14]. However, unexpected challenges always appear in
lane marking detection and localization due to various interferences such as illumination conditions
(occlusion, night time . . . ), camera location and orientation, environmental factors (i.e., foggy days,
cloudy and rainy days . . . ), the appearance of the lane markings, the type of road, and so on [2].
To deal with the abovementioned problems, numerous vision-based lane marking detection and
localization algorithms have been proposed, which for structured roads can be roughly grouped into
two categories: feature-based methods and model-based techniques [6,15–18].

Feature-based methods identify road lane markings with low-level features such as line edges and
colors [19]. Traditional edge-based segmentation methods such as the watershed transformation [20],
the OTSU segmentation method [21], and Canny edge detectors [22] are used to identify lane
markings. However, these traditional methods are susceptible to the effects of occlusions and intensity
noise, and thus produce unsatisfactory identification results. Color representation is a widely used
technique in image processing, which captures the feature information of lane markings in several
color spaces (i.e., RGB, HSI and XYZ) [23–27]. The authors in [28] compared the effectiveness of color
representation in HSI and RGB space, and then developed an adaptive method for lane marking
identification in HSI color space. Although HSI-based color representation can alleviate the influence
of brightness changes, it tends to confuse true targets with noises when the color information is
similar. Moreover, color representation cannot comprehensively disclose lane marking features so
that its use should be in combination with other non-color features such as lane edges or corners,
painted lines, etc. [29–31]. The authors in [32] analyzed low-level features by using an adaptive
segmentation method, and then an efficient line segment detector was proposed for lane marking
detection. However, one explicit limitation exists for feature-based methods, that is, it requires
the well-painted road or strong lane edges, therefore, it may suffer from background noises.

Model-based methods use a few parameters or templates to represent the lines by assuming straight
lines or parabolic curves [6,33]. These techniques are more robust in noise removal, probably due to
their high-level processing instead of pixel-based processing. Deformable template models that
describe road edges in terms of their curvature, orientation, and offset are proposed to locate
the lane boundaries [34,35]. These models are deformable so that they can best fit or match
the underlying intensity variation [36], which enables them to detect lane markings in situations
with shadows and broken segments since thresholding of the intensity information is ignored.
A lane detection and tracking algorithm was initiated based on B-snakes [11]. This method can
describe a lane through a wide range of lane structures since this model can form an arbitrary
shape by a set of control points. Linear-parabolic lane models are proposed for lane departure
warning systems, in which the linear function and quadratic function are used to model the lane
markings in the near field and far field, respectively [33,37]. Hough Transform (HT) and its variants
(e.g., improved HT, randomized HT, hierarchical HT) are widely used for straight or curved lane
marking detection [2,38–41]. However, one primary limitation of this method is how to model arbitrary
road shape. Furthermore, model parameters’ setting and computation are an iterative trial-and-error
process, which requires both human expertise and labor.

Note that the abovementioned approaches may perform well for the color images captured
by an on-board camera of a vehicle and fulfill their application in driving assistance systems.
However, studies on lane-based infrastructure performance assessment using 2D laser images
are neglected.

Although lots of efforts have been made on pavement distress identification and rutting measurement
in the past several decades [42], road lane boundaries cannot be accurately positioned, thus resulting in
the inaccuracy of lane-based distress classification and performance assessments. To implement lane-based
distress evaluation (i.e., pavement cracks, rutting measurement) using 2D laser images, a robust lane
detection and localization approach is presented in this study. Firstly, 2D laser image data are collected
by the Digital Highway Data Vehicle (DHDV) which is a real-time multi-functional system for roadway
data acquisition, and then sigmoid correction method is used for background noise removal and contrast
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enhancement. Subsequently a new thresholding strategy is proposed to binarize laser images, based on
which the pixel-based contour traversal method is developed to produce the contour boxes used as basic
elements for lane marking identification. Thirdly, a Linear Support Vector Machine (LSVM) is introduced
to determine proper vector weights and bias to discriminate true lane markings from noises based on
contour box attributes. Finally, true lane markings along the traveling direction can be continuously
reconstructed using the geometry information of the previous and current frames or images. To validate
effects of the new methodology on lane marking detection and localization, a 2.286 km-long pavement
section (including 1000 laser images) is chosen as a test bed. The performance of the new methodology
is evaluated using Precision-Curve (PR) analysis. Results indicate the new methodology is robust and
reliable in lane marking detection and localization for laser images. This study would be beneficial in
continuous measurement and evaluation of lane-based pavement distress for project- and network-level
pavement survey.

