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Abstract: Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem
for the robotics research community. Previous researchers have attempted to solve this problem by
combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement
unit, and multiple camera systems. Although these approaches successfully estimate an unmanned
aerial vehicle location during landing, many calibration processes are required to achieve good
detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS
signal should be considered. To overcome these problems, we determined how to safely land
a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on
a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes
a convolutional neural network named lightDenseYOLO to extract trained features from an input
image to predict a marker’s location by visible light camera sensor on drone. Experimental results
show that our method significantly outperforms state-of-the-art object trackers both using and not
using convolutional neural network in terms of both accuracy and processing time.

Keywords: unmanned aerial vehicle; autonomous landing; real-time marker detection;
lightDenseYOLO; visible light camera sensor on drone

1. Introduction

The evolution of the self-driving vehicle is about to shift into overdrive thanks to the recent
advancements of computer vision and artificial intelligence. Companies such as Tesla, Google, Intel
and Amazon are spending billions of dollars to develop cutting-edge autonomous systems about
to transform how we think about transportation in the next decade. Autonomous unmanned aerial
vehicles (UAVs) and cars are receiving the most attention because their practicality in daily life. UAVs
have proved their usefulness in a variety of areas, especially for military purposes such as search and
rescue, monitoring, surveillance, as well as applications such as 3D reconstruction, transportation,
and artistic photography. However, most drones or UAVs are not truly autonomous and are operated
remotely by a human controller from the ground. Therefore, the next generation drone requires
a self-controlling function to fly in an unstructured environment and perform autonomous landing.
Recently, logistics company Matternet has announced a permanent autonomous drone network
that would fly lab samples like blood tests and other diagnostics between hospital facilities, clinics,
and labs [1]. Amazon Prime Air is the first drone delivery technology to receive online orders and ship
packages to customers within 30 min [2] but they have yet to determine how to deal with safety issues
such as controlling drones to navigate over GPS-denied regions and landing at precise locations.
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Our previous work attempted to solve the problem of autonomous drone landing by using
hand-crafted features extracted by a remote-marker-based tracking algorithm using a single visible
light camera, and we successfully tracked a marker at a height of 10 m [3]. However, it is difficult to
be apply when a drone is higher than 10 m because of the low resolution of the marker in the drone
camera image which is often the case with drone landing.

Many researchers are using deep-learning techniques to extract trained deep features [4]. They have
exhibited magnificent performance in many challenging tasks that traditionally depend on hand-crafted
features such as localization [5], monitoring [6,7], classification [8], human crowd detection [9],
self-stabilization [10,11], obstacle and crash avoidance [12–14], perception of forest or mountain
trails [15,16] and object tracking [17,18]. In this research, we introduce an enhanced method for
remote-marker-based tracking to exploit the trained features extracted from a proposed convolutional
neural network (CNN) named lightDenseYOLO and perform marker tracking at very long distances,
the furthest being 50 m. We also introduce a post-processing Profile Checker v2 algorithm to predict
marker direction and refine the predicted center made by lightDenseYOLO. Therefore, we can track the
location of a marker during the landing operation in a GPS denied environment at a very long distance.

The outline of the paper is organized as follows. In Section 2, we present recent works related
to autonomous landing methods for drones. In Section 3, we introduce our approach on visual
marker tracking algorithm with lightDenseYOLO. In Section 4, we compare tracking performances in
various environments including both the desktop computer and the Snapdragon 835 mobile hardware
development kit [19]. We conclude our research in Section 5.

2. Related Works

Previous research on vision-based autonomous drone landing can be categorized into passive and
active methods. Previous studies on passive methods have taken advantage of multiple camera sensors
distributed on the ground and sophisticated set ups for both the drone and ground environments
were required. Zhou et al. [20] attempted to solve the autonomous unmanned aerial vehicle (UAV)
landing problem by proposing a ground-based multisensory fusion system including a pan-tilt unit
(PTU), infrared camera, and distance-sensor based on ultra-wideband radar. Although this method
showed promise, the multisensory system requires a meticulous time-consuming calibration process.
A stereo ground vision-based system including two pan-tilt units was proposed by Tang et al. [21].
The aircraft position was detected by the Chan-Vese model-based object-detection algorithm [22] and
then updated by an extended Kalman filter [23] to enhance the localization accuracy. Recent work
by Yang et al. [24] showed accurate UAV landing performance in a GPS denied-environment using
a ground-based near infrared camera system. The ground system successfully tracked an infrared
laser lamp mounted on the nose of the UAV from a distance of 1 km. Although the above research has
shown remarkable tracking performance in urban areas at low altitude operations, setting up a ground
station with complicated equipment was still a problem.

