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Abstract: Confocal Microwave Imaging (CMI) for the early detection of breast cancer has been
under development for over two decades and is currently going through early-phase clinical
evaluation. The image reconstruction algorithm is a key signal processing component of any
CMI-based breast imaging system and impacts the efficacy of CMI in detecting breast cancer. Several
image reconstruction algorithms for CMI have been developed since its inception. These image
reconstruction algorithms have been previously evaluated and compared, using both numerical
and physical breast models, and healthy volunteer data. However, no study has been performed to
evaluate the performance of image reconstruction algorithms using clinical patient data. In this study,
a variety of imaging algorithms, including both data-independent and data-adaptive algorithms,
were evaluated using data obtained from a small-scale patient study conducted at the University
of Calgary. Six imaging algorithms were applied to reconstruct 3D images of five clinical patients.
Reconstructed images for each algorithm and each patient were compared to the available clinical
reports, in terms of abnormality detection and localisation. The imaging quality of each algorithm
was evaluated using appropriate quality metrics. The results of the conventional Delay-and-Sum
algorithm and the Delay-Multiply-and-Sum (DMAS) algorithm were found to be consistent with the
clinical information, with DMAS producing better quality images compared to all other algorithms.

Keywords: microwave imaging; ultra wideband radar; breast cancer; artifact removal; patient study

1. Introduction

Confocal Microwave Imaging (CMI) is an emerging imaging modality for the detection of breast
cancer. One important signal processing challenge in reconstructing high quality breast images using
CMI is the image reconstruction algorithm itself. An effective image reconstruction algorithm provides
an accurate localisation of tumours, while suppressing clutter due to healthy breast tissues and any
residual artifacts from preprocessing.

Several image reconstruction algorithms for CMI have been developed over the last two
decades [1–13]. These algorithms have been categorised as Data Independent (DI) beamforming
and Data Adaptive (DA) beamforming algorithms in the literature [14]. Both DI and DA beamforming
algorithms are based on the principle of coherent addition of backscattered radar signals, which are
collected after illuminating the breast with Ultra-Wideband Radar (UWB) pulses. In Data-Independent
(DI) beamforming algorithms, coherent addition is performed based on an assumed propagation
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model. However, Data Adaptive (DA) algorithms estimate the propagation model from the received
signals and apply compensation factors based on this estimated channel model. Several studies
have been performed to evaluate the performance of both DI and DA beamforming algorithms
using a variety of numerical and physical breast models [7,12,15–22]. However, these studies have
often evaluated the performance of both DI and DA algorithms using a limited set of beamforming
algorithms [7], simplified numerical phantoms [12,19,20], and an idealised artifact removal algorithm,
while ignoring the impact of realistic artifact removal [15,16,18]. One recent study applied multiple
imaging algorithms to clinical data from healthy volunteers [21]. The volunteers had no breast cancer
so tumour responses were artificially introduced in the acquired data. Differential signals, derived from
these signals containing artificially induced tumour responses, were used for imaging. The results from
this clinical investigation are, thus, inherently based on several assumptions, such as the availability
of accurate tumour signature templates and baseline measurements. Therefore, these results may
not be generalisable to the diagnostic application where baseline measurements are not available,
and where an accurate estimation of the tumour signature template in an unknown breast density
is not possible. In conclusion, the current literature lacks a comprehensive evaluation of a variety of
imaging algorithms in realistic clinical scenarios [23].

In this study, the performance of a variety of DI and DA algorithms is evaluated using clinical
patient data. The following algorithms are examined in this study:

• Delay-And-Sum (DAS)
• Improved Delay-And-Sum (IDAS)
• Delay-Multiply-And-Sum (DMAS)
• Coherence Factor Based DAS (CF-DAS)
• Channel Ranked DAS (CR-DAS)
• Robust Capon Beamformer (RCB)

The novelty of this study is two-fold: firstly, a comprehensive set of both DI and DA beamforming
algorithms was examined; and, secondly, these algorithms were evaluated together for the first
time on both clinical patient data and with a non-idealised artifact removal algorithm. The patient
data used in this study were obtained from a first patient study conducted at the University of
Calgary [24]. The patients were scanned using the first generation Tissue Sensing Adaptive Radar
(TSAR) prototype [25]. In the original publication [24], breast images were reconstructed using the
traditional DAS algorithm. The images reconstructed with the DAS algorithm were consistent with
clinical information in most cases. However, not all lesions were detected. This current study aimed to
evaluate more advanced imaging algorithms on the same patient data. Improved clutter suppression
capabilities of the more advanced Confocal Microwave Imaging (CMI) algorithms are expected to
improve upon the DAS imaging results for the University of Calgary patient study reported in [24].

The remainder of this paper is organised as follows: Section 2 provides an overview of the imaging
algorithms that are considered in this study. Section 3 describes the patient details, patient scanning
and preprocessing of the scanned data. Sections 4 and 5 present results and discussions, respectively.
Finally, conclusions are presented in Section 6.

2. Imaging Algorithms

The imaging algorithms evaluated in this study are described in this section.

2.1. Delay-And-Sum

The conventional DAS beamformer equation is given as:

I(
→
r ) =

[
M

∑
i=1

bi(τi(
→
r ))

]2

(1)
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where M is the total number of channels, bi is the backscattered signal recorded at Channel i, and τi(
→
r )

is the time required to travel the round trip distance between focal point
→
r = (x, y, z) and antenna i.

