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Abstract: The aim of structural identification is to provide accurate knowledge of the behaviour
of existing structures. In most situations, finite-element models are updated using behaviour
measurements and field observations. Error-domain model falsification (EDMF) is a multi-model
approach that compares finite-element model predictions with sensor measurements while taking into
account epistemic and stochastic uncertainties—including the systematic bias that is inherent in the
assumptions behind structural models. Compared with alternative model-updating strategies such
as residual minimization and traditional Bayesian methodologies, EDMF is easy-to-use for practising
engineers and does not require precise knowledge of values for uncertainty correlations. However,
wrong parameter identification and flawed extrapolation may result when undetected outliers occur
in the dataset. Moreover, when datasets consist of a limited number of static measurements rather than
continuous monitoring data, the existing signal-processing and statistics-based algorithms provide
little support for outlier detection. This paper introduces a new model-population methodology
for outlier detection that is based on the expected performance of the as-designed sensor network.
Thus, suspicious measurements are identified even when few measurements, collected with a range
of sensors, are available. The structural identification of a full-scale bridge in Exeter (UK) is used
to demonstrate the applicability of the proposed methodology and to compare its performance
with existing algorithms. The results show that outliers, capable of compromising EDMF accuracy,
are detected. Moreover, a metric that separates the impact of powerful sensors from the effects of
measurement outliers have been included in the framework. Finally, the impact of outlier occurrence
on parameter identification and model extrapolation (for example, reserve capacity assessment)
is evaluated.

Keywords: structural identification; model falsification; outlier detection; static measurements;
bridge load tests; reserve capacity

1. Introduction

Sensing in the built environment has shown the potential to improve asset management by
revealing intrinsic resources that can be exploited to extend the service life of infrastructure [1].
However, sensors on infrastructure often provide indirect information since effects, rather than causes,
are measured. Physics-based models are necessary to convert this information into useful knowledge
of as-built structure behaviour. Nonetheless, civil-engineering models involve uncertainties and
systematic biases due to their conservative, rather than precise, objectives. Therefore, great care is
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required when measurements are used to improve the accuracy of model predictions, especially when
the same models have been used for design.

In the field of structural identification, measurements are employed to update parameter values
affecting structure behaviour. Residual minimization, also known as model-calibration, consists of
adjusting model parameters to minimize the difference between predicted and measured values.
This approach is the most common data-interpretation technique and has been a research topic for
several decades [2–4]. However, several authors [5–7] have noted that while calibrated parameter
values may be useful for interpolation, they are usually inappropriate for extrapolation. Unfortunately,
extrapolation is needed for asset-management tasks such as the widening of bridge decks, retrofitting,
and the comparison of competing future-proofing scenarios.

Bayesian model updating is the most common population-based structural-identification
approach. This approach updates the initial knowledge in terms of probabilistic distributions of
parameters by including the probabilistic distribution of measurement observations. The accurate
identification of parameter values can be obtained using non-traditional implementations of
Bayesian model updating [8]. However, methodologies that require deep knowledge of conditional
probability and precise knowledge of statistical distributions, as well as their correlations, are not
familiar and easy-to-use for practising engineers, who ultimately assume professional responsibility
for decisions. Therefore, black-box approaches are not appropriate in such contexts. Other
population-based methodologies, including falsification approaches, which sacrifice precision for
accuracy, have provided accurate results when dealing with ill-posed problems and systematic
modelling uncertainties [9].

Error-domain model falsification (EDMF) [10] is an engineering-oriented methodology that
helps identify candidate models—models that are compatible with behaviour measurements—among
an initial model population. EDMF provides parameter identification without requiring precise
knowledge of levels of uncertainty correlations. Engineers simply define model uncertainties by
providing upper and lower bounds for parameter values and model accuracy. First, the initial model
population is generated; then, falsification methods are employed to detect and reject wrong models
whose predictions are not compatible with measurements. Models that represent the real behaviour
with a defined confidence are accepted and stored in the candidate model set (CMS).

The EDMF performance in identifying parameter values depends on factors such as the adopted
sampling approach to generate the initial model population, the selection of relevant parameters,
and the sensor configuration. An adaptive EDMF-compatible sampling approach that is able to
outperform traditional sampling techniques has been recently proposed in Reference [11]. Some
algorithms have been proposed to maximise the identification performance of sensor configurations
by reducing the number of candidate models [12–14].

A basic hypothesis of all structural-identification methodologies is that measurement datasets do
not include wrong data. Anomalous values in measurements, which are often called outliers, can occur
due to faulty sensors or unexpected events during the monitoring process [15]. From a statistical point
of view, there are several methods to identify outliers. If they are taken to be observations that are
very far from other observations, data mining techniques can be employed for their detection [16,17].
However, outliers may seem to occur because of model deficiencies in the model classes [18].