2. Data Acquisition System

The DHDV is a real-time multi-functional system for roadway data acquisition and analysis,
particularly for pavement surface distress survey, roughness- and safety-related pavement performance
evaluation [42]. The PaveVision3D Ultra (3D Ultra for short) system is the latest imaging sensor
technology that enables one to acquire both 2D and 3D laser imaging data from pavement surfaces
through two separate left and right sensors. The system is made up of eight high resolution cameras
and two sets of lasers and is capable of constructing 4096 × 2048 images of full-lane width pavement
surface with complete and continuous coverage. The subsystems of the DHDV vehicle include one
8-core computer, a Waylink Power Chassis (WPC), a WayLink Control Chassis (WCC), a differential
GPS receiver or Inertial Measuring Unit (IMU), a Distance Measuring Instrument (DMI), and laser
imaging sensors, as illustrated in Figure 1.

Sensors 2018, 18, 1635 3 of 22 

 

developed to produce the contour boxes used as basic elements for lane marking identification. 
Thirdly, a Linear Support Vector Machine (LSVM) is introduced to determine proper vector weights 
and bias to discriminate true lane markings from noises based on contour box attributes. Finally, true 
lane markings along the traveling direction can be continuously reconstructed using the geometry 
information of the previous and current frames or images. To validate effects of the new methodology 
on lane marking detection and localization, a 2.286 km-long pavement section (including 1000 laser 
images) is chosen as a test bed. The performance of the new methodology is evaluated using 
Precision-Curve (PR) analysis. Results indicate the new methodology is robust and reliable in lane 
marking detection and localization for laser images. This study would be beneficial in continuous 
measurement and evaluation of lane-based pavement distress for project- and network-level 
pavement survey. 

2. Data Acquisition System 

The DHDV is a real-time multi-functional system for roadway data acquisition and analysis, 
particularly for pavement surface distress survey, roughness- and safety-related pavement 
performance evaluation [42]. The PaveVision3D Ultra (3D Ultra for short) system is the latest imaging 
sensor technology that enables one to acquire both 2D and 3D laser imaging data from pavement 
surfaces through two separate left and right sensors. The system is made up of eight high resolution 
cameras and two sets of lasers and is capable of constructing 4096 × 2048 images of full-lane width 
pavement surface with complete and continuous coverage. The subsystems of the DHDV vehicle 
include one 8-core computer, a Waylink Power Chassis (WPC), a WayLink Control Chassis (WCC), 
a differential GPS receiver or Inertial Measuring Unit (IMU), a Distance Measuring Instrument (DMI), 
and laser imaging sensors, as illustrated in Figure 1. 

 
Figure 1. Generic DHDV subsystem overview. 

With the high-power line laser projection system and custom optic filters, the DHDV can work 
at highway speeds during daytime and nighttime and maintain image quality and consistency. That 
means the images are shadow-free at any time of the day. Figure 2 demonstrates the wiring of the 
cameras and lasers to the computer rack inside the vehicle. The cameras and lasers are powered by 
WPC and triggered by the WCC. The WCC connects to the Control Computer. The cameras are 
mounted on an aluminum alignment frame spaced equidistant from previously calibrated readings. 
The cameras and lasers reside inside two water-tight, aluminum containers, which are mounted on 

Figure 1. Generic DHDV subsystem overview.

With the high-power line laser projection system and custom optic filters, the DHDV can work at
highway speeds during daytime and nighttime and maintain image quality and consistency. That means
the images are shadow-free at any time of the day. Figure 2 demonstrates the wiring of the cameras
and lasers to the computer rack inside the vehicle. The cameras and lasers are powered by WPC and
triggered by the WCC. The WCC connects to the Control Computer. The cameras are mounted on
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an aluminum alignment frame spaced equidistant from previously calibrated readings. The cameras
and lasers reside inside two water-tight, aluminum containers, which are mounted on the external
DHDV frame. The calibrated spacing of the cameras ensures that captured laser images can cover
four-meter-wide pavements. The height of the sensors has been specifically designed for cameras to
accurate capture data within the laser illumination ranges.
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Figure 2. Line scan camera wiring diagram.

Figure 3a shows the interior appearance. Figure 3b shows rear view of the working DHDV
equipped with the 3D Ultra technology. The camera and laser working principle are depicted in
Figure 3c,d. By illuminating a surface using a line laser and shooting both 2D and 3D images using
the corresponding cameras, the surface intensity and height variation information can be captured,
in which surface height information is calculated from the distance from the camera to pavement
based on the laser points (termed as the triangulation principle).
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and (c,d) Pavevision3D working principle.

From Figure 3b, it can be observed that the width of laser images acquired from DHDV is more than
the width of highway lanes (e.g., 3.66 m in United States) [43]. Accordingly, the exact detection and location
of road lane marking are significant for lane-based pavement distress measurement and evaluation.
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3. Methodologies

To achieve this objective, a series of image processing techniques are presented in this paper, which
can be classified into four phases, as illustrated in Figure 4. The first phase is to binarize 2D the laser
images with sigmoid correction and a new threshold method; the second phase is to delineate all
contour boxes or candidate lane markings based on closing operation and marching square algorithm;
the third phase is to separate out true lane marking from candidate lane marking using LSVM based
on contour box attributes; and the last phase is to reconstruct broken and inconsecutive segments and
form the continuous lane marking along traveling direction. As a consequence, the exact location of lane
marking of the entire pavement section can be obtained, and the lane-based pavement distress survey
can be performed.
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Figure 4. Schematic of the new methodology for automated identification and localization of  
lane marking. 
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marking) and background noises, histogram equalization and sigmoid correction are introduced, in 
which the method that produces better pre-processing results would be used in this paper. 