In the DAS beamformer, firstly, the signals received at individual channels are time-aligned for
each focal point

→
r . The time-alignment process involves calculation of the time-delay τi(

→
r ) for each

individual backscattered signal. The time-delay for each signal received at antenna i is calculated
based on the assumed average propagation speed in the breast and the round trip distance between the
focal point

→
r and antenna i. Next, the time-aligned signals are simply summed together. Reflections

from any tumour present are expected to add coherently. Conversely, reflections from healthy tissues
and any artifacts from preprocessing are expected to add incoherently. The energy of the summed
signal (often computed over a time-window) is assigned to the intensity of the focal point under
consideration and this process is repeated for all focal points within the 3D breast volume to create
a 3D breast image.

2.2. Delay-Multiply-And-Sum

The DMAS beamformer is similar to the conventional DAS [26] with an additional multiplication
step [27]. However, DMAS is expected to provide better clutter reduction, compared to DAS, which is
achieved by virtually increasing the sample size using signal-pair multiplication.

In the DMAS algorithm, the signals are multiplied in pairs after time-alignment for each focal
point

→
r of the breast. The pairing multiplication step virtually increases the number of signals from M

to MC2 (i.e., combinations of size 2 from total M signals). All the MC2 signals are summed together in
the next step, and the summed signal is then integrated over a time-window to compute the energy
corresponding to each focal point.

2.3. Improved Delay-And-Sum

The IDAS beamformer modifies the conventional DAS by introducing an additional weighting
factor for each focal point [28]. The weighting factor rewards the coherent addition of signals based
on the quality of coherence, and this weighting factor is termed “Quality Factor (QF)”. The QF is
introduced to Equation (1) to produce the IDAS beamformer equation:

I(
→
r ) = QF(

→
r )·
[

M

∑
i=1

bi(τi(
→
r ))

]2

(2)

The QF for each focal point
→
r is calculated from an energy collection curve obtained from

coherent summation of radar signals. Perfect coherent summation of radar signals is expected to
result in an energy collection curve that resembles a quadratic curve. Therefore, a second-order
polynomial

(
y = ax2 + bx + c

)
is fitted to the normalised energy collection curve using least-square

fitting. The energy collection curve is normalised by multiplication of the curve by 1/(1 + σe), where
σe is the standard deviation of the energy curve. Next, the coefficients of the second-order polynomial
are estimated. The coefficient a is chosen as the QF of focal point

→
r , and is multiplied with the final

energy computed for the focal point
→
r .

2.4. Coherence Fator Based Delay-And-Sum

In the CF-DAS beamformer, a different coherence based weighting factor is introduced in
the conventional DAS algorithm [29]. The Coherence Factor (CF) was adapted from ultrasound
imaging [30] and is used to measure and enhance the coherence quality of radar signals. The CF is
calculated for each focal point

→
r as:

CF(
→
r ) =

∣∣∣∑M
i=1 bi

(
τi(
→
r )
)∣∣∣2

∑M
i=1

∣∣∣bi

(
τi(
→
r )
)∣∣∣2 (3)



Sensors 2018, 18, 1678 4 of 21

Then, the intensity at focal point
→
r can be calculated as:

I(
→
r ) = CF(

→
r )·
[

M

∑
i=1

bi(τi(
→
r ))

]2

(4)

2.5. Channel Ranked Delay-And-Sum

In the CR-DAS beamformer, each individual signal is scaled with a weighting factor [8].
The weighting factor is based on the length of the propagation path between the focal point and
each antenna. Channels with shorter propagation paths are assumed to have a relatively clear view of
the focal point, are less likely to encounter heterogeneity, and are less affected by the attenuation and
phase effects. Conversely, channels with relatively long propagation paths are more likely to encounter
significant heterogeneity and suffer more attenuation as the UWB signal propagates to and from the
focal point. Therefore, channels with shorter propagation paths are given higher weighting in the
imaging reconstruction process. The weighting factor for CR-DAS is calculated as follows:

w(i) =
M− rank(i)

M(M + 1)/2
(5)

where M is the number of signals, rank(i) is a number from 1 to M, assigned to each signal based on
that signal’s round trip propagation distance (signal with the shortest propagation distance is assigned
a rank of 1). The weighting factor is applied to each signal prior to coherent summation and formation
of the energy image as given below:

I(
→
r ) =

[
M

∑
i=1

w(i)·bi(τi(
→
r ))

]2

(6)

2.6. Robust Capon Beamformer

The RCB algorithm is based on the Standard Capon Beamformer (SCB) [11,12]. The SCB estimates
the signal energy by adaptively selecting a weight vector for the received signals. The weight vector is
chosen to minimise the beamformer output power subject to the constraint that the signal of interest
(SOI) does not suffer any distortion. However, in practice, SCB suffers performance degradation from
imprecise knowledge of the array steering vector, often caused by waveform distortions, antenna
location uncertainties and time-delay roundoffs. The presence of coherent interferences also contributes
to the performance degradation of SCB. To mitigate the performance degradation due to steering
vector errors, RCB introduces an uncertainty set for the array steering vector.

Consider the following preprocessed signal vector for a focal point r0:

y(t) = [b1(t)b2(t) · · · bM(t)]T , t = 0, · · · , N − 1 (7)

Each snapshot y(t) can be modelled as:

y(t) = a(t)·s(t) + e(t) (8)

where s(t) is the backscattered signal, a denotes the steering vector, and e(t) = [e1(t)e2(t) · · · eM(t)]
includes the noise and interference due to undesired reflections. Assuming proper time alignment and
signal compensation, the steering vector can be assumed to be a = [1, · · · , 1]T . With the knowledge of
the steering vector, s(t) can be estimated from y(t).

RCB assumes that the true steering vector â(t) lies in the vicinity of the assumed steering vector,
a and the only knowledge available about â(t) is that ‖ â(t)− a(t) ‖2 ≤ ε, where ε is a user defined
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parameter to describe the uncertainty of â(t) [11,12]. The steering vector â(t) can be determined using
a covariance fitting approach described in [12].