In the field of damage detection, the presence of even a small number of wrong measurements or
missing data reduced the performance of most algorithms [19,20]. Moreover, environmental variability
and operational influence can affect model features in different ways, thus, leading to incorrect damage
detection [21]. A comparison of methods to identify outliers and replace wrong measurement values
in signal processing was proposed in Reference [22]. The solutions applicable to the measurement
datasets affected by missing data can be found in References [23,24]. Additionally, a methodology that
unifies data normalization and damage detection through the identification of measurement outliers has
been proposed in Reference [25]. However, methodologies that are designed for detecting anomalies in
continuous measurement contexts such as those described in References [26,27] have not been found
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to be suitable to examine datasets that consist of non-time-dependent measurements (for example,
measurements of changes in stress, rotation, and displacement under static load testing). Such static
measurements have been the most commonly used measurement strategies for large civil infrastructure
since they are informative, they are easily comparable to code requirements, and they are the least costly.
Effective support to analyse and validate sparse static measurements for outliers is currently unavailable.

In structural identification, the presence of outliers reduced the performance of current methods
in terms of identification accuracy and prediction reliability. In Bayesian model updating, the classes
of methods for outlier detection were proposed. The main two classes were based respectively on
probabilistic measures such as posterior probability density function of errors [28] and L1 or Chi-square
divergences [29]. Heavy-tailed likelihood functions such as Student’s t distribution or a combination
of Normal and Student’s t distribution [30] have been employed for robust parametric estimations.
Another class of methods treats outliers by assuming an outlier generation model, although, in practical
applications, the information required to build such a model has often been unavailable [31].

Pasquier and Smith in [32] proposed an outlier-detection framework for EDMF, which is based on
a sensitivity analysis of the CMS, with respect to sensor removal from the initial set. Model falsification
was carried out iteratively while measurements provided by sensors were removed one at a time
for any load case and the corresponding variations in CMS populations were noted. If anomalous
high values of variation were obtained, then the measurement data was removed from the dataset.
This framework represented only a semi-quantitative method for performing the outlier detection
task as no rational definition of limits for CMS variations was proposed. As a result, sensors with the
capability to falsify several model instances risked detection as outliers.

This paper presents a new outlier-detection framework that is compatible with population
approaches such as EDMF. The proposed strategy is based on a metric used to evaluate the
expected performance of sensor configurations that are often employed to optimize sensor placement.
Additionally, a context metric that separates the impact of powerful sensors from the effects of
measurement outliers has been included in the framework. The new approach is, therefore, suitable to
analyse data sets that consist of sparse non-time-dependent measurements and overcomes limitations
that characterise existing outlier-detection methodologies.

The remainder of the paper is organised as follows. Section 2 contains background information
on EDMF and the proposed framework for outlier detection. In Section 3, the results of a full-scale case
study are presented. Finally, the advantages and limitations of the proposed method are discussed.

2. Materials and Methods

2.1. Background—EDMF

Error-domain model falsification (EDMF) [10] is a recently developed methodology for structural
identification in which the finite-element (FE) model predictions are compared with measurement data
in order to identify plausible model instances of a parameterized model class. A model instance is
generated by assigning unique combinations of parameter values to a model class g(·), which consists
of an FE parametric model including characteristics such as material properties, geometry, boundary
conditions, and actions.

Let Ri be the real response of a structure—unknown in practice—at a sensor location i, and yi
be the measured value at the same location. The model predictions at location i, gi(θ), are generated
by assigning a vector of parameter values θ to the selected FE model class. Model uncertainty Ui,g
and the measurement uncertainty Ui,y are estimated and linked to the real behaviour using the
following equation:

gi(θ) + Ui,g = Ri = yi + Ui,y ∀i ∈
{

1, . . . , ny
}

, (1)

where ny is the number of measurement locations. The terms in Equation (1) can be rearranged and
the two sources of uncertainty (Ui,g and Ui,y) can be merged in a unique term Ui,c, thus, leading to the
following relationship:
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gi(θ)− yi = Ui,c. (2)

In Equation (2), the difference between a model prediction and a measured value at location i, is
referred to as the residual ri = gi(θ)− yi.

Measurements errors Uy includes sensor accuracy—based on the manufacturing specifications
and site conditions—and the measurement repeatability that is usually estimated by conducting
multiple series of tests on site. The model–class uncertainty source Ug, which is often dominant over
Uy, is estimated using engineering judgment, technical literature, and local knowledge. Since a limited
number of parameters can be sampled to generate the model class, an additional error—estimated
using stochastic simulations—is often included in Ug.

Plausible behaviour models are selected by falsifying those for which residuals exceeds the
thresholds boundaries that are defined in the uncertainty domain (that is, the error domain). Being a
falsification approach, EDMF initially requires that a set of model instances is generated by assigning
parameter values to the model class. Then, the threshold bounds are defined at each sensor location as

the shortest interval
[
ulow, uhigh

]
that contains a probability equal to Φ

1/ny
d , using the following equation:

Φ
1/ny
d =

∫ ui,high

ui,low

fUc,i (uc,i)duc,i ∀i ∈
{

1, . . . , ny
}

, (3)

where fUc(uc) is the combined probability density function at each sensor location, while the confidence
level Φd is adjusted using the Sidák correction to take into account the simultaneous use of multiple
measurements to falsify model instances.

Models for which residuals are within the threshold bounds (ulow, uhigh) at each sensor location
are included in the candidate model set (CMS). The models for which residuals exceed these bounds,
at one or more sensor locations, are falsified and, therefore, rejected.