Figure 4. Schematic of the new methodology for automated identification and localization of lane marking.

3.1. Image Binarization

During laser image data collection, some unexpected errors or intensity noises (i.e., whitening
strips in travel direction) might be produced due to the presence of non-uniformity of laser intensity,
lens distortion, physical installation locations of cameras. Therefore, maximally suppressing effects of
noises on target detection is critical for the laser image binarization.

3.1.1. Data Preprocessing

To maximally suppress background noises and enhance the contrast between targets
(lane marking) and background noises, histogram equalization and sigmoid correction are introduced,
in which the method that produces better pre-processing results would be used in this paper.
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Histogram equalization is a widely used method in image contrast enhancement [44]. The basic
idea behind this method is to redistribute all pixel values to be as close as possible to a specified desired
histogram. Its mathematical description can be given in (1) and (2):

Pr(rk) = nk/n (1)

T(ri) = r×
k−1

∑
i=0

Pr(ri) (2)

where r represents the grayscale range of 2D image data (in this case r = 255), Pr(rk) stands for
the frequency of grayscale value of rk; nk is the number of grayscale value of rk; n is the total of all
pixels; T(ri) represents the new grayscale value for the grayscale of ri.

Sigmoid correction method uses a continuous non-linear function to transform the normalized
pixel values of input images to the pixel values of output images [45], and its mathematical equation
can be described in (3):

Iout =
1

1 + egain×(cuto f f−Iin)
(3)

where Iin and Iout respectively represent the normalized pixel values of input and output images; gain is
the multiplier in exponential’s power of sigmoid function; cutoff is the shift value of the characteristic
curve in horizontal direction. Note that both gain and cutoff should be properly initialized before use.

Note that sigmoid function is ‘S’ shaped, as shown in Figure 5. Figure 5a shows the transform trend
ranged at [−0.5, 0.5] decreases sharply with the decrease of gain, and it becomes approximately linear
when the gain variable equals to 2. The cutoff variable shifts the curve characteristics in the horizontal
direction, as shown in Figure 5b. In this study, the gain of 10 and the cutoff of 0.5 are chosen after several
rounds of trial and error.
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To examine the effects of the two techniques on background noise removal and contrast enhancement,
two laser images (Original_IMG1 and Original_IMG2) are chosen as test specimens, as shown in
Figure 6a,d. It can be observed that both images contain whitening strips or noises, as red rectangle
marks. Subsequently, the two methods are respectively applied on the two images for noise removal.
Figure 6b,c,e,f represent the pre-processing results of Original_IMG1 and Original_IMG2 with the two
different techniques. Note that the sigmoid correction method has better performance in separating
background from foreground (lane marking) than histogram equalization. For the sigmoid correction
method, the background pixels become much darker than that in the original images, that is, the influences
of background noises on laser image binarization are greatly suppressed. Meanwhile, intensities of
foreground pixels are increased, that is, lane marking would be easier to be identified out in the process of
image binarization. Therefore, the sigmoid correction is chosen and used for background noise removal
and contrast enhancement.
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3.1.2. New Binarization Method

Once noise removal and contrast enhancement are accomplished, the following task is image
binarization. In this study, two methods, namely OTSU method and minimum threshold method are
examined for this purpose. The OTSU method is a clustering-based image thresholding method [46].
The algorithm assumes that the image contains two classes of pixels following bi-modal histogram
(foreground pixels and background pixels), and then it calculates the optimum threshold separating
the two classes so that their combined spread (intra-class variance) is minimal. The mathematical
description is given in (4)–(6):

σ2
intra = ω0(t)ω1(t)[µ0(t)− µ1(t)]

2 (4)

ω0(t) + ω1(t) = 1 (5)

ω0(t)µ0(t) + ω1(t)µ1(t) = µ(t) (6)

where weights ω0 and ω1 are the probabilities of the two classes separated by a threshold t; σ2
intra are

variances of these two classes, µ0 and µ1 respectively represent the means of these two classes.
The minimum threshold method [47,48] is suitable for binarizing images with two spikes or

maxima so that the algorithm requires keep calculating and smoothing the histogram of the input
image until there are only two maxima. Subsequently the threshold can be determined by the minimum
value between the two maxima. However, in fields the laser image may not have the two maxima,
and thus the threshold method would fail in image processing. To deal with this problem, the minimum
thresholding method is modified to adapt the binarization of the image with one spike, and its
mathematical expression is given in (7):

T =

{
f (h1 + Tm)/2

f (min(hi)
, hi ∈ (h1, h2) (7)

where T is the minimum threshold; h1 and h2 represents the two maxima of the histograms of the input
image; Tm is the maxima intensity of input image; f is used to calculate the threshold.