Given â(t), the RCB problem can be formulated as:

min
w

wTR̂w subject to wT â = 1 (9)

where R̃ is the sample covariance matrix given as:

R̃ ≡ 1
M

y(t)yT(t) (10)

and the solution to Equation (9) is given as:

ŵ =
R̂−1â

âTR̂−1
(11)

The beamformer output can be written as a vector

ŝ(t) = [ŵT(t)y(t)]
T

(12)

Finally, the backscattered energy from location r0 can be calculated as:

I(
→
r0) =

N

∑
t=1

ŝ2(t) (13)

3. Patient Scanning and Preprocessing

In this section, details of patients, the patient scanning process, and the preprocessing of scanned
data is detailed.

3.1. Patient Information

The patient data used in this study came from the microwave imaging patient study conducted at
the University of Calgary [24]. This study was approved by the University of Calgary Conjoint Health
Research Ethics board (E-22121) and all patients provided informed consent. The patient recruitment
and the patient scanning using the TSAR prototype are detailed in [24]. Most patients recruited into the
study had a suspicious region in one breast, which was identified through a mammogram or a clinical
examination. The breast with the suspicious region was scanned with the TSAR system. Prior to the
TSAR scan, each patient was also scanned with a contrast enhanced Magnetic Resonance Imaging
(MRI) to aid in interpretation of the TSAR images.

In this study, five patient cases are presented in detail. Three of these five patients had clearly
identified benign or malignant lesions, while two patients had no disease. Table 1 summarises the
important clinical information of each patient including patient age, breast density, and disease type.

Table 1. Summary of patient information (from [24]).

Patient Age Breast
Imaged

# of
Rows

Measurements
per Row Breast Density Disease

Patient 1 53 R 6 30 Heterogeneous Malignancy
Patient 2 64 L 8 20 Extremely dense Benign
Patient 3 35 L 9 20 Scattered/heterogeneous Malignancy
Patient 4 44 L 5 30 Heterogeneous No disease
Patient 5 32 L 6 30 Heterogeneous No disease
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3.2. Patient Scanning

The first generation TSAR prototype used for the patient scanning is described in [25].
The prototype (shown in Figure 1) features a monostatic data acquisition system with an UWB Balanced
Antipodal Vivaldi Antenna with Director (BAVA-D) antenna [31] that is mounted on a positioning arm.
To scan a breast, a patient lies on an examination table in the prone position and the measurements
are collected by moving the arm vertically while the entire tank rotates. This results in a cylindrical
scan configuration, where each measurement is taken by positioning the sensor at a fixed radius from
the centre of the tank. The sensor positioning is controlled by actuating stepper motors using custom
software. The prototype also has a laser system mounted on the positioning arm. The collected laser
data are used to reconstruct the breast surface that can later be used to improve the reconstructed
microwave images [32]. The reconstructed breast surface is also used to limit imaging domain to the
surface of the breast under consideration. The system also has a digital camera to monitor the sensor
positioning and the breast during the scanning process.
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During the patient scan, patient lay in a prone position with one breast extended into the
examination table of the prototype. Underneath the table, the BAVA-D antenna was vertically
moved in a step of 5–10 mm between the nipple and chest wall of the breast. For each vertical position,
multiple measurements were collected around the breast. The number of vertical positions (rows)
for each patient was decided based on the vertical extent of the breast, which was estimated using
the images acquired from the digital camera. For each patient, measurements were collected at up to
200 locations, as detailed in Table 1. The measurements were acquired using a Vector Network Analyser
(VNA) at 1601 frequency points over the range of 50 MHz to 15 GHz with port power of −5 dBm.
Intermediate Frequency (IF) bandwidth of 1 kHz and an average of three measurements was used to
reduce the noise floor. For the calibration of the system, another set of measurements was collected
without the patient present. The second set of measurements was collected at the same locations that
were used to collect the patient measurements. These data were called a “calibration” scan.

3.3. Preprocessing

The frequency-domain data acquired from the VNA were preprocessed prior to imaging.
Firstly, the calibration scan was subtracted from the patient scan. Next, the frequency-domain data

Figure 1. First generation Tissue Sensing Adaptive Radar Prototype (from [24]). For Figure 1,
IEEE License received. License number 4274890619942.

During the patient scan, patient lay in a prone position with one breast extended into the
examination table of the prototype. Underneath the table, the BAVA-D antenna was vertically moved
in a step of 5–10 mm between the nipple and chest wall of the breast. For each vertical position,
multiple measurements were collected around the breast. The number of vertical positions (rows) for
each patient was decided based on the vertical extent of the breast, which was estimated using the
images acquired from the digital camera. For each patient, measurements were collected at up to 200
locations, as detailed in Table 1. The measurements were acquired using a Vector Network Analyser
(VNA) at 1601 frequency points over the range of 50 MHz to 15 GHz with port power of −5 dBm.
Intermediate Frequency (IF) bandwidth of 1 kHz and an average of three measurements was used to
reduce the noise floor. For the calibration of the system, another set of measurements was collected
without the patient present. The second set of measurements was collected at the same locations that
were used to collect the patient measurements. These data were called a “calibration” scan.

3.3. Preprocessing

The frequency-domain data acquired from the VNA were preprocessed prior to imaging.
Firstly, the calibration scan was subtracted from the patient scan. Next, the frequency-domain
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data were weighted with a differentiated Gaussian pulse, and converted to the time-domain using
an inverse Chirp Z-transform [33]. The centre frequency of the pulse was 4 GHz and the full-width
half-maximum frequency content was between 1.3 and 7.6 GHz. A phase-shift was also introduced in
the calibrated data to compensate for the antenna aperture location. The resultant time-domain signals
were then processed through the Neighbourhood-Based Skin Subtraction (NSS) algorithm for skin
subtraction [34]. The NSS algorithm estimates the artifact at a particular antenna from a neighbourhood
of antennas, and the estimated artifact is then subtracted from the target antenna.