Research on active methods has overcome these difficulties by using an on-board camera mounted
on a UAV to detect a safe region or marker on the ground to perform accurate landing. They can be
classified into marker-less-based and marker-based approaches. With respect to the former category,
Forster et al. proposed a method to capture images from a downward-facing camera to generate a 3D
terrain depth map, a secure area for landing was located by a landing spot detection algorithm [25].
While this method worked well in both indoor and outdoor scenarios, the depth estimation algorithm
was only tested at a low altitude of 5 m and was time-consuming. Gui et al. [26] proposed an algorithm
to estimate the relative position of a UAV and a runway to perform autonomous landing based on the
images captured from an infrared camera. Although this method successfully worked at both day time
and night time, it requires a complicated set-up of multiple infrared lamps on the runway, making it
impractical in narrow spaces.

To overcome the limitation of the marker-less approaches, several marker-based methods have
been researched. The marker center and direction are predicted from each input image to guide
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the drone to land at the marker central position with the correct orientation by utilizing extracted
hand-crafted features. Lin et al. [27] used a single downward-facing visible-light camera to track the
position of an H-pattern landing target for the autonomous landing operation. The line segments
were detected from binarized inputs to find the potential clustering of points containing the target.
A hexagon marker with a black background and several concentric white rings was proposed by
Lange et al. [28] to easily find the radius in pixel of the rings by the contour detection algorithm.
The distance between the target and UAV was estimated by the actual (known) radius in 3D space and
detected one in image of these rings based on intrinsic camera parameters.

Recently, many studies [29,30] used a fiducial marker such as an April Tag [31] as a landing target
to perform autonomous drone landing on a moving platform. While the fiducial April Tag marker is
robust to be detected in many difficult challenges such as low image resolution, severe rotation, heavy
occlusions and light variations, the detection range was limited to approximately 7 m [32]. Although
these studies successfully tracked the marker during the day, they would fail if the experiment were
to be conducted at night. In previous research [33], they also proposed the method for autonomous
landing of multirotor UAV based on the moving pad including April Tag marker. The fusion of inertial
measurement with the estimated pose was adopted to ensure a high sampling rate, and to increase
the maneuverability of the vehicle. Two filters were designed to perform the fusion, an extended H∞

(EH∞) and an extended Kalman filter (EKF). Although their accuracies were very high, their method
requires the information of inertial measurement. In addition, their experiments were done only in
indoor environments, and the height between the UAV and marker was limited (less than 5 m) in real
world experiment due to the characteristics of April Tag marker used in their method [33]. Therefore,
their method cannot be compared with our method of marker detection which is operated in outdoor
and at very long distance (50 m) between the UAV and marker.

Other researchers used a thermal imager to identify the marker for the night scenario [34,35].
The landing target actively emits infrared light to enhance the detection accuracy under low-light
conditions. However, most of the conventional drone systems include only a visible-light camera;
therefore, a drone carrying a thermal camera sensor was a compulsory requirement for these studies.
Viewing the problem from a different aspect, Polvara et al. exploited deep-trained features extracted
from a hierarchy of double-deep Q-networks [36]. This network acted like a high-level control policy
for navigating the UAV toward the marker in an indoor environment. However, there was a gap
between the indoor and outdoor environments.

To overcome previous researches limitations, we propose a long distance remote-marker-based
tracking algorithm based on lightDenseYOLO using a single visible-light camera sensor. We also
show that our algorithm can be operated with the commercially available Snapdragon 835 mobile
hardware development kit [19]. Using this kit, we managed to operate our marker detection algorithm
in real-time. Our research is novel compared to previous works in the following three ways:

(1) Our method uses a lightweight CNN named lightDenseYOLO to perform an initial prediction of
the marker location and then refine the predicted results with a new Profile Checker v2 algorithm.
By doing so, our method can detect and track a marker from 50 m.

(2) The proposed lightDenseYOLO maintains a balance between speed and accuracy. Our approach
has a similar detection performance with state-of-the-art faster region-based CNN (R-CNN) [37]
and executes five times faster. All experiments were tested on both a desktop computer and the
Snapdragon 835 mobile hardware development kit [19].

(3) Our new dataset includes images taken from both long and close distances, and we made our
dataset, trained models of lightDenseYOLO and algorithms available to the public for other
researchers to compare and evaluate its performance [38].

A comparison of previous methods employed for autonomous drone landing with our method is
summarized in Table 1.
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Table 1. Summary of comparisons of proposed and previous studies.