When a candidate model set is identified, the prediction tasks involve using the CMS to assess
the reserve capacity of the structure. Predictions Qj at locations j are given by

Qj = gj(θ
′′ ) + Uj,g, (4)

where θ′′ is a set of combinations of parameter values representing the CMS and Ug is the model
uncertainty. When all initial model instances generated are falsified, the entire model class is falsified.
This means that no model is compatible with the observations given the current estimation of model
and measurement uncertainties. Thus, it is usually a sign of incorrect assumptions in the model–class
definition and uncertainty assumptions. Complete falsification helps avoid the wrong identification of
parameter values and detects wrong initial assumptions, highlighting one of the main advantages of
EDMF compared with other methodologies [5]. However, the wrong falsification of the entire CMS
can occur because of the presence of outliers in the measurement data set.

The sensor configuration—designed according to the behaviour measurements to be
collected—has a high sensitivity to the precision and accuracy of EDMF. The approach described in
Reference [13] and extended in Reference [14], used simulated measurements to provide probabilistic
estimations of the expected number of candidate models obtained with a sensor configuration. The aim
was to find the sensor configuration that minimizes the expected number of candidate models. The
simulated measurements are generated based on the model instances adding a random value taken
from the combined uncertainties. Sensor locations were evaluated using respectively 95% and 50%
quantiles of the expected candidate-model-set size. However, the procedure is computationally
costly [33], because it requires the execution of the falsification procedure for a large number of
simulated measurements and sensor locations. This issue has been acknowledged in References [34,35],
where the expected identification performance is used as a metric to evaluate the information gain of a
sensor configuration rather than being used as an objective function to be optimised.
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2.2. Methodology

This paper proposes a new framework to improve the robustness of EDMF against the presence
of anomalous values in measurement datasets and to detect flaws in the definition of the FE model
classes. Figure 1 shows the general EDMF framework for structural identification, in which specific
contributions introduced in this paper are highlighted by the shaded boxes.

The model–class validation is carried out by comparing predictions of the initial model population
with measurements of real behaviour. This check is performed before updating the parameter values
since the flawed model classes usually lead to wrong parameter identification. When an accurate
model class is used, the measurement data can be compared with model predictions and EDMF
identifies the ranges of the parameter values that explain the real behaviour. However, the presence of
the outliers in the measurement datasets may lead to incorrect results. Outlier detection is particularly
challenging when the measurement data consist of unique values collected under static conditions,
rather than signals obtained from continuous monitoring. The proposed methodology takes advantage
of the simulated measurements to compute the expected performance of a sensor network. Anomalous
situations can be detected by comparing the expected and actual performance of (i) each sensor
individually, and (ii) the entire sensor configuration. Sensors that are deemed to be suspicious are
removed. Finally, the CMS is computed using only reliable measurements. The proposed model–class
validation and outlier-detection methodology are described in detail in the next sections.

Interpolation tasks (that is, predicting at unmeasured locations) and, mostly, extrapolation
tasks (that is, assessment of reserve capacity) represent the ultimate aims of structural identification.
The extrapolation tasks are intrinsically more demanding since the fictitious parameter values do not
compensate for model–class errors [9]. The outlier occurrence and inaccurate model classes can lead to
wrong reserve-capacity assessments; thus, reiterating the importance of ensuring the robustness of
identification methodologies.
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2.2.1. Model–Class Validation

Model–class accuracy is checked by comparing prediction ranges that are computed using the
initial model population with measured values at each sensor location. A qualitative comparison
between the two model classes, namely MC1 and MC2, is shown in Figure 2.
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Figure 2. The model–class validation methodology. The model classes for which the prediction
intervals of the initial population do not include measured values at several locations may reveal flaws
in the model class definition, rather than the outliers in the measurement dataset.

Each vertical axis represents a sensor and the prediction ranges are depicted using interval bounds.
Measured values yi are included in the prediction intervals obtained using model class MC2 for all
locations i, while predictions of MC1 do not include the measured values for sensor S1, S2, and S4.
As a result, MC1 is unlikely to provide accurate explanations of the measured behaviour. In this
situation, engineers should revise the model class assumptions, for example, through collecting further
information during the inspection of the site. This iterative approach to structural identification is
described in Reference [29].

However, the situation depicted in Figure 2 may have alternative explanations. For example, the
measured value of sensor S4 is close to the lower bound of the prediction ranges for both model classes.
This suggests verifying that the initial ranges of behaviour parameters are sufficiently wide and that
an appropriate sample density has been achieved. Alternatively, the measurements can be far from
the prediction ranges due to the presence of many outliers in the dataset. The situation presumed in
this paper involves a limited amount of sensors since outliers typically amount to less than 20% of the
entire dataset [21].

2.2.2. Outlier Detection

Unlike continuous monitoring in which a large amount of data is collected over time, datasets
obtained during static tests often consist of a few measurements that are related to specific
static configurations. Even when the same test is performed multiple times—usually to assess
the measurement repeatability under site conditions—the amount of values collected from each
measurement is insufficient to carry out statistical analyses. Therefore, anomaly detection cannot be
performed by uniquely analysing the dataset.