4. Results

In the current study, the preprocessed patient data were used to reconstruct the breast images of
patients using the DAS, IDAS, CF-DAS, DMAS, CR-DAS and RCB imaging algorithms. An average
breast permittivity of εr = 9 was used to estimate the propagation speed and the corresponding
distance travelled in the interior of the breast during image reconstruction. This value of permittivity
may not be an accurate estimate for all patients and particularly for heterogeneously dense breasts,
but it was chosen to compare results with the previous study that used permittivity of εr = 9 [24].
The reconstruction results obtained from each individual patient using different imaging algorithms
are described in this section.

Microwave images obtained from each imaging algorithm are shown for each patient in
Figures 3–9. Tables 2–6 summarise the analysis and interpretation of the microwave images of each
patient. Information contained in each column of tables is described below:

• The first column in each table lists the imaging algorithm used to image the patient.
• The second column lists clinically identified (CI) regions of interest (ROI) that were detected

through either clinical imaging or clinical examination and are expected to be detected in the
microwave images. Any additional high intensity (HI) regions identified in microwave images
(MI) are also listed in this column.

• The third column indicates whether CI-ROIs were detected in microwave images (MI).
• The fourth column of the table lists the Signal-to-Mean Ratio (SMR) of each high intensity region

detected in the microwave images. The SMR is a measure of the quality of the beamformed image
that provides a measure of separation between the ROI and the background clutter. It is defined
as the ratio of the average intensity of the ROI to the average intensity of the overall 3D image.

• The fifth column lists the Full-width Half Maximum (FWHM) of each high intensity region
detected in the microwave images. The FWHM may be used to estimate the extent of the ROI in
the image. The FWHM is defined as twice the distance from peak intensity in the ROI to the point
where intensity of ROI drops by half. The FWHM is computed by growing a region around the
centroid of the ROI until the ROI intensity drops by half. Twice the average Euclidean distance
from the centroid of the ROI to the end of the region is estimated to be the FWHM.

• The last column ranks the performance of each algorithm in terms of the detection of the CI-ROI
and the quality of the image.

The results of each individual patient are discussed in the following sections.

4.1. Patient 1

The mammogram indicated the presence of a 10 mm lesion at the 4 o’clock radian in the right
breast of this patient. The MRI report showed the lesion at 5 o’clock, and a second possibly benign lesion
at 7 o’clock. A Magenetic Resonance (MR) image of the patient is shown in Figure 2. The microwave
images obtained from each imaging algorithm are shown in Figure 3 and the analysis of each image is
presented in Table 2.
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Figure 2. MRI scan of Patient 1 (from [24]): (a) saggital view; and (b) coronal view. For Figure 2, IEEE
License received. License number 4274890619942.

Table 2. Summary of the analysis of Patient 1 microwave images.

Imaging
Algorithms ROI CI-ROI

Present in MI?
SMR
(dB)

FWHM
(mm)

Algorithms
Rank

DAS
CI Malignant lesion (R1) Yes 23.04 32.57

4CI Benign lesion (R2) Yes 21.32 31.19
CI Fibroglandular concentration (R3) Yes 21.39 36.07

IDAS
CI Malignant lesion (R1) No - -

-CI Benign lesion (R2) Yes 49.92 36.07
CI Fibroglandular concentration (R3) No - -

CFDAS
CI Malignant lesion (R1) Yes 25.80 27.14

2CI Benign lesion (R2) Yes 29.55 17.23
CI Fibroglandular concentration (R3) Yes 27.16 23.62

DMAS
CI Malignant lesion (R1) Yes 39.60 20.04

1CI Benign lesion (R2) Yes 36.27 23.22
CI Fibroglandular concentration (R3) Yes 37.82 17.55

CRDAS
CI Malignant lesion (R1) Yes 23.88 31.82

3CI Benign lesion (R2) Yes 27.34 29.20
CI Fibroglandular concentration (R3) No - -

RCB

CI Malignant lesion (R1) No - -

-CI Benign lesion (R2) No - -
CI Fibroglandular concentration (R3) No - -
MI HI region near to chest wall (R4) - 31.79 15.60

Figure 2. MRI scan of Patient 1 (from [24]): (a) saggital view; and (b) coronal view. For Figure 2, IEEE
License received. License number 4274890619942.

Table 2. Summary of the analysis of Patient 1 microwave images.

Imaging
Algorithms ROI CI-ROI Present

in MI?
SMR
(dB)

FWHM
(mm)

Algorithms
Rank

DAS
CI Malignant lesion (R1) Yes 23.04 32.57

4CI Benign lesion (R2) Yes 21.32 31.19
CI Fibroglandular concentration (R3) Yes 21.39 36.07

IDAS
CI Malignant lesion (R1) No - -

-CI Benign lesion (R2) Yes 49.92 36.07
CI Fibroglandular concentration (R3) No - -

CFDAS
CI Malignant lesion (R1) Yes 25.80 27.14

2CI Benign lesion (R2) Yes 29.55 17.23
CI Fibroglandular concentration (R3) Yes 27.16 23.62

DMAS
CI Malignant lesion (R1) Yes 39.60 20.04

1CI Benign lesion (R2) Yes 36.27 23.22
CI Fibroglandular concentration (R3) Yes 37.82 17.55

CRDAS
CI Malignant lesion (R1) Yes 23.88 31.82

3CI Benign lesion (R2) Yes 27.34 29.20
CI Fibroglandular concentration (R3) No - -

RCB

CI Malignant lesion (R1) No - -

-CI Benign lesion (R2) No - -
CI Fibroglandular concentration (R3) No - -
MI HI region near to chest wall (R4) - 31.79 15.60

The image produced with DAS (Figure 3a) shows three responses R1, R2 and R3. The dominant
response R1 at around the 5 o’clock position in the coronal slice corresponds to the location of the
malignant lesion. The second response R2 near to the 7 o’clock radian corresponds to the benign lesion,
and the third response R3 at approximately 11 o’clock corresponds to the fibroglandular concentration.