Category Type of Feature Type of Camera Descriptions Strength Weakness

Passive methods

Hand-crafted features

Multisensory fusion system with
a pan-tilt unit (PTU), infrared
camera, and ultra-wide-band
radar, [20].

Ground-based system that first
detects the unmanned aerial vehicle
(UAV) in the recovery area to start
tracking in the hover area and then
send commands for
autonomous landing.

A multiple sensor-fusion method
guides UAV to land in both day
and night time.

Tracking algorithm and 3D pose
estimation need to be improved.

Multisensory system requires
complicated calibration process.

- Ground stereo vision
system with two PTUs
placed on each side of
a runway.

- Each PTU includes a
visible-light camera [21].

- Two PTUs are allocated on
both sides of a runway to
enlarge the baseline.

- The location of the UAV is
detected by the Chan-Vese
model- approach and updated
by an extended Kalman
filter algorithm.

Ground stereo vision-based
system successfully detects and
tracks the UAV and shows robust
detection results in real time.

Setting up two PTU
ground-based systems requires
extensive calibration.

Two-infrared-camera array
system with an infrared laser
lamp [24].

Infrared laser lamp is fixed on the
nose of the UAV for easy detection.

Infrared camera array system
successfully guides the UAV to
perform automatic landing in a
GPS-denied environment at a
distance of 1 km.

- Not practical for use in a
narrow landing area.

- Complicated set-up of
two-camera array system
on the ground is required.

Active methods Without marker

Single down-facing visible-light
camera [25].

- A local 3D elevation map of
ground environment is
generated using the input
image from the camera sensor.

- Safe landing spot is estimated
by a probabilistic approach.

Without a marker, this method
can help a drone find the landing
spot in an emergency case.

Experiments were not conducted
in various places and at different
times, and the maximum height
for testing was only 4–5 m.

Infrared camera [26].

- Fixed infrared camera below
the head of the UAV detects
the position of four infrared
lamps on a runway.

- Based on prior knowledge of
distance between infrared
lamps, the pose parameters are
calculated during the
landing process.

Successfully detects infrared
lamps on the ground in both day
and night time at a distance of
450 m.

The series of infrared lamps
required is difficult to deploy in
various places.
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Table 1. Cont.

Category Type of Feature Type of Camera Descriptions Strength Weakness

Active methods With marker

Hand-crafted features

Thermal camera [34,35].

Feature points are extracted from a
letter-based marker enabling drone
to approach closer to target and
finish the landing operation.

Detect marker using thermal
images and overcomes various
illumination challenges.

Drone must carry a costly
thermal camera.

Visible-light camera [27–30,33]. Marker is detected by line segments
or contour detectors.

Marker is detected by using only
a single visible-light camera
sensor.

Marker is detected only in
daytime and within a limited
range.

Trained features

Visible-light camera [36].

Double-deep Q-networks solve
marker detection and command the
drone to reach the
target simultaneously.

First approach to solve the
autonomous landing problem
using deep
reinforcement learning.

Testing is done in an indoor
environment, and there is a gap
between indoor and
outdoor environments.

Visible-light camera
(proposed method).

- Uses lightweight
lightDenseYOLO
convolutional neural network
(CNN) marker detector to
roughly predict
marker location.

- Enhanced detection of marker
center and direction is
performed by Profile Checker
v2 algorithm.

- Requires only a single
visible-light camera.

- Detects marker center and
direction at very long
distance at a fast speed.

An embedded system which can
support deep learning is
required to operate marker
detection in real time.
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3. Proposed Method

3.1. Long-Distance Marker-Based Tracking Algorithm

The size of our marker is 1 m ×1 m [3]. In this study, we solve the problem of autonomous
drone landing by proposing a long-distance marker-based tracking algorithm using the same marker.
There are two major differences between our current research algorithm and our earlier one [3].
First, we replaced the adaptive template matching (ATM) algorithm in [3] with our proposed CNN
lightDenseYOLO marker detector. Our lightDenseYOLO is the combination of two components:
lightDenseNet as the CNN feature extractor and YOLO v2 [39] as the marker detection module.
Second, we introduced Profile Checker v2 to further enhance the predicted results.