Figure 3 outlines the framework that is proposed in this paper for outlier detection. In order
to detect suspicious measurements, first, a vector of ns

y simulating measurements ys
i (that is, 100,000
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measurements) is generated for each sensor location i by adding a random value of combined
uncertainty Ui,c to each model prediction gi(θ) in Equation (2), according to Equation (5).

ys
i = gi(θ)− rand(Ui,c) ∀i ∈

{
1, . . . , ny

}
. (5)

Then, using EDMF for each set of simulated measurements and the corresponding number of
candidate models in the CMS (that is, the candidate-model-set population #CMs) is recorded. This
number represents the expected dimension of the CMS population if a specific set of ys

i was used.
Assuming that an accurate model class g(·) is used and no outlier affects the dataset, the distribution
of the expected #CMs include the value that is obtained when the real measurement yk is used.
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Given a sensor k, three steps should be performed to ensure that the measured value yk is
plausible. In step 1, the cumulative density function (CDF) of #CMs, obtained using only the simulated
measurement for this sensor (ys

i=k), is plotted. The CDF is used to compute the cumulative probability
to observe the CMS population given by yk. A low probability value (for example, <5%) suggests that
yk is a suspicious measurement. In such a case, step 2 should be performed.

In step 2, two CDFs are computed: (i) one using the entire sensor network, and (ii) the second one
using the network without sensor k, which is omitted. The area in between the two CDFs represents
the uniqueness of information provided by sensor k and can be seen as the relative capacity of sensor k
to falsify model instances. The smaller the area, the lower the improvement of the EDMF performance
that results from including sensor k into the sensor configuration. When multiple sensors are affected
by suspicious measurements, step 1 reveals the sensors that should be removed simultaneously before
checking the sensor configuration again (step 3).

Figure 4 shows an example of the procedure to be completed in step 2. The CMS population
#CMs(A) is obtained by performing falsification without sensor k and using real measurement data.
The probability of observing a number of candidate models equal or greater than the #CMs, obtained
when real measurements are employed and sensor k is omitted, is available from the graph (point A).
The shaded area between the two CDFs for values of CMS populations lower than #CMs(A)—here
referred to as ∆ area—is identified and the maximum distance δmax, inside the ∆ area, can be measured.
The maximum distance δmax is computed within the ∆ area and it is not necessarily found at the same
location of A. Finally, the maximum expected variation of probability that is associated with sensor
k can be computed using δmax. This maximum expected variation is represented in Figure 4 by two
horizontal lines (that is, the dash-dot line passing through A and the continuous line at distance equal
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to δmax). The maximum distance δmax between the two CDFs can be a reasonable metric to define
whether a certain variation in the #CMs, which results from the inclusion of an additional sensor k into
the network, is plausible or suspicious—according to the expected performance of sensor k.

When sensor k is included into the network, two scenarios are possible: (i) a reduction of
#CMs—compared with #CMs(A)—is observed due to the additional information provided by sensor
k, or (ii) no variation of #CMs is observed. In the latter case, sensor k does not contribute to
improving the falsification performance of the network because of the redundancy of the current
sensor configuration. When no variation of #CMs is obtained, there is no interest in evaluating the
plausibility of measurements provided by sensor k since it does not affect the updating of the model.
Alternatively, when the #CMs obtained using the entire network is lower than the previous case,
the two situations depicted in Figure 4 by points B′ and B′′ can occur. If the reduction of #CMs is
lower than the maximum expected variation of the CMS population—as it occurs for #CMs(B′)—the
measurement provided by sensor k is deemed to be non-suspicious. Unexpected variations of #CMs,
such as for #CMs(B′′ ), are considered suspicious; therefore, sensor k is treated as an outlier.

Finally, in step 3, the sensor that is deemed to be an outlier is removed from the sensor
configuration and step 2 is performed iteratively until no suspicious data are found. Removing the
suspicious sensors is an effective solution to avoid false-negative identification since the CMS obtained
after excluding a sensor always includes the original CMS. Therefore, traditional outlier-correction
strategies are not needed.
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3. Results

3.1. Exeter Bridge Description

The Exeter Bascule Bridge (UK) has a single span of 17.3 m and was designed in 1972 to be lifted
in order to allow the transit of boats along the canal. The light-weight deck, which consists of a series
of flanked aluminium omega-shaped profiles, is connected to 18 secondary beams (type UB 533.210.82)
that are bolted to two longitudinal girders (type UB 914.305.289). The bridge has a total width of about
8.2 m and carries the carriageway and a footway. The North-bank supports are hinges, while, on the
South bank, the structure is simply supported. Two hydraulic jacks, which are activated during lifting
manoeuvres, are connected to the two longitudinal girders on the North-bank side.

A static load test was performed to collect the mid-span vertical displacements and strain
measurements at several locations. Figure 5 shows the side elevation and a view of the bridge during
the load test. Additional information about the Exeter Bascule Bridge can be found in Reference [36].
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3.2. Parameters and Modelling Uncertainties

Three parameters that influence the structural behaviour are selected for model updating, namely:
the equivalent Young’s modulus of the aluminium deck (θ1), the rotational stiffness of the North-bank
hinges (θ2), and the axial stiffness of the hydraulic jacks (θ3). The initial intervals for each parameter are
presented in Table 1. The bridge deck consists of aluminium planks with an omega-shaped cross-section
bolted to secondary beams. In the FE model, the deck has been modelled using a plate with the
equivalent thickness simply supported by secondary beams. Considering this simplification, a uniform
distribution with sufficiently large bounds was conservatively chosen to describe the initial knowledge
of this parameter. The values for the rotational stiffness cover the full range from a constrained to a
pinned support, in order to include potential effects due to the corrosion of bearings. The axial stiffness
of hydraulic jacks is used to simulate their contribution as additional load-carrying supports. The lower
bound for the axial stiffness is equivalent to assuming the two girders simply supported at the abutments.
The upper bound corresponds to the introduction of a semi-rigid support at jack connections.