The image obtained with the IDAS algorithm shows only one response R2, which is dominant
in the image. The dominant response corresponds to the location of the benign lesion. The other
two responses R1 and R3 are low in intensity and are not clearly visible in the image. The CF-DAS
algorithm also showed three responses with a dominant response R2 at the location of the benign lesion.
The response R1, which corresponds to the malignant lesion is also present in the image. However,
the intensity is much lower than both R2 and R3. The DMAS image shows all three responses.
The location of the all three responses in the DMAS image are consistent with the DAS image, and are
also consistent with the clinical information. The CR-DAS shows two responses, R1 and R2, where R2
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is the dominant response, which corresponds to the benign lesion. The dominant response R4 in the
RCB image is closer to the skin and does not correspond to any of the responses identified in images
produced with other algorithms.

Sensors 2018, 18, 0 9 of 21

(a) DAS (b) IDAS

(c) CF-DAS (d) DMAS

(e) CR-DAS (f) RCB

Figure 3. Microwave images of Patient 1 for a range of different imaging algorithms.

The image produced with DAS (Figure 3a) shows three responses R1, R2 and R3. The dominant
response R1 at around the 5 o’clock position in the coronal slice corresponds to the location of the
malignant lesion. The second response R2 near to the 7 o’clock radian corresponds to the benign lesion,
and the third response R3 at approximately 11 o’clock corresponds to the fibroglandular concentration.

Figure 3. Microwave images of Patient 1 for a range of different imaging algorithms.
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In terms of image quality, the IDAS, CF-DAS and CR-DAS have improved the SMR of R2 when
compared to DAS, where R2 corresponds to the benign lesion. The DMAS algorithm has improved the
SMR of all lesions. All algorithms have less average clutter compared to the DAS algorithm. However,
DMAS has not only much less average clutter than all other algorithms but the dominant response
also corresponds to the location of the malignant lesion, with a much higher SMR value than the SMR
achieved by the DAS algorithm. DMAS also has consistent locations of all three responses with the
DAS image and clinical information. The presence of a dominant scatterer near the skin in the RCB
image indicates that the RCB has most likely enhanced early-time clutter.

Table 2 summarises the detection and the image quality metrics computed for each algorithm.
The algorithms are ranked based on the detection of a malignant tumour and the SMR of the malignant
tumour. DMAS has detected the malignant tumour with the highest SMR compared to all other
algorithms. Therefore, it is ranked 1. The IDAS and RCB have failed to detect the malignant tumour.
Hence, these algorithms have not been considered for ranking.

4.2. Patient 2

The mammogram of this patient reported a fibroadenolipoma of several centimetres in diameter,
in the inner lower quadrant of the left breast (Figure 4). Fibroadenolipoma is a benign lesion formed
with fibrous, glandular and fatty tissues encapsulated in a thin layer of connective tissue.

Sensors 2018, 18, 0 10 of 21

The image obtained with the IDAS algorithm shows only one response R2, which is dominant
in the image. The dominant response corresponds to the location of the benign lesion. The other
two responses R1 and R3 are low in intensity and are not clearly visible in the image. The CF-DAS
algorithm also showed three responses with a dominant response R2 at the location of the benign lesion.
The response R1, which corresponds to the malignant lesion is also present in the image. However, the
intensity is much lower than both R2 and R3. The DMAS image shows all three responses. The location
of the all three responses in the DMAS image are consistent with the DAS image, and are also consistent
with the clinical information. The CR-DAS shows two responses, R1 and R2, where R2 is the dominant
response, which corresponds to the benign lesion. The dominant response R4 in the RCB image is
closer to the skin and does not correspond to any of the responses identified in images produced with
other algorithms.

In terms of image quality, the IDAS, CF-DAS and CR-DAS have improved the SMR of R2 when
compared to DAS, where R2 corresponds to the benign lesion. The DMAS algorithm has improved
the SMR of all lesions. All algorithms have less average clutter compared to the DAS algorithm.
However, DMAS has not only much less average clutter than all other algorithms but the dominant
response also corresponds to the location of the malignant lesion, with a much higher SMR value than
the SMR achieved by the DAS algorithm. DMAS also has consistent locations of all three responses
with the DAS image and clinical information. The presence of a dominant scatterer near the skin in the
RCB image indicates that the RCB has most likely enhanced early-time clutter.

Table 2 summarises the detection and the image quality metrics computed for each algorithm.
The algorithms are ranked based on the detection of a malignant tumour and the SMR of the malignant
tumour. DMAS has detected the malignant tumour with the highest SMR compared to all other
algorithms. Therefore, it is ranked 1. The IDAS and RCB have failed to detect the malignant tumour.
Hence, these algorithms have not been considered for ranking.

4.2. Patient 2

The mammogram of this patient reported a fibroadenolipoma of several centimetres in diameter,
in the inner lower quadrant of the left breast (Figure 4). Fibroadenolipoma is a benign lesion formed
with fibrous, glandular and fatty tissues encapsulated in a thin layer of connective tissue.

Figure 4. Mammogram of Patient 2 (from [24]). For Figure 4, IEEE License received. License number
4274890619942.

The microwave images of this patient are shown in Figure 5, and the analysis of the images
is summarised in Table 3. The DAS image (Figure 5a) shows several responses in coronal slice.