Figure 7a,d show two 2D laser images and their histogram distribution, respectively. Note that
IMG2 has the two spikes, and both methods produce excellent binarization results for IMG2 since
the histogram distribution of IMG2 has two maxima. It can be found that the two methods perform well
in binarization for laser images that have two spikes in their histogram distribution, based on which
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the optimal threshold can be determined, as shown in Figure 7e,f. For IMG1, however, both methods
produce the poor binarization results since it only has one single maximum. In this case, the OTSU
method produces a false positive (FP) result, while the modified minimum threshold method produces
a false negative (FN) result, as the red circles show in Figure 7b,c, respectively. It can be concluded that
both methods fail to binarize the laser image that has one single spike in its histogram distribution.
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(c) binarized IMG1 with minimum method; (d) IMG2 and its histogram; (e) binarized IMG2 with OTSU
method; (f) binarized IMG2 with minimum method.

To investigate the cause why the two methods fail in Original_IMG1 binarization, the sum of
pixel intensity in the vertical direction is projected onto the x-axis for IMG1 and IMG2, as plotted in
Figure 8a,b, respectively. In this study one laser image is obtained by merging pixel data derived from
the left and right cameras. Note that IMG2 has a strong contrast between background and foreground
pixels for both sides of the laser image, that is, the foreground and background are apparent and easily
distinguished, as shown in Figure 8b. For the left-sided lane marking of IMG1 in Figure 8a, however,
a low contrast is observed, indicating the background and foreground are indistinct and thus are
cumbersome to separate out. To deal with the issue that may be caused by the non-uniformity of laser
intensity, the multi-box segmentation-based threshold method is proposed.
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The basic idea behind the new binarization method is to divide one laser image into multiple
small segmentation regions, and subsequently the threshold operation is performed on each individual
segmentation region. Its implementation can be elaborated below: (1) partition 2D laser image
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into the left and right sides (i.e., IMG_L and IMG_R) since each 2D laser image is made of two
components derived from two different cameras mounted on DHDV, and thus the better binarization
result might be obtained once the left and right sides are separated out; (2) divide both left and right
sides of images into multiple small regions (i.e., IMG_L_1, . . . , IMG_L_N, N is the number of small
segmentation regions for left side) along traveling direction, and the corresponding threshold can
be obtained; (3) recalculate the new threshold for each small region based on minimum square error
method; and (4) reconstruct the binarized images by merging all small segmentation boxes in sequence.
The new threshold for each segmentation box can be calculated using (8)–(10):
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YNewi = β̂0 + β̂1Xi (10)

where Xi, Yi represent the i-th small segmentation region in sequence and its corresponding threshold,
respectively; n is the number of small segmentation regions for each side of image; β̂0, β̂1 refer
to the regression coefficients of the ordinary least square errors. YNewi is the new threshold for
the segmentation region i.

Figure 9 shows the working principle of the new binarization method. Firstly, the left side of IMG1 is
partitioned into 16 small segmentation regions (Xi), and the modified minimum threshold method is used
on each small region to calculate thresholds (Yi). The calculated threshold for each small region are shown
on Figure 9a. Note that the different segmentation regions have different thresholds, and the two adjacent
regions may even have a sharp variation in threshold (i.e., region IDs 2 and 3). The large variation in
threshold may be caused by two underlying reasons: (1) the inconsistency or ununiform of pixel intensity
of images, and (2) the drawback or limitation of the threshold method.

To deal with this issue, the minimum square error method is used to recalculate thresholds for
each segmentation region based on the pre-calculated thresholds (Yi) from 16 segmentation regions.
Once the coefficients of linear regression model are obtained, the new threshold (YNewi ) for each
segmentation region can be recalculated, as shown in Figure 9b. Note that the new thresholds between
the adjacent segmentation regions display smooth changes, with a threshold value of approximately
137. Finally, the left side of IMG1 can be reconstructed by merging all small regions that have been
binarized with the new threshold, as shown in Figure 9c.

Figure 10a–h show the effects of the new binarization method, OSTU method, and the modified
minimum threshold method on laser images. It can be found that the new threshold method produces
the best binarization results. For IMG2, all three methods can produce decent binarization results for
lane markings, except for several whitened spots. For IMG1, the OSTU threshold method produces
a false positive binarization result, and the modified minimum threshold method produces a false
negative binarization results. The new threshold method produces an excellent binarization result for
IMG1, and the true positive and true negative binarization results are produced. Therefore, in this
paper, the new method, namely the multi-box segmentation-based traversal method, is used for 2D laser
image binarization.
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3.2. Candiate Lane Marking

Once 2D laser images are binarized with the new threshold method, the following task is to
determine whether any whitened strips in binary images belong to lane markings or not. Firstly, a median
filter is employed to eliminate the discrete spots or small blobs that are produced in binarization.
Usually the discrete spots or small blobs can be assumed as fake targets and should be eliminated.
Secondly, morphological closing operation and marching square algorithm are used to obtain the contour
of each whitening strip or blob, and then contour box-based method is proposed to frame each whitening
strip or blob. In this study, each contour box is considered as a candidate lane marking, and is taken as
a basic element for the true lane marking identification.
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3.2.1. Closing Operation

Due to the existence of noises such as the whitening aggregates and others, the binarized images
may contain some discrete pixels or spots. To eliminate the influence of discrete spots on true lane
marking identification, a median filter is employed to remove the discrete none-zero pixels.