Table 1. The initial ranges of the parameters to be identified.

Parameters Initial Intervals

θ1—Equivalent Young’s modulus of aluminium deck (GPa) [60; 80]
θ2—Rotational stiffness of bearing devices (log(Nmm/rad)) [8; 12]
θ3—Axial stiffness of hydraulic jacks (log(Nmm)) [3; 5]

An initial population consisting of 3000 instances is generated from the uniform distribution of
each parameter value using Latin hypercube sampling. Uncertainties associated with the FE model
class are defined as percentages that are applied to the mean values of the initial-model-set predictions.
The forms and magnitudes of the estimated uncertainties are reported in Table 2.

Table 2. The model–class uncertainty estimation.

Uncertainty Source Uncertainty Form Uncertainty Magnitude

FE model simplification (%) Uniform −5%; +20%
Mesh refinement (%) Uniform −1%; +1%

Additional (%) Uniform −2%; +2%

The main source of uncertainty due to FE model simplifications is not symmetric. All secondary
beams are perfectly fixed to the longitudinal girders, instead of having perfectly pinned connections.
Therefore, the FE model is actually stiffer than the real structure, thus, justifying the increment of the
model predictions up to 20%. However, assumptions such as the omissions of non-structural elements
(for example, barriers) could have the opposite effect, leading to a more flexible behaviour than the real
one. The latter omission has a smaller influence on the bending behaviour, thus, the model uncertainty
range is asymmetric. The bounds for this source of uncertainty have been defined using conservative
engineering judgments, as recommended in Reference [37].
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Typical uncertainties that relate to the FE method such as the mesh refinement and additional
uncertainties are estimated according to the technical literature. The mesh-refinement uncertainty
has been quantified through a convergence analysis, by increasing the mesh density until the model
response converged asymptotically and the prediction variations were lower than 1%. An analogous
practice is described in Reference [38]. Additional uncertainties help account for accidental omissions
and for the phenomena that, when taken individually, have a negligible impact. Finally, the
uncertainties have been initially reduced by site inspection, which also involved the checking of
element geometry. Values similar to those reported in Table 2 have been previously employed in
studies concerning full-scale bridges [32,39].

3.3. Sensor Configuration

The adopted sensor configuration consists of six strain gauges that are glued to the main girders
and a selected secondary beam. Additionally, a deflection target was installed on the East girder
at mid-span and a precision camera was used to record the vertical displacements. The sensor
configuration and the truck position are depicted in Figure 6.
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Uncertainties associated with the sensor configuration are reported in Table 3. The uncertainty
magnitudes are described as absolute values or percentages of measured values. The sensor accuracy
is provided by the manufacturer specifications while the measurement repeatability is estimated by
performing multiple measurements under site conditions. For strain gauges, the uncertainty also arises
from the imperfect alignment of gauges with respect to the longitudinal axes of girders and secondary
beams, which often results in the underestimation of real stresses. The imperfect bonding between
the strain gauges and elements may also influence strain measurements. These errors are assessed
using engineering judgments and the conservative ranges are selected for the uniform uncertainty
distribution. Further details on the uncertainty assessment can be found in Reference [40].

Table 3. The measurement uncertainty estimation.

Uncertainty Source Uncertainty Form Uncertainty Magnitude

Sensor accuracy

Camera (mm) Uniform −0.1; +0.1
Strain gauges (µε) Uniform −2; +2

Measurement repeatability

Camera (%) Gaussian µ = 0; σ = 1
Strain gauges (%) Gaussian µ = 0; σ = 1.5

Sensor installation

Strain gauges (%) Uniform −2%; +2%
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3.4. Results for Model–Class Validation

In order to perform the model–class validation, the two model classes depicted in Figure 7 are
generated. The initial model class involves typical design assumptions idealising the bridge as a frame
that is simply supported by four non-friction bearing devices. Assuming the structure geometry and
the elastic properties of steel to be well-known, the equivalent Young’s modulus of the aluminium
deck (θ1) is the only parameter to be identified.

The updated model class includes friction connections on the North-bank side of the bridge, the
two hydraulic jacks that are used for lifting, and the presence of a 10-mm gap between the base plates
of the main girders and the abutment at the South-West support. The presence of the gap was observed
during the visual inspection of the structure, confirming the iterative nature of structural identification.
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Figure 7. The model–class definitions: (a) the initial model class; (b) the updated model class.

The model–class validation described in Section 2.2.1 is performed and the results are presented
in Tables 4 and 5.

When the initial model class is employed (Table 4), the prediction ranges of the initial population
include the measured value at only one sensor location (that is, SG5) out of seven. Additionally,
at an few locations (for example, SG1, SG2, and SG6), the measurements are extremely far from the
prediction ranges. On the contrary, the observed behaviour of the bridge is captured by the updated
model class, which is intrinsically more detailed than the initial one. In Table 5, all the measurements
belong to the initial prediction ranges, which include the combined uncertainties.

Table 4. The initial model–class validation.