Figure 4. Mammogram of Patient 2 (from [24]). For Figure 4, IEEE License received. License number
4274890619942.

The microwave images of this patient are shown in Figure 5, and the analysis of the images is
summarised in Table 3. The DAS image (Figure 5a) shows several responses in coronal slice. However,
the dominant response R1 is observed in the lower inner quadrant of the breast and is consistent with
the clinical information. The dominant response in the IDAS image is closer to the chest wall and does
not correspond to any known lesion in the breast. Similarly, the dominant response in the CF-DAS
image is located in the lower outer quadrant and does not correspond to the clinically identified lesion.
Similar to the DAS image, the DMAS image shows the dominant response in the lower inner quadrant
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of the breast. The CR-DAS has also produced an image that is similar to the DAS image, in terms of
the location of the dominant response R1. The dominant response in the RCB image is observed below
the nipple and does not correspond to the known location of the fibroadenolipoma.
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However, the dominant response R1 is observed in the lower inner quadrant of the breast and is
consistent with the clinical information. The dominant response in the IDAS image is closer to the
chest wall and does not correspond to any known lesion in the breast. Similarly, the dominant response
in the CF-DAS image is located in the lower outer quadrant and does not correspond to the clinically
identified lesion. Similar to the DAS image, the DMAS image shows the dominant response in the
lower inner quadrant of the breast. The CR-DAS has also produced an image that is similar to the DAS
image, in terms of the location of the dominant response R1. The dominant response in the RCB image
is observed below the nipple and does not correspond to the known location of the fibroadenolipoma.
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(e) CR-DAS (f) RCB

Figure 5. Microwave images of Patient 2 for a range of different imaging algorithms.Figure 5. Microwave images of Patient 2 for a range of different imaging algorithms.
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The images produced with the DAS, DMAS and CR-DAS are similar in terms of location of the
dominant response and are also consistent with the clinical information. However, both the CR-DAS
and the DMAS provide an improved SMR of the dominant response compared to the DAS algorithm,
with the best SMR achieved with the DMAS algorithm. The IDAS, CF-DAS and the RCB algorithms
suppress the average clutter in the images. However, the location of the dominant response is not
consistent with the known location of the fibroadenolipoma.

Table 3 summarises the detection and the image quality metrics computed for each algorithm.
The algorithms are ranked based on the detection of the benign lesion (the only CI-ROI) and the SMR
of the benign lesion. The DAS, DMAS and CR-DAS algorithms have detected the benign lesion, with
DMAS providing highest SMR. Therefore, it is ranked first. The IDAS, CF-DAS and RCB algorithms
have not detected the lesion and therefore have not been considered in the ranking.

Table 3. Summary of the analysis of Patient 2 microwave images.

Imaging
Algorithm ROI CI-ROI Present

in MI?
SMR
(dB)

FWHM
(mm)

Algorithm
Rank

DAS CI Benign lesion (R1) Yes 26.41 13.60 3

IDAS
CI Benign lesion (R1) No - - -
MI HI region close to the chest wall (R2) - 59.56 5.00

CFDAS
CI Benign lesion (R1) No - - -
MI HI region at the lower outer

quadrant of the breast (R3) - 35.48 10.72

DMAS CI Benign lesion (R1) Yes 45.66 8.78 1

CRDAS CI Benign lesion (R1) Yes 30.06 13.34 2

RCB
CI Benign lesion (R1) No - - -
MI HI region below the nipple (R4) - 38.03 6.96

4.3. Patient 3

The MRI report of this patient showed enhancements from the 2 o’clock to 6 o’clock
radians, and a focal mass located near the nipple (Figure 6). The mammogram showed extensive
microcalcifications around the 3 o’clock position. The patient was later diagnosed with the Invasive
Ductal Carcinoma (IDC) of size 14 cm × 2 cm × 2 cm in the upper outer quadrant of the breast.
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The microwave images of this patient are shown in Figure 7. The analysis of each image is
presented in Table 4. The DAS image shows two responses R1 and R2 near the nipple. These responses
may correspond to a focal mass reported in the MRI report. The IDAS image does not show the
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The microwave images of this patient are shown in Figure 7. The analysis of each image is
presented in Table 4. The DAS image shows two responses R1 and R2 near the nipple. These responses
may correspond to a focal mass reported in the MRI report. The IDAS image does not show the
responses R1 and R2 previously observed in the DAS image. The dominant response, R3, in the IDAS
image can be observed at approximately 3 o’clock (in the coronal view) and may correspond to the
IDC. The CF-DAS image does show two responses R1 and R2 near the nipple. However, the dominant
response R4 is displaced compared to the DAS image. The DMAS image also shows two responses
R1 and R2, as previously observed in the DAS image. The CR-DAS shows a dominant response R5

at approximately 4 o’clock in the lower outer quadrant of the breast and does not correspond to any
clinically identified lesion. The RCB image is similar to the CF-DAS image in terms of the dominant
response location, but it only shows a single dominant response, R4. The image produced with the
IDAS has a dominant response at 3 o’clock, where it can possibly correspond to the IDC. The images
obtained with the DAS, CF-DAS, DMAS and the RCB algorithms show responses near the nipple.
As described earlier, these responses may correspond to the focal mass reported in the MRI. The images
produced by DAS and DMAS are similar in terms of dominant response location, but DMAS has
higher SMR of the dominant response and demonstrates better clutter suppression. Except IDAS, none
of these algorithms have detected the IDC regions, as none of the dominant responses correspond to
the IDC location.