Figure 1 shows the overall flowchart of our proposed method. We resized the original input
image taken by drone camera from 1280 × 720 pixel (px) to 320 × 320 px to fit the input of our CNN
lightDenseYOLO. The output of lightDenseYOLO was a set of bounding boxes which potentially
include a marker. Among these predicted boxes, we selected the box with the highest confidence score.
However, when the distance between the drone and the marker was large, the predicted box was very
small, and it was difficult to predict the direction of the marker inside it. Therefore, we categorized the
predicted bounding box based on its size. In our research, a box with width and height larger than
150 px was a “large” box and a “small box” had a width or height smaller than 150 px. If the predicted
box was a small box, the center of the predicted box was chosen to be the marker center. If a large
box was detected, we extracted the predicted box as an image and put it into the Profile Checker v2
algorithm to find a more accurate marker center and direction. We also used a Kalman filter [40] to
increase the accuracy of the obtained center. Our previous study showed that using a Kalman filter not
only helps to stabilize the overall prediction but also helps deal with occlusion and blurring.
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Next, we describe the proposed lightDenseYOLO network for marker detection followed by the
Profile Checker v2 algorithm.
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3.2. Marker Detection with lightDenseYOLO

We define our marker detection problem as general object detection with two classes of marker
and background. Much research has been performed in recent years on object detection using
CNNs. The state-of-the-art CNN object detector is Faster R-CNN which is based on a two-stage
proposal-driven mechanism. The first stage generates possible candidate object locations by a region
proposal network (RPN) and the second stage classifies each candidate location into one of several
classes. Faster R-CNN achieves high accuracy on many challenging datasets, but the processing time is
a major concern. It has been reported that it takes 200 ms (five frames per second (fps)) to process each
image using a modern graphic card [37]. It is obvious that Faster R-CNN is not the optimal solution
for real-time marker detection using an on-board processor. The one-stage detector YOLO (“You Only
Look Once”) [41] and the upgraded version YOLO v2 [39] not only demonstrate promising results but
also yield about 10 times faster detection speed with accuracy degradation within about 10% relative
to Faster R-CNN.

Therefore, we propose a one-stage detector named lightDenseYOLO which combines
lightDenseNet—a simplified version of densely connected convolutional networks (DenseNet) [42]—as
the feature extractor and YOLO v2 (bounding box) predictor. Consequently, our new model not only
inherits the good extraction features from DenseNet but also the robust object-detection speed of
YOLO v2.

3.2.1. LightDenseNet Architecture

Assuming a single image x0 passing through a CNN with L layers, xl is the produced output
of the lth layer. Each layer includes a non-linear transformation Hl(·) to obtain output feature maps.
In particular, Hl(·) can be a composite function of operators such as convolution (conv), pooling,
batch normalization (BN), or rectified linear unit (ReLU). Traditional feed-forward networks such as
AlexNet [43], visual geometry group (VGG) [44] connect the output of the (l − 1)th layer as the input
of the lth layer. We demonstrate such networks in [42] as

xl = Hl(xl−1) (1)

Residual network (ResNet) introduces a skip connection that expands the non-linear
transformation with an identity shortcut [45] and is expressed as

xl = Hl(xl−1) + xl−1 (2)

In contrast to ResNet, the feature maps in DenseNet are not combined through summation before
they are passed to the next layer. Instead, in each dense block, the feature maps of the current layer are
concatenated with feature maps from previous layers as an additional channel. Therefore, the lth layer
has l inputs which are feature maps from all preceding layers x0, . . . , xl−1. Equation (3) shows how
DenseNet performs a non-linear transformation at the lth layer [42]:

xl = Hl([x0, x1, . . . , xl−1]) (3)

In Equation (3), [x0, x1, . . . , xl−1] is the concatenation of feature maps produced from layer 0 to
layer l − 1. Therefore, if the network is very deep, the number of channels of this concatenated feature
maps is very large. To avoid making the network too large, DenseNet introduced a bottleneck layer
to make sure that the number of output channels at each layer was a fixed number. Here, Hl can be
defined as a bottleneck layer which includes layers: BN, ReLU, 1 × 1 conv, BN, ReLU, and 3 × 3 conv.
As shown in Figure 2, the bottleneck layer reduces the number of output channels from C to 32, where
C is an arbitrary number larger than 32. In this research, we designed the number of channels of output
feature maps at each bottleneck layer as 32.
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Figure 2. Bottleneck layer design.

An essential part of CNN is reducing the spatial size of feature maps by pooling. DenseNet
divides a network into multiple dense blocks by transition layer. We can also define Hl as a transition
layer that includes BN, 1 × 1 conv and 2 × 2 average pooling. Figure 3 shows how a transition layer
reduced the spatial size of the input feature maps by half. The output of the transition layer is the
input to the next dense block. Figure 4 shows an example of a dense block with four bottleneck layers
and a transition layer.
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Figure 4. Dense block example.