Pavement distress such as cracking or potholes will appear during pavement aging. As a result,
one entire lane marking or whitening strips may be broken into several segments by cracks, which results
in extra difficulties in true lane marking identification. To deal with this issue, the morphological
closing operation is used to stitch the separated whitening strips with gaps in between and produce one
well-connected strip, and simultaneously the discrete white pixels are eliminated. The morphological
closing operation is defined as a dilation followed by an erosion [49]. The closing operation can remove
small bright spots and patch small dark cracks in lane markings. Erosion removes the non-zero pixels
from object boundaries to shrink the boundaries, while the dilation operation adds binary pixels with
non-zero values to the boundaries of objects in an image to fill the gaps and enlarge boundaries [42].
The number of pixels added or removed from the objects in an image depends on the size and shape of
the structuring element used to process the image. The structuring element defines the neighborhood of
the pixel of interest. In this study, the structuring element with a size of 15 × 15-pixel matrix is used after
several trials and errors.

In Figure 11a,d, the discrete spots and lane marking gaps are marked using red circles and rectangles,
respectively. Firstly, median filtering is used to remove the discrete spots, as shown in Figure 11b,e.
It can be observed that the discrete spots inside circles are totally removed. Subsequently, closing
operations is employed to stitch lane marking with gaps in between and produces one independent and
well-connected strip. From Figure 11c,f, it can be observed that the gap or crack inside rectangles are
fully filled up. Accordingly, both median filter and closing operation are robust in eliminating discrete
spots and patching up lane marking gaps, which are crucial for removing fake targets and determining
candidate lane markings.
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Figure 11. Photographs of morphological operation: (a,d) images after binarization; (b,e) binarized
images after median filtering; (c,f) binarized images after closing operation.

3.2.2. Marching Square Algorithm

All candidate lane markings should be found before true lane marking identification. To achieve
this goal, a marching square algorithm is introduced to generate the contour of the segmentation region
for a two-dimensional image [50]. For one binary image, every 2 × 2 block of pixels (see Figure 12)
forms a contouring box or cell, so the entire image can be represented by numerous contouring boxes.
The important thing in marching square algorithm is the “sense of direction”. The moving direction
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you head are with respect to your current positioning, which depends on the way you entered the pixel
you are standing on. Therefore, it’s important to keep track of your current orientation.
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Figure 12. Photographs of (a) 12-moving direction for single segment; (b) no contour segment;
(c) two-segment saddle; and (d) the 4-moving direction for the two-segment saddle.

The algorithm can be described as follows: (1) assume that you stand on the start pixel of one image
binary; (2) observe the up, left, and up left pixel values, and then pick next moving direction based on
Figure 12. For ‘single segment’ case, it easy to determine the next moving direction by matching the right
contouring box, as shown in Figure 12a. For two-segment saddle (see Figure 12c), each contouring box
can be divided into two states and their moving direction, as given in Figure 12d; and (3) keep moving
until you get back the start position, and pixels you walked over would be the contour of the pattern.

The marching square algorithm is used on binary images (i.e., IMG1 and IMG2) that have been
pre-processed with median and closing operations, and then the contours of candidate lane marking can
be obtained, as shown in Figure 13, which shows that IMG1 only has one contour box, indicating only
one candidate lane marking needs to be judged whether it belongs to true lane marking or not. Figure 13b
shows there are eight contour boxes for IMG2, indicating there are eight candidate lane markings that
need to be validated which one or two belong to true lane marking or not.
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(b) eight contour boxes for IMG2 (as different colors show).

3.3. True Lane Marking

Contour box attributes (i.e., box width, box height, contour complexity, contour length, and target
integrity degree) for each candidate lane marking are calculated along with contour box determination.
They are stored into arrays and used for separating true lane marking from noises. In this study
contour box attributes are defined below:
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3.3.1. Contour Box Attributes

Contour box width and height are pixel differences between the minimum and maximum
coordinates of contouring box in x-axis and y-axis, respectively. Contour length is the number of pixels
that comprise object contours. Contour complexity is calculated by the contour length divided by
the perimeter of boundary box. Contour complexity should approximate to 1 if the candidate lane
marking belongs to true lane marking. Target integrity degree It equals to one minus the root of square
sum of gradients regions ∇x and ∇y, which is used to help judge whether candidate lane marking
belongs to true lane marking or not. The target integrity degree is close to one if the candidate lane
marking is true lane marking. The mathematical description of target integrity degree is given in (11):

It = (1−
√
(∂z/∂x)2 + (∂z/∂y)2)× 100% (11)

where It represents the target (lane marking) integrity degree; z represents the binary values at point (x, y);
∂z/∂x denotes the first-derivative of binary image in the x direction; ∂z/∂y denotes the first-derivative of
binary image in the y direction.