Table 4 summarises the detection and the image quality metrics computed for each algorithm.
The IDAS algorithm may have detected the IDC and also has shown the highest SMR. Therefore,
IDAS has been ranked first. The other algorithms (DAS, CF-DAS, DMAS, CR-DAS and RCB) have
not detected the IDC but they have shown the presence of the focal mass, which was reported in MRI.
Therefore, the ranking of other algorithms has been based on the detection of the focal mass and the
SMR of the focal mass. Again, DMAS has detected the presence of the focal mass with the highest
SMR, and therefore has been ranked second.

Table 4. Summary of the analysis of Patient 3 microwave images.

Imaging
Algorithm ROI CI-ROI Present

in MI?
SMR
(dB)

FWHM
(mm)

Algorithm
Rank

DAS
CI Malignant tumour No - -

4CI Focal mass (R1) Yes 28.38 17.11

MI HI region near to the nipple (R2).
Probably part of the focal mass. 24.62 20.15

IDAS
CI Malignant tumour (R3) Yes 58.74 5.74

1CI Focal mass (R1) No - -

CFDAS
CI Malignant tumour No - -

3CI Focal mass (R1) Yes 38.89 11.35
MI HI region near to the nipple (R4). - 43.89 11.05

DMAS
CI Malignant tumour No - -

2CI Focal mass (R1) Yes 52.11 11.58

CRDAS
CI Malignant tumour No - -

-CI Focal mass (R1) No - -
MI HI region at 4’o clock (R5) - 30.75 20.92

RCB
CI Malignant tumour No - -

-CI Focal mass (R1) No - -
MI HI region near to the nipple (R4) 56.78 9.06
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Figure 7. Microwave images of Patient 3 for a range of different algorithms.

4.4. Patient 4

The mammogram and the ultrasound report showed a lesion of 11 mm × 7 mm in size at the
10 o’clock position in the left breast. The lesion was later found to be benign with fat necrosis. Figure 8
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4.4. Patient 4

The mammogram and the ultrasound report showed a lesion of 11 mm × 7 mm in size at the
10 o’clock position in the left breast. The lesion was later found to be benign with fat necrosis. Figure 8
shows the microwave images produced with all imaging algorithms, and the analysis of the microwave
images is presented in Table 5.

The DAS images shows a dominant response R1 at a location that could possibly correspond to the
location of the lesion. Several other responses with similar high intensities can also be observed in the
DAS image. The IDAS image shows the dominant response R2 at a location that does not correspond
to the lesion location. The response R2 is also dominant in the CF-DAS image. The R1 lesion can also
be observed in the CF-DAS image, but it is relatively weaker in comparison to R2. The DMAS image
shows the dominant response near to the 10 o’clock position, as was previously observed in the DAS
image. The dominant response R3 in the CR-DAS image is located closer to the chest wall and does
not correspond to any clinically detected lesion. Similar to IDAS and CF-DAS, the RCB image shows
dominant response R2 that does not correspond to the clinically detected lesion. The DAS and the
DMAS images are similar in terms of location of the dominant response. However, the DMAS image
has much less clutter than the DAS image. DMAS also provides an improved SMR for the dominant
response. In comparison, the IDAS, CF-DAS and RCB images also have much less clutter and a higher
SMR of the dominant responses when compared to DAS. However, the dominant response location is
inconsistent with the location of the lesion for these three algorithms. The presence of the dominant
response closer to the chest wall in the CR-DAS image suggests that CR-DAS has enhanced the clutter
as this undesired response does not appear in the images produced with any other algorithm.

Table 5 summarises the detection and image quality metrics computed for each algorithm. DAS
and DMAS are the only algorithms that have shown the presence of the benign lesion, with DMAS
providing the highest SMR value. The other algorithms have not detected the lesion and therefore
have not been considered in the rankings.

Table 5. Summary of the analysis of Patient 4 microwave images.

Imaging
Algorithm ROI CI-ROI Present

in MI?
SMR
(dB)

FWHM
(mm)

Algorithm
Rank

DAS CI Benign lesion (R1) Yes 22.04 25.40 2

IDAS
CI Benign lesion (R1) No - - -
MI HI region near to 2’o clock (R2) - 54.55 11.18

CFDAS
CI Benign lesion (R1) No - - -
MI HI region near to 2’o clock (R2) - 27.26 28.17

DMAS CI Benign lesion (R1) Yes 39.81 11.04 1

CRDAS
CI Benign lesion (R1) No - - -
MI HI region closer to the chest wall (R3) - 29.60 24.51

RCB
CI Benign lesion (R1) No - - -
MI HI region near to 2’o clock (R2) - 33.15 15.30
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Figure 8. Microwave images of Patient 4 for a range of different algorithms.

4.5. Patient 5

Patient 5 had a heterogeneously dense breast, as indicated by the mammography report. The report
also indicated a small concentration of fibroglandular tissue on the inner side of the breast and more
glandular tissue on the outer side. However, no breast disease was found. The microwave image

Figure 8. Microwave images of Patient 4 for a range of different algorithms.
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4.5. Patient 5

Patient 5 had a heterogeneously dense breast, as indicated by the mammography report.
The report also indicated a small concentration of fibroglandular tissue on the inner side of the breast
and more glandular tissue on the outer side. However, no breast disease was found. The microwave
image produced with the DAS (Figure 9a) algorithm shows a dominant response R1 near to the
8 o’clock position in the coronal slice. Other weaker responses can also be observed in the DAS image.
The dominant response in the image can be attributed to the concentration of fibroglandular tissues,
as mentioned in the mammography report. The IDAS image shows two high intensity responses.
The response R1 is the same response that was dominant in the DAS image. However, a second
response R2 has appeared near to 9 o’clock, and this response R2 is the dominant response in the
IDAS image. The CF-DAS and DMAS images show only one response, R1. With both CF-DAS and
DMAS, R1 is not only the dominant response but comparatively the intensity of the second response
R2 is much weaker. Both responses, R1 and R2, are present in the CR-DAS image, with R2 being the
dominant response. The dominant response R3 in RCB image does not correspond to any clinically
detected lesion.