Figure 5 shows the proposed lightDenseNet architecture with two dense blocks along with
two lateral connections. The previous DenseNet architecture with four dense blocks shows superior
classification performance on the large ImageNet dataset, which includes more than one million images
(for training and validation) and one thousand classes [42]. However, our marker dataset is much
smaller than ImageNet and has only two classes of marker and background; therefore, we do not
need a deep CNN architecture to extract features. Thus, a network with two dense blocks is a suitable
solution. Moreover, a network with four dense blocks is too deep and increases the processing
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time; therefore, a two dense-block model is the optimal solution to balance between accuracy and
processing speed.

To concatenate the higher- and lower-resolution features, we added two lateral connections
to connect the middle layer of each dense block with the last output of the last transition layer.
Each lateral connection includes a reshape layer and a bottleneck layer. First, the reshape layer changes
the dimension of its input without changing its data. For example, if the dimensions of the middle
layer of a dense block are W (width) and H (height) with C channels, the output dimensions after
reshaping by a factor m are W/m, H/m, and C ×m ×m, respectively [39]. However, the number of
channels (C ×m ×m) of this reshaped layer can be very large. Therefore, a bottleneck layer is utilized
to reduce the number of channels after reshaping without changing the spatial size of the feature maps.
In our research, we concatenated two produced outputs from two lateral connections with an output
of the second transition layer into a single tensor. Moreover, three more convolution layers are added
in lightDenseNet to match the desired output of the YOLO v2 detection algorithm.
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3.2.2. Comparisons on YOLO and YOLO v2 object detector

Our marker detection algorithm was based on the upgraded version of YOLO [41], named YOLO
v2 [39]. Both YOLO and YOLO v2 require a pre-trained classification model as a backbone CNN
architecture for the object detection task as shown in Figure 6.
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There are differences between the backbone architectures of YOLO and YOLO v2. First, YOLO
trains a classification CNN model called Darknet which includes 20 convolution layers, four max
pooling layers, and a fully-connected layer using ImageNet dataset with an input size of 224 × 224 px.
Learning to detect objects is the next step when YOLO fine-tunes the pre-trained Darknet model using
higher 448× 448-px resolution images from Pascal visual object classes (VOC) dataset. This is a difficult
optimization problem because the network must perform two functions at the same time: learn to
detect objects and adapt to the higher resolution input image. YOLO v2 solves this by proposing a new
CNN architecture called Darknet-19 which has 19 convolution layers, five max pooling layers, and
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a fully-connected layer. Darknet-19 was initially trained on ImageNet dataset with 224 × 224 px input
images for 160 epochs, and it was fine-tuned for 10 further epochs with 448 × 448 px input images.
The final classification model of YOLO v2 is called Darknet-19 448 × 448.

The Darknet-19 448 × 448 model has better top-1 and top-5 accuracies on the standard ImageNet
1000 class classification than the Darknet-19 model and the original Darknet model [39]. In addition,
the Darknet-19 448 × 448 model ensures there is no size mismatching between the input image of the
training-from-scratch model and the fine-tuning model as shown in Table 2.

Table 2. Differences of characteristics of YOLO and YOLO v2 (unit: px).

Characteristic YOLO YOLO v2

Feature Extractor Darknet Darknet-19 448 × 448

Input size
Training from scratch using ImageNet dataset 224 × 224 448 × 448
Training by fine-tuning using Pascal VOC or MS COCO dataset 448 × 448 448 × 448
Testing 448 × 448 448 × 448

Both YOLO and YOLO v2 approach the object-detection task as a tensor-regression problem.
The output tensors of YOLO and YOLO v2 include the information of predicted bounding boxes such
as center coordinates, width, height, confidence score, and class probabilities. Passing an input image
through a pre-trained model, both YOLO and YOLO v2 obtain a set of smaller-sized S× S feature
maps and then divide that image into a grid with S× S grid cells. Each grid cell is responsible for
predicting B bounding boxes. However, there is a difference on how YOLO and YOLO v2 find the
optimal bounding boxes as the final predictions [39,41].

During fine-tuning for the object detection task, YOLO replaces the last fully-connected layer
which was used for classification task with four convolution layers and two fully-connected layers.
The output of YOLO last’s fully-connected layer is a S× S× (B× 5 + C) tensor, where C is the class
probability and B is the number of predicted boxes. Each YOLO predicted box includes five values
such as center coordinates (x, y), width, height, and a confidence score showing whether there is
an object in the box or not. Bounding box width, height, and center coordinates are normalized to
have values between 0 and 1. The final prediction score of one bounding box for each class is the
multiplication of the confidence score and the class probability. Based on all the prediction scores
of many predicted bounding boxes and a threshold value, a set of bounding boxes, which may
contain an object, are acquired. However, there may be some overlapping bounding boxes among all
detected boxes. Therefore, a non-maximum suppression algorithm is used to remove these redundant
boxes [41].