In general, each candidate lane marking belongs to either a true lane marking or noises,
which depends on four contour box attributes: contour box width, contour box height, contour
complexity, and target integrity degree. Table 1 shows contour box attributes of each candidate lane
marking. In addition, the sum of pixel intensity for each contour box is projected onto the X-axis,
as shown in Figure 14. IMG1 has one single contour box namely BoxID1, and its binary projection on
X-axis is plotted in Figure 14a. IMG2 has eight contour boxes namely from BoxID1 to BoxID8, and their
binary projections on X-axis are plotted in Figure 14b–i, respectively. It is apparent that IMG1 has one
true lane marking based on its pixel projection on X-axis. IMG2 has a pair of lane marking, based on its
pixel projection on X-axis in Figure 14b,c. For other contour boxes, their binary projections on X-axis
are not apparent and can be negligible, and thus these contour boxes or candidate lane markings do
not belong to true lane marking.

Table 1. Summary of Contour Box Attributes.

IMG ID Box ID Box Width Box Height Contour Length Contour Complexity ∇x ∇y It(%)

IMG1 ID1 170 2019 4310 1.0 0.004 0.012 98.8
IMG2 ID1 152 1149 2630 1.0 0.008 0.015 98.4

ID2 151 2019 4314 1.0 0.004 0.013 98.6
ID3 34 34 96 0.7 0.057 0.054 92.2
ID4 36 61 161 0.8 0.049 0.054 92.6
ID5 5 3 13 0.8 0.533 0.267 40.4
ID6 9 10 27 0.7 0.178 0.222 71.5
ID7 5 6 16 0.7 0.267 0.333 57.3
ID8 3 5 12 0.8 0.267 0.533 40.4

In summary, it can be preliminarily concluded that IMG1_ID1, IMG2_ID1 and IMG_ID2 belong
to true lane markings based on their contour box attributes and binary projections on the X-axis.
To efficiently separate out true lane marking from fake targets, linear support vector machine is presented
in this study.
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3.3.2. Linear Support Vector Machine (LSVM)

A Linear Support Vector Machine (LSVM) is used to separate out true lane markings from
candidate lane markings based on three variables since contour box height may be very low in laser
images due to the presence of dash lane markings. SVM model is a representation of the samples as
points in space and is mapped so that the samples of the separate categories are divided by a clear gap
that is as wide as possible [51,52]. Typically, this clear gap is defined as the hyper plane, and the distance
between hyper plane and the corresponding support vectors equals to 1/||w||.

Once the hyper plane is located, the new sample is then mapped into that same space and
predicted to belong to a classification based on which side of the hyperplane they fall. The key of
the LSVM is to determine the vector weights W and the bias b of the hyperplane g(X). The hyperplane
can be mathematically expressed using (12):

g(X) = WTX + b (12)

where X = [xw,xc,xt] is a 3-dimentional vector (inputs), xw,xc,xt represent the contour box width,
contour complexity and target integrity degree, respectively; W = [ww,wc,wt] are three vector weights or
the normal vector to hyper plane; b is the bias of the hyperplane.



Sensors 2018, 18, 1635 15 of 22

To use the vector weight W and the bias b to separate out true lane marking from candidate
lane marking, they should be computed first based on the labeled training data [Xp,δp]]. p represents
the training sample number. Y is either 1 or −1, denoting the class to which the input vector X belongs,
if the predicted g(X) is larger than zero, the input vector belongs to true lane marking, otherwise it
belongs to noise box, which can be described using (13):

Yp(WTXp) + b ≥ 1 (13)

To calculate the maximum-margin hyper plane, the cost function Φ(W) = 1
2WTW is introduced and

minimized. Equation (13) is one equality constraint of cost function. It is well known that the Lagrange
function is widely used to deal with the optimization problem that finds the local minima or maxima of
a function. In this study it is introduced to find the optimal solutions of W0 and b0, and its mathematical
expression is (14):

L(W, b, α) =
1
2

WTW −
P

∑
p=1

αp[Yp(WTXp + b)− 1] (14)

where L(W, b, α) is the Lagrange function or expression; αp is the Lagrange multiplier, and its value is
no less than 0.