Both CF-DAS and DMAS significantly improved the SMR of the dominant response R1. The higher
values of SMR indicate that both algorithms have suppressed clutter in the images. The analysis of
the images also indicates that both of the algorithms have not only suppressed the average clutter,
but the response R2 (that does not correspond to any clinically known region of interest) has also
been significantly reduced. The IDAS algorithm improves the SMR of the response R1 but it has
also improved the SMR of the response R2, which wasmuch lower in the DAS image. CR-DAS has
produced a similar image to IDAS by improving the SMR of R2 and reducing the SMR of R1. Finally,
RCB exhibits high intensity regions that are not consistent with images produced with other algorithms.
Table 6 summarises the detection and image quality metrics computed for each algorithm. There
was no tumour present in this patient and the only CI-ROI in this patient was a concentration of
fibroglandular tissues. Most algorithms have indicated the presence of a fibroglandular concentration,
with the exception of RCB. DMAS provides the highest SMR and has been ranked first in Table 6.

Table 6. Summary of the analysis of Patient 5 microwave images.

Imaging
Algorithm ROI CI-ROI Present

in MI?
SMR
(dB)

FWHM
(mm)

Algorithm
Rank

DAS CI Fibroglandular concentration (R1) Yes 28.20 17.11 4

IDAS
CI Fibroglandular concentration (R1) Yes 48.65 8.18

2MI HI region near to 9 o’ clock (R2) - 49.15 9.49

CFDAS CI Fibroglandular concentration (R1) Yes 34.88 14.14 3

DMAS CI Fibroglandular concentration (R1) Yes 49.37 10.49 1

CRDAS
CI Fibroglandualar concentration (R1) Yes 23.61 20.80

5MI HI region near to 9 o’clock (R2) - 25.03 27.77

RCB
CI Fibroglandular concentration (R1) No - - -
MI HI region near to 6 o’clock (R3) - 30.72 12.04
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Figure 9. Microwave images of Patient 5 for a range of different algorithms.

5. Discussion

Analysis of the microwave images produced with a variety of imaging algorithms (shown
in Figures 3–9) indicates that most algorithms demonstrate better background clutter suppression
compared to DAS. The IDAS provides the highest SMR value in most cases compared to all other
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5. Discussion

Analysis of the microwave images produced with a variety of imaging algorithms (shown
in Figures 3–9) indicates that most algorithms demonstrate better background clutter suppression
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compared to DAS. The IDAS provides the highest SMR value in most cases compared to all other
algorithms. However, the responses improved by IDAS often did not correspond to the actual lesion
locations (e.g., in case of Patient 1 and Patient 2). Similarly, CF-DAS also provided better clutter
suppression, as indicated by an improved average SMR, but the location of dominant responses were
found to be inconsistent with the clinical reports. Both of these algorithms improve the dominant
response based on the estimated coherence of the responses. However, the coherence metrics for IDAS
and CF-DAS may reward responses from non-lesion regions within the breast.

DMAS provided the second highest average SMR value. This indicates a comparable clutter
suppression to IDAS, and significantly better than DAS. The location of the dominant responses
in DMAS images were consistent with the DAS images, as well as the actual location of lesions
reported in clinical reports. In comparison to DAS, DMAS improved the SMR by 44%. The improved
performance of the DMAS algorithm can be attributed to its ability to virtually increase the number
of measurements, while improving the coherence of responses, using pairing multiplication. Both
CR-DAS and RCB performed poorly across all patients in terms of clutter suppression and particularly
in terms of the locations of the dominant responses. RCB is known to suffer performance degradations
in the presence of coherence interferences [35]. Therefore, the poor performance of RCB can be
attributed to the presence of multiple coherent responses and the heterogeneity of the breast. Both
CR-DAS and RCB often enhanced the residual clutter from the preprocessing of the signals resulting
in incorrect localisation.

It should also be noted that both DAS and DMAS detected a dominant response in the case of
Patient 5, even though there was no disease present. This would have resulted in a false-positive
detection in the absence of a mammogram. A clear distinction between true-positive and false-positive
is a challenge for CMI, which requires further investigations. A number of methods can be employed
to define a criterion to reject false-positives. These include comparison of responses from left and right
breasts as proposed in [24] and classification of responses into normal and malignant based on the
magnitude and shape of target responses [36]. However, large scale clinical studies are required to
gather enough data for the development of classification methods to reject false-positive detection.

6. Conclusions

In this study, various data independent as well as data adaptive algorithms for confocal microwave
breast imaging were applied to patient data. The algorithms were applied in monostatic configuration,
however, the relative performance of the algorithms in multistatic configuration is expected to be same.
The patient data were obtained from the first patient trials conducted at the University of Calgary.
The patients were scanned with the TSAR prototype for microwave imaging, as well as with X-ray
mammography and MRI to aid in the interpretation of microwave images.

Results from this study indicate that the conventional DAS is able to detect most malignancies.
However, a significant amount of clutter can be observed in the images produced with DAS.
The coherence based imaging algorithms (IDAS and CF-DAS) improve the image quality by
suppressing the clutter; however, they often fail to correctly localise the malignancy, particularly in the
case of multiple lesions and heterogeneous breasts. CR-DAS does not provide significant improvements
when compared to DAS. The DA algorithm RCB suffers severe performance degradations in patients,
due to the presence of coherent interferences from multiple lesions and the heterogeneity of the breast.
DMAS is the only algorithm that consistently demonstrated better clutter suppression and accurate
localisation capability compared to all other algorithms.
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