Prediction
Intervals

Deflection
(mm)

SG1
(¯”)

SG2
(¯”)

SG3
(¯”)

SG4
(¯”)

SG5
(¯”)

SG6
(¯”)

Minimum 7.7 23.2 111.5 0.8 12.1 48.5 227.9
Maximum 9.9 28.6 119.7 20.8 16.4 78.1 255.7

Measurement 6.8 4.3 1.8 21.7 17.7 73.8 83.5
Validation 7 7 7 7 7 3 7

3: The prediction intervals include the measurement. 7: the prediction intervals do not include the measurement.

Table 5. The updated model–class validation.

Prediction
Intervals

Deflection
(mm)

SG1
(¯”)

SG2
(¯”)

SG3
(¯”)

SG4
(¯”)

SG5
(¯”)

SG6
(¯”)

Minimum 1.0 −2.4 −2.7 0.5 12.2 48.8 −20.8
Maximum 13.2 71.3 107.0 23.5 18.0 80.5 267.9
Measurement 6.8 4.3 1.8 21.7 17.7 73.8 83.5
Validation 3 3 3 3 3 3 3

3: The prediction intervals include the measurement. 7: the prediction intervals do not include the measurement.
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3.5. Results for Outlier Detection

The detection of suspicious values in the measurement datasets is carried out according to the
two-step methodology presented in Section 2.2.2.

The analysis of each sensor is performed individually in step 1. In Figure 8, the CDFs of the CMS
populations computed using simulated measurements for the three most effective sensors (SG1, the
deflection camera, and SG2), are plotted. Then, the cumulative probability of observing the #CMs
obtained using the real measurement of each sensor (identified as a dot of the CDF) is computed.
A probability of 2% is obtained for sensor SG2, while the other sensors show probability values around
40%. The high falsification performance of sensor SG2 compared with the average of the sensor
network, suggests that this sensor provides suspicious data. The results for the remaining four sensors
(SG3 to SG6) are similar to those shown in Figure 8 for sensor SG1 and the deflection camera.

Although removing SG2 would be a simple solution, at the current stage, no information is
available on the relative falsification performance of sensor SG2. Therefore, further investigation is
necessary to avoid the risk of wrongly excluding effective sensors.
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Figure 8. The outlier-detection methodology showing: Step 1—for three sensors (SG1, the deflection
camera, and SG2), the cumulative density function (CDF) of #CMs, obtained using simulated
measurements (solid lines). The values of CMS population (#CMs) using real measurements
are indicated by the dashed lines and the corresponding probability values from the simulated
measurements are determined.

In step 2, the expected performance of each sensor is assessed and compared with the actual
values of falsification performance. In Figure 9a, Figure 10a, and Figure 11a, two CDFs are shown: one
(continuous line) using the entire sensor network, and the second one (dashed line) using the network
without sensor k. To help compute the maximum distance δmax, the difference between the CDFs is
represented in function of the expected #CMs using dotted lines and dashed areas above the x-axis in
Figure 9b, Figure 10b, and Figure 11b. Figure 9c, Figure 10c, and Figure 11c show, in greater detail,
the portions of interest of the CDFs. The CMS populations are computed using real measurements;
first, while sensor k is omitted #CMs(A), then, using the entire network #CMs(B). The values of the
cumulative probability for each condition (points A and B) are available from the corresponding CDFs.
Finally, δmax is used as a metric to define whether the variation in the #CMs—the horizontal distance
between A and B—is plausible or suspicious.

In Figure 9c, the contribution of sensor SG1 to the falsification performance of the network
is shown by the reduction of #CMs from 76 to 21. This variation can be explained by the expected
performance of SG1, which is estimated as a reduction of the cumulative probability of 7% (δmax = 0.07).
Since the observed reduction is lower than the expected one, the measurement provided by SG1 is
deemed to be plausible.
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Figure 9. The outlier detection: step 2. (a) CDFs of the expected #CMs using all sensors and the
network without SG1. (b) δmax is computed as the maximum distance between the two CDFs in the ∆
area. (c) The detail of the two CDFs and the outlier check.

Similarly, in Figure 10c, the falsification performance of the deflection measurement is analysed.
However, this sensor does not contribute to the falsification since no variation of #CMs is observed
and #CMs(A) is equal to #CMs(B). Therefore, the information provided by the deflection measurement
is redundant with respect to the current sensor configuration. Since the CDF computed using all
sensors is always above the CDF obtained when a sensor is removed from the network, point B is
located above point A in Figure 10c. In this situation, the computation of δmax is superfluous, since no
outliers can be detected using the presented methodology. When a redundant sensor is removed from
the network, the corresponding CDF is almost coincident with the CDF that is computed using the
entire network and low values of δmax are possible. However, since no variation of #CMs occurs, the
redundant sensors are not detected as outliers. For B to become a suspicious sensor, a variation of the
candidate model set using real measurements would need to be approximately 50% of the number of
candidate models of A (see point B’ in Figure 10). This illustrates the robustness of the method when
the difference between the two CDFs is small.
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Figure 10. The outlier detection: step 2. (a) CDFs of the expected #CMs using all sensors and the
network without the deflection measurement. (b) δmax is computed as the maximum distance between
the two CDFs in the ∆ area. (c) The detail of the two CDFs and the outlier check.
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The falsification performance of SG2 is analysed in Figure 11. In step 1, Sensor SG2 was detected
as a possible source of outliers because of its high falsification performance compared with the average
of the network. Figure 11c shows the reduction from #CMs(A) = 80 to #CMs(B) = 21 that occurs when
SG2 is included in the network. Such a variation cannot be justified by the reduction of the cumulative
probability by 4% (δmax = 0.04) since point B lies outside the δmax band. Therefore, the anomalous
measurement provided by SG2 should be treated as an outlier.