To minimize Lagrange function, the calculation of partial derivatives of L(W,b,α) with respect to
vector weights and bias can be mathematically expressed in (15) and (16). Subsequently, the calculated
vector weights are given in (17), and one equality constraint is obtained and given in (18):

∂L(W, b, α)

∂w
= 0 (15)

∂L(W, b, α)

∂b
= 0 (16)

W =
P

∑
p=1

αpYpXp (17)

P

∑
p=1

αpYp = 0 (18)

Using (17) to replace W in (14), the Lagrange function can be rewritten as (19). According to
the Kuhn Tucker theory [53], the optimal solution for (19) can be deduced and rewritten as (20):

L(W, b, α) =
P

∑
p=1

αp −
1
2

P

∑
p=1

P

∑
j=1

αpαjYpY j(Xp)TX j (19)

αp[Yp(WTXp + b)− 1] = 0, αp > 0 (20)

Assume the optimal Lagrange multiplier is {α0p, α1p,Λ,α0p}, the optimal weight vector can be
calculated and rewritten as (21), and the optimal bias can be calculated using (22). Once W0 and b0 are
calculated, the hyperplane coefficients can be determined accordingly:

W0 =
P

∑
p=1

α0pYpXp = ∑
ASV

α0sYsXs (21)

b0 = 1−W0
TXs (22)

where Xs is the support vector sample; ASV is defined as all support vectors; α0s is the Lagrange multiplier
of the support vector sample Xs; Ys is the classification label for the support vector sample Xs.
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Eight continuous 2D laser images are chosen to illustrate how LSVM works. 38 contour boxes
(p = 38) and their corresponding contour box attributes are obtained via a series of image processing
operations. Subsequently the LSVM model is employed to fit sample features X with classification labels
Y. The weight vector W0 = [w0w,w0c,w0t] = [2.38092890× 10−2, 7.31285305× 10−5,−1.41721958× 10−5]
and the bias b0 = −1.92861422 are trained. Finally, the hyperplane or decision boundary can be plotted
as seen in Figure 15.
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As a result, the category that the contouring box belongs to can be determined based on (23).
If the sign of the function f (X) is positive, the contouring box is a true lane marking box, otherwise it is
a noise box:

f (X) = sgn(WT
0 + b0) (23)

3.4. Lane Marking Reconstruction

In this study the 2D laser image contains either one or a pair of lane markings, as shown in
Figure 16a,d,g. For images having a pair of lane markings, it is easy to reconstruct the continuous lane
markings based on the identified lane markings, as shown in Figure 16b,c,e,f. However, for images having
only one lane marking, it is a challenge to determine the exact location of the other one lane marking,
and two variables, namely lane marking location in previous image and lane width are proposed to solve
this problem. Finally, a pair of lane markings for each laser image can be reconstructed, as shown in
the right Figure 16h,i.
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The lane width depends on the distance between the coordinates of the left and right lane
markings. The coordinates of the left and right lane markings for current and previous images are
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[
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along traveling direction can be continuously reconstructed with (24) and (25):
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l − xp
l

∣∣∣∣∣∣xc
r − xp

r

∣∣∣ , Dcp ≤ Tos (24)

Dlr = |xc
l − xc

r |, Dlr ≤ Tw (25)

where Dcp is the offset of left or right lane marking locations between previous and current images;
Tos refers to the tolerable range of lane marking offsets; Dlr is the actual lane width; Tw represents
the tolerable range of lane widths.

4. Case Study

To validate the effectiveness of the new methodology in lane marking identification and localization,
a 7500 ft-long asphalt pavement section is chosen as a test bed in this study. Data collection starts
at GPS coordinate of 34.8681, −92.401996, and ends at the GPS coordinate of 34.881418, −92.39309,
located at 17468 to 16420 Maumelle Blvd. in Maumelle, AR, USA. The test section consists of 1000 laser
images, and each image may either contain or not contain lane marking. In this study the binarization,
identification, and localization of lane markings are validated.

4.1. Binarization Result Analysis

To quantitatively describe binarization results of lane marking, three evaluation metrics namely
precision, recall, and F-score are introduced. For each lane marking, it can be regarded as “True Positive (TP)”
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if the automatic binarization result exactly matches with the manual survey result (ground truth); otherwise,
it would be considered as the “False Negative (FN)”. For non-lane marking, it can be considered as
“True Negative (TN)” if the binarized non-lane marking still is non-lane marking; otherwise, it would
be considered as the “False Positive (FP)”. In this study TP and TN are regarded as the acceptable
binarization results, while FP and FN are considered as the unacceptable binarization results.

Once the TP, TN, FP, and FN are determined, three evaluation metrics can be calculated,
as described in Equations (26)–(28). Generally, the larger the evaluation metrics is, the better
the performance of the test algorithm is [54]. An ideal or robust algorithm would have values
of all evaluation metric approximating to one:

Precision = TP/(TP + FP) (26)

Recall = TP/(TP + FN) (27)

F =
2× Precision× Recall

Precision + Recall
(28)

Several methods, the namely OTSU threshold method [46], minimum threshold method [47],
Yen’s method [55], Li’s cross entropy method [56], ISODATA method [57], and the new method are
used to verify the binarization effects, as summarized in Table 2.