YOLO v2 uses a different method than Faster R-CNN to predict bounding boxes based on prior
anchor boxes. YOLO v2 anchor boxes are not chosen by hand but are determined by analyzing
all the ground-truth bounding boxes in the training set. In our research, we trained the CNN of
lightDenseYOLO using the same five prior anchor boxes used to train YOLO v2. Figure 7 shows
an example of how YOLO v2 detects a marker by dividing the input into 8× 8 grid cells (Figure 7a).
Each grid cell is responsible for generating five bounding boxes based on five prior anchor boxes as
shown in Figure 7b. If the center of the object from the ground-truth data is located inside the yellow
cell in Figure 7c, that grid cell can contribute more than the red cells during training. Therefore, a single
input image needs to pass through the neural network only one time during training and testing and
enables a real-time processing speed (Figure 7d). Each YOLO v2 predicted box not only includes center
coordinates, width, height, and confidence score but also the C class probability. Therefore, the size
of the YOLO v2 final output tensor is S× S× (B× (5 + C)) where S and B are the numbers of grids
and bounding boxes, respectively. After the model is trained, the problem of selecting the best boxes
becomes easier. In our research, we used S, B, and C as 20, 5, and 1, respectively, for testing of our
lightDenseYOLO. If any bounding box had a class probability value larger than the threshold value,
that box was deemed to have a higher potential to contain an object. Once again, the non-maximum
suppression algorithm was used to determine the final detected boxes [39].
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At each position of sliding-window, multiple candidate bounding boxes are simultaneously
predicted based on the predetermined number of anchor boxes [37,39]. Each anchor box has various
(predetermined) size and ratio of width to height to detect the objects having the various size and
ratio. In our research, we use 5 anchor boxes. Based on each cell of S× S, five (predetermined) anchor
boxes are used to predict five candidate bounding boxes. As shown in the following Equations (4)~(6),
YOLO v2 predicts 5 bounding boxes at each cell in the output feature map. It predicts 5 coordinates for
each bounding box, tx, ty, tw, th, and to. Here, tx, ty, tw, th, and to are the center x, center y, the width
of box, height of box, and predicted probability, respectively. In case that the cell is offset from the
top left corner of the image by (bx; by) and the anchor box has width and height of pw, ph, the final
coordinates of the predicted bounding box are ax, ay, aw, and ah as shown in Equations (4)~(6) [39].
Here, sigm(·), e(·), Pr(·), and IOU(·) show sigmoid activation function, exponential function, probability,
and intersection over union, respectively.

ax = sigm(tx) + bx, ay = sigm(ty) + by (4)

aw = pwetw, ah = pheth (5)

Pr(object) × IOU(a, object) = sigm(to) (6)

In Figure 7c, the red shaded cell represent the predetermined cells of S× S, and the yellow shaded
cell shows that having the high probability for including the marker center among the cells of S× S.

In addition, YOLO v2 removes all fully-connected layers from Darknet-19 448 × 448 and adds
a few more convolution layers for training for the object detection task. Therefore, Darknet-19 448× 448
becomes a fully convolutional network that allows the size of the training input images to change
every few iterations. This multi-scale training strategy has proven to be useful to train the neural
network to adapt to different input images sizes. Overall, YOLO v2 takes advantage of this multi-scale
training and prior anchor boxes to overcome many YOLO weaknesses such as localization errors and
low recall problem. In our research, our marker changed its size a lot during the landing procedure;
therefore, we chose YOLO v2 to train our marker detection. In our research, we replaced Darknet-19
448 × 448 with our lightDenseNet.
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Figure 7. Example of YOLO v2 marker detection. (a) YOLO v2 divides the input image into S× S grid,
and (b) each grid cell predicts five bounding boxes based on five prior anchor boxes. The predictions
are stored in an S × S × (5× (5 + C)) output tensor. This example shows how YOLO v2 predicts
marker from an input image with a grid size S = 8 and C = 1 (number of classes to be detected) so that
the size of the final output tensor is 8× 8× 30; (c) The yellow shaded cell shows higher potential of
detecting marker compared to other red shaded cells; (d) The result of the detected marker.
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3.2.3. Combining lightDenseNet and YOLO v2 into lightDenseYOLO

The original input image (1280× 720 px) captured from the drone camera is resized to 320× 320 px
to match the input of lightDenseNet. In the output tensor, each 1 × 1 × 30 block stores the encoded
predicted bounding box information (center coordinates (x, y), width (W), height (H), confidence score
and marker class probability). By combining lightDenseNet and YOLO v2 into lightDenseYOLO, we
can predict the marker at a long and close distance with a real-time speed. Table 3 shows the full
description of the proposed lightDenseYOLO architecture.