It is worth noting that a large variation of #CMs is not always connected to anomalous
measurements. For example, #CMs variations for sensor SG1 and SG2 are similar; however,
the expected reduction δmax for SG1 is almost twice the reduction for SG2. As a conclusion,
the metric introduced by the expected reduction δmax provides a rational support in evaluating
the CMS variations.
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Finally, in step 3, the sensor network is updated by removing sensor SG2 and step 2 is performed
again to ensure that no outlier remains. Figure 12 shows, for example, the outlier-detection check for
sensor SG1 when the updated sensor network is employed. Since no sensor provides suspicious
variations of #CMs, the updated sensor network is considered to be reliable and the CMS can
be computed.

For comparison, Figure 13 reports results that could be obtained by implementing the
outlier-detection strategy proposed in Reference [32]. The approach proposed by Pasquier et al.
requires that the falsification is carried out iteratively while measurements provided by sensors are
removed one at a time. The corresponding variations of #CMs are recorded and, in case of anomalous
high values of variation being obtained, the measurement is removed from the dataset. However,
when two or more sensors produce high variations of #CMs, it is hard to distinguish the powerful
sensors from those that are affected by the outliers. On the contrary, the methodology proposed here
clearly identifies the anomalous data source in sensor SG2.

Since sensor SG2 is considered to be an outlier, in the remainder of this paper, it is excluded from
the sensor configuration.
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iteratively. High variations reveal suspicious measurements, according to Reference [32].

3.6. Detection of Simulated Outliers

Simulated outliers are used in this section to test the proposed methodology. Table 6 presents a
range of noteworthy scenarios in which outliers have been generated by applying percentage variations
to real measurements or by replacing measured values with wrong data.

Table 6. The simulated outliers that replace the true measurement.

Scenario Sensor True Measurement Simulated Outlier #CMSs Detection

1 Deflection 6.79 mm +25% 56 3

2 Deflection 6.79 mm −20% 0 3

3 SG3 21.7 µε −20% 28 3

4 SG1 4.25 µε 1.3 µε 4 3

5 SG1 4.25 µε 18 µε 8 3

3 Indicates that the simulated outlier has been identified.
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In all the scenarios, the proposed methodology is able to detect the simulated outliers. In
scenario 2, a reduction of 20% of the true measurement leads to the complete falsification of the model
class, while in scenario 5, 8 candidate models are found despite the fact that the SG1 measurement
increased by about 4 times its original value. The outliers that cause complete falsification (#CMs = 0)
can be detected using the model–class validation presented in Section 2.2.1.

When the variations of #CMs that result from simulated outliers are analysed using the
methodology proposed in Reference [32], several issues are encountered. Figure 14 shows the results
corresponding to scenarios 1,3, and 5 in Table 6. Although the two sources of outliers show the
highest variation in scenarios 2 and 3, no guidance is provided regarding the other sensors that show
high variations. As a result, engineers may conservatively opt to remove all sensors that show high
variations, leading to a drastic reduction of the global identification performance.

In scenario 1, sensor SG6 clearly exhibits the highest variation of #CMs, when the outlier is
simulated in the deflection measurement. This results in the wrong identification of the outlier source.
Again, the variation of the CMS population alone is not a reliable metric to evaluate the plausibility of
the measurement data.
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4. Discussion

The presence of outliers in the measurement datasets can reduce the accuracy of the
structural-identification methodologies such as EDMF. Table 7 compares the identification results
obtained when the outliers replace the true measurements (scenarios 3 and 5) with the no-outlier
scenario. For example, in scenario 3, the presence of an outlier at sensor SG3 results in the wrong
falsification of plausible low values of θ1. Additionally, the outlier simulated in scenario 5 leads to a
wrong identification of the values for parameter θ3 (all values fall outside of the ranges found when
there is no outlier). The presence of the outliers can lead to unpredictable variations of identified
ranges for parameters and the number of candidate models. As a consequence, wrong extrapolations
can result when the outliers are not identified and removed.

Table 7. The updated values of parameters in the presence of undetected outliers.

Parameter Scenario: No Outlier Scenario: 3 Scenario: 5

θ1(GPa) (60.2; 79.8) (71.5; 79.8) (63.8; 74.8)
θ2(log(Nmm/rad)) (8.08; 11.94) (8.29; 11.91) (9.01; 10.16)

θ3(log(Nmm)) (4.28; 4.35) (4.29; 4.34) (4.46; 4.47)

The reserve capacity of an existing structure can be defined, for a defined limit state, as the ratio
between the design load—given by codes—and the as-built maximum loads—computed using models.
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In the model class, the test loads are replaced by design load configurations, in which all the relevant
safety factors are applied. The serviceability limit state (SLS) of stress control is investigated for the
Exeter Bascule bridge by checking that under characteristic design loads, the maximum Von Mises
stress in each element is lower than the yield strength ( fy = 345 MPa). A detailed description of the
procedure for the reserve-capacity assessment is available in Reference [41].