Table 2. Comparison of Binarization Results with Various Methods.

Binarization Methods # of IMGs Precision Recall F-Measure

OTSU 1000 0.873 0.898 0.885
Minimum 1000 0.866 0.842 0.854

Yen’s Method 1000 0.553 0.900 0.685
Li’s Method 1000 0.644 0.732 0.685
ISODATA 1000 0.813 0.843 0.828

New Method 1000 0.967 0.961 0.964

Note that the new method produces the best binarization results when compared with the other
five binarization methods, with a precision of 0.97, recall of 0.96, and F-measure of 0.96, followed by is
the OTSU threshold method, minimum threshold method, ISODATA method, Yen’s method, and Li’s
cross entropy method. Therefore, it can be concluded that the new binarization method is robust for
2D laser image binarization in this calculation example.

4.2. Identification and Reconstruction Result Analysis

To validate the effects of the new method on road lane marking detection, the detection result
from the new method is compared with that from two widely used methods, namely the Hough linear
transform and linear-parabolic lane method. The laser image has a size of 2048 × 3604 pixels. Two laser
images are chosen to demonstrate the implementation of lane marking detection and reconstruction.
The colorful lines and solid rectangles of IMG1 in Figure 17a–c show the lane marking detection results
based on the three methods. For the lane marking reconstruction, both Hough linear transform and
linear-parabolic method cannot successfully reconstruct the dash lane marking in IMG2, as shown in
Figure 17d,e, however, the new method can efficiently reconstruct the dash lane marking, as shown in
Figure 17f.
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In this study the precision, recall, and F-measure are used to evaluate the effects of three methods
on lane marking detection. The lane marking detection accuracy with the three methods are given
in Table 3. It can be observed that the new method produces the best detection result among them,
with a precision of 0.95, recall of 0.93, and F-measure of 0.94, based on 1000 test laser images, followed by
the linear-parabolic lane method which produces a detection result with a precision of 0.91, recall of
0.89, and F-measure of 0.90. The Hough linear transform produces a result with a F-measure of 0.88.
The corresponding results based on the three methods are given in Table 3.

Table 3. Comparison of Lane Marking Identification Results with Various Methods.

Detection Methods # of IMGs Computing Time(s)/Frame Precision Recall F-Measure

Hough Linear Transform 1000 1.135 0.91 0.86 0.88
Linear-parabolic Lane Method 1000 1.124 0.91 0.89 0.90

Newly Proposed Method 1000 1.423 0.95 0.93 0.94

The three methods are implemented using Python & OpenCV running on an Intel(R) Core(TM)
i7-7700K @4.2 GHz computer. The processing times for the three methods are given in Table 3.
With the new method, the processing times for image binarization, candidate lane marking determination,
and true road lane marking detection and reconstruction are 1.263, 0.156 s, and 0.004 s, respectively.
The total processing time is about 1.423 s per frame, which is slightly longer than that of the other
two methods. Therefore, the new method is not suitable for real-time processing of lane marking
detection and is recommended to be used for image post-processing with the purpose of pavement
performance evaluation.

In addition, a precision of 0.95, recall of 0.91, and F-measure of 0.94 are obtained for the lane
marking reconstruction results based on 1000 test laser images. It can be concluded that the new method
is robust for lane marking detection and reconstruction. The exact identification and localization of
lane marking are crucial for pavement lane-based study, such as crack detection and classification,
rutting measurement and evaluation, etc.

5. Conclusions and Recommendations

In this paper a new methodology is proposed to detect and locate road lane markings with 2D laser
images collected from a DHDV. Firstly, the multi-box segmentation-based traversal method to binarize
2D laser images is presented, and excellent binarization results are produced when compared with other
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methods such as the OTSU method, minimum method, ISODATA method, Yen’s method, and Li’s cross
entropy method, with a precision of 0.97, and recall of 0.96. Subsequently the morphological closing
method and marching square method are employed to determine the contours of the potential lane
markings, where generally one contouring box represents one candidate lane marking. Thirdly, a linear
support vector machine is used to distinguish true lane markings from candidate lane markings based
on contour box attributes, with a precision of 0.95, recall of 0.93, and F-measure of 0.94. The new
method produces the better detection results when compared with the Hough linear transform and
linear-parabolic lane methods. Finally, the continuous true lane markings along the traveling direction
are reconstructed with the location of adjacent lane markings and road lane width. The findings indicate
that the proposed methodology is robust for the detection and location of road lane markings in 2D laser
images, which would benefit in road lane-based pavement distress measurement and evaluation, such as
pavement cracking detection and classification, rutting measurement and so on.

Although LSVM based on contour box attributes can efficiently separate out true lane markings
from fake targets, the effects of pedestrian crosswalks and lane direction arrows on lane marking
identification cannot be avoided. As a future improvement, a new strategy could be developed to
solve this issue, and simultaneously examine lane-based crack detection and classification.
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