Table 3. Architecture of lightDenseYOLO for marker detection. Each conv layer is the sequence of
batch normalization (BN), rectified linear unit (ReLU), and convolution layer. s1 and s2 present stride
by 1 and 2 px, respectively.

Layer Input Size Output Size

Input 320 × 320 × 3 320 × 320 × 3

7 × 7 conv, s2 320 × 320 × 3 160 × 160 × 64

2 × 2 pooling, s2 160 × 160 × 64 80 × 80 × 64

Dense block 1
[

1 × 1 conv, s1
3 × 3 conv, s1

]
× 6 80 × 80 × 64 80 × 80 × 256

Transition layer
[

1 × 1 conv, s1
2 × 2 pooling, s2

]
80 × 80 × 256 40 × 40 × 128

Dense block 2

[
1 × 1 conv, s1
3 × 3 conv, s1

]
×

12
40 × 40 × 128 40 × 40 × 512

Transition layer
[

1 × 1 conv, s1
2 × 2 pooling, s2

]
40 × 40 × 512 20 × 20 × 256

Reshape 40 × 40 × 320 20 × 20 × 1280

Bottleneck layer
[

1 × 1 conv, s1
3 × 3 conv, s1

]
20 × 20 × 1280 20 × 20 × 32

Reshape 80 × 80 × 128 20 × 20 × 2048

Bottleneck layer
[

1 × 1 conv, s1
3 × 3 conv, s1

]
20 × 20 × 2048 20 × 20 × 32

Concatenation
20 × 20 × 32
20 × 20 × 32
20 × 20 × 256

20 × 20 × 320

[3× 3 conv, s1] × 3 20 × 20 × 320 20 × 20 × 30

3.3. Profile Checker v2

In our previous research [3], we used the Profile Checker v1 algorithm to accurately find the center
of the marker from that predicted by ATM at a close distance. Even though our lightDenseYOLO
predicts a much more accurate marker center than ATM (as shown in the experimental results in
Section 4.2.3), there is still room for improvement. Figure 8 shows the flowchart of the proposed Profile
Checker v2 to find the marker center and direction for the large predicted bounding box. The main
difference we made in this new version is that we performed image transformation before using it as
an input to the Profile Checker v2 algorithm.

In the long-distance images, the size of the predicted marker was small; therefore, the difference
between the predicted center and the ground-truth center was also small, and it was difficult to detect
the marker direction in such cases. In our research, we used Profile Checker v2 algorithm to find the
marker direction and the sub-optimal center of the large predicted box obtained from lightDenseYOLO.
Our Profile Checker v2 algorithm starts with adaptive thresholding on the extracted marker image.
The threshold value is set as the mean value of the block of an adaptive size, and we set the block size
equal to a quarter of the predicted box width [46]. As shown in Figure 9b, a large amount of noise
needed to be removed. To reduce the noise, we used a simple “Opening” morphology technique [47]
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(Figure 9c). Furthermore, dilation was performed to fill some small holes in the obtained image
(Figure 9d). Next, we found the geometric center (red dot of Figure 9d). As shown in Figure 9d,
compared to the predicted lightDenseYOLO center (yellow dot), the marker center predicted by Profile
Checker v2 algorithm (red dot) was much closer to the ground-truth center (green dot).
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Figure 9. Example images of procedure of Profile Checker v2 algorithm. (a) Input image; (b) image
by adaptive thresholding; (c) image by morphological transform; and (d) detected marker center
and direction.

To determine the direction of the marker, we used the same Profile Checker v1 method [3]. Using
the obtained image (Figure 10a), we drew a circle based on the center obtained by the lightDenseYOLO,
and the radius of this circle was empirically selected as 0.4× (width of marker). We refer to this circle as
the profile and all its segments as sub-profiles. This profile includes all pixel values along the generated
circle. With these values, we applied a threshold to create a profile with one black and one white
sub-profile as shown in Figure 10b. The threshold was defined as the mean value of the maximum
and minimum value of all the obtained values. A value larger than the threshold was determined
as 1; otherwise, it was set to 0. From that, point “P” and “Q” were detected and the direction was
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estimated based on the midpoint “K” of the arc connecting “P” and “Q” with the detected center “O”
of Figure 10a.Sensors 2018, 18, x FOR PEER REVIEW  14 of 30 
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visualization from the red circle of Figure 10a.