Table 8 provides a comparison of the serviceability of reserve-capacity assessments. The outlier
simulated in scenario 3 provides a small variation of the reserve capacity (around 1%). However, in
scenario 5, the unidentified outlier results in an overestimation of the reserve capacity by more than
10%. During extrapolation, which is the ultimate aim of structural identification, the consequences of
outlier occurrence are unpredictable. In conclusion, removing the outliers from the dataset is crucial to
ensure the accurate parameter identification and reliable model extrapolation.

Table 8. The serviceability-limit-state reserve-capacity assessments in the presence of undetected outliers.

Scenario SLS Reserve Capacity

No outlier 2.09
Scenario 3 2.07
Scenario 5 2.31

In this paper, it is assumed that the outliers usually amount to less than 20% of the entire
dataset [22]. Consequently, a unique outlier was expected from the adopted sensor configuration,
consisting of 7 sensors. Multiple outliers can occur when larger sensor networks are employed. If two
or more sensors are deemed to be suspicious when step 1 is performed, they should be temporarily
removed in step 2, to avoid the risk that they compensate each other. However, the identification
of several outliers in the dataset may result from the adoption of flawed model classes rather than
anomalous datasets. Both situations should be investigated.

The detected outliers are removed from the dataset and falsification is carried out again until no
suspicious values are found. The proposed methodology predicts the consequences of removing
sensors that provide plausible results from the sensor configuration. Therefore, the combined
uncertainties rather than measurement uncertainties are added to the model predictions to generate
simulated measurements. This ensures that real measurements are included in the ranges of the
simulated measurements generated using accurate model classes. Consequently, the plausible
measurements are not likely to be wrongly detected as outliers (false positive). However, if a false
positive occurs and the sensor is removed, the resulting CMS becomes larger, thus, including the true
model that would have been identified using sensors that were incorrectly removed.

The framework presented in this paper compares the expected and current performance of the
sensor configuration by mapping the effects that outliers have on the CMS. Therefore, data sets that
consist of sparse static measurements can be validated. A context metric (δmax) is used to evaluate the
effects of removing suspicious sensors from the current configuration, thus, allowing to distinguish
between powerful sensors from outliers. Finally, this approach outperforms existing methodologies
that have been previously applied to structural identification based on the EDMF approach.

The results presented in Sections 3.4 and 3.5 refer to the real measurements collected on site.
In Section 3.6, the five scenarios are designed to avoid presenting the trivial case, in which complete
falsification results from the presence of outliers, several times. This situation is presented only in
scenario 2. The outliers in redundant sensors are likely to be detected since δmax is small, while
the limitations related to the lack of redundancy in the sensor configurations are discussed below.
Therefore, the remaining four scenarios focus on the most powerful sensors available in the network.
Scenario 3 shows a case in which the algorithm proposed by Pasquier and Smith [32] leads to a
wrong detection. Scenario 5 was defined to discuss the effects of the undetected outliers on parameter
identification and reserve-capacity assessment. Scenario 4 was selected to demonstrate that the outliers
in sensor SG1 can be detected even when their magnitude is not as extreme as assumed in Scenario 5.
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Given the assumed uncertainty magnitudes, measurement variations lower than 20% may not be
considered suspicious by engineers.

The following limitations of the proposed framework are recognised. The sampling technique
adopted to generate the model population and the assessment of uncertainties influence identification
results and the generation of simulated measurements. Additionally, alternative approaches may
be employed to generate simulated measurements. Moreover, accurate parameter identification
and successful outlier detection are possible only when the reasonable model classes are adopted.
Model–class features and model uncertainties should always be verified through visual inspection and
iterative model–class updating when new information becomes available.

The environmental conditions under which the test is performed may affect the values of the
identified parameters. In the EDMF methodology, the environmental variability can be accounted for
by explicit modelling and the measurement of environmental effects, including additional sources
of uncertainties and by repeating the test multiple times in various conditions. The environmental
variability should not affect the outlier detection methodology since the analysis is based on the
variation of the CMS population when a sensor is removed from the network. While different test
conditions may provide varying CMS populations for points A and B, the relative variation of the
CMS population between the two points when a sensor is removed should not be affected.

Partial sensor redundancy is crucial to ensuring the robustness of the sensor configurations [42,43].
When very few sensors are employed, δmax increases to the point of accepting very large
variations in the number of candidate models. Consequently, outlier detection is unlikely since
the relative importance of each sensor determines the falsification performance. Therefore, suspicious
measurements may be accepted when there are very small numbers of sensors. Finally, understandably,
the likelihood of successfully detecting outliers depends on the magnitudes of uncertainty. Outlier
measurements close to the true value may be considered non-suspicious when modelling and
measurement uncertainties are high.

5. Conclusions

Population methods for structural identification are not robust when there are outliers in the
measurements. The proposed methodology, based on the expected performance of sensor identification,
helps reveal the outliers that compromise the accuracy of data interpretation. Compared with previous
algorithms, suspicious measurements are more efficiently checked using the information provided by
the entire sensor configuration. A metric that separates the impact of powerful sensors from the effects
of measurement outliers provides a useful tool for asset managers.
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