4. Experimental Results and Analyses

4.1. Experiment Hardware Platform

In this research, we used a DJI Phantom 4 drone [48] to capture landing videos. The camera
settings and preprocessing steps were the same as our previous study [3]. In detail, it had a color
camera with a 1/2.3-inch complementary metal-oxide-semiconductor sensor, a 94 degrees field-of-view
and an f/2.8 lens. The captured videos were in mpeg-4 (MP4) format with 30 fps and had a size
of 1280 × 720 px. For fast processing, the captured color image was converted to a gray image by
averaging the R, G, and B pixel values. The drone’s gimbal was adjusted 90◦ downward so that the
camera faces the ground during landing.

Previous research on CNN object detection operated on UAVs using cloud computing that sent the
input image to a powerful server, and the detection results were then transferred back to the UAV for
post-processing [18]. This method is not practical because it requires a stable connection between the
drone and the cloud computer. In our research, we trained our lightDenseYOLO model on a desktop
computer (Intel(R) Core(TM) i7-3770K CPU @3.5 GHz (4-cores) with 16 GB of RAM and NVIDIA
GeForce 1070 (1920 CUDA cores) with 8-GB graphic memory [49]). Then we used the Snapdragon
neural processing engine software development kit (SNPE SDK made by Qualcomm (San Diego,
CA, USA)) [50] to convert and optimize our trained model on the Snapdragon 835 mobile hardware
development kit [19]. The SNPE SDK enables the neural network to execute on the Snapdragon
mobile platform and supports a variety of deep learning libraries such as Caffe [51], Caffe2 [52] and
TensorFlow [53].

Table 4 provides a full description of the Snapdragon 835 mobile hardware development kit.
The kit is a full-featured Android development platform capable of running modern CNNs. A custom
mainboard is used to connect a customized smartphone with other connectivity components such as
GPS, a subscriber identification module (SIM) card, and external sensors. The customized smartphone
includes a 5.5-in display and a Qualcomm® Snapdragon™ 835 processor (Qualcomm (San Diego,
CA, USA)). The Qualcomm® Snapdragon™ 835 processor carries a dual quad core Qualcomm®

Kryo™ 280 CPU, Qualcomm® Adreno™ 540 GPU, and Qualcomm® Hexagon™ DSP. The SNPE SDK
converts the trained model to fully maximize the effectiveness of the Qualcomm® Snapdragon™ 835
processor. We implemented our proposed CNN marker detection algorithm in this hardware kit. Our
experimental hardware kit is shown in Figure 11.
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Table 4. Description of Snapdragon 835 mobile hardware development kit.

Components Specifications

Central Processing Unit (CPU) Qualcomm® Kryo™ 280 (dual-quad core, 64-bit ARM V8
compliant processors, 2.2 GHz and 1.9 GHz clusters)

Graphics Processing Unit (GPU) Qualcomm® Adreno™ 540

Digital Processing Unit (DSP) Qualcomm® Hexagon™ DSP with Hexagon vector extensions

RAM 4 GB

Storage 128 GB

Operating System Android 7.0 “Nougat”
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4.2. Experiments with Self-Collected Dataset by Drone Camera

4.2.1. Dongguk Drone Camera Database

Our previous research successfully detected marker center and its direction at 10–15 m which is
not convincing for a self-automated UAV system operated at a height of 30 m or more. In this study,
we present an upgraded version of our self-constructed dataset (Dongguk Drone Camera Database
(DDroneC-DB2)) which includes images from our previous dataset (DDroneC-DB1) [3] and new
extracted images from videos captured from the DJI Phantom 4 drone at 50 m as shown in Figure 12.
Compared to the DDroneC-DB1, our new dataset shown in Table 5 not only contained a larger number
of images (10,642 images) but was also gathered in more challenging weather conditions (stronger
wind velocity and long distance). For each sub-dataset, we captured videos at the morning (10 AM),
afternoon (2 PM) and evening (6 PM). There are open databases acquired by drone cameras, such as
Stanford Drone Dataset [54], Mini-drone Video Dataset [55], and SenseFly Dataset [56]; however, there
are no open databases acquired while drones perform landing operations. Therefore, we acquired our
own database for our experiments.

As explained in Section 3, we did not conduct nighttime experiments in this research because
of the low-visibility of the marker in the long-distance images. Our ground-truth bounding box had
the same format as the PASCAL VOC dataset [57], and it was very easy to evaluate our dataset on
different CNN architectures and deep learning libraries. We made our DDroneC-DB2 dataset, trained
CNN model, and algorithms public to other researchers to enable them to evaluate the performance of
the marker-tracking methods [38].
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Table 5. Description of DDroneC-DB2.

Sub-Dataset Number of Images Condition Description

Morning

Far 3088
Humidity: 44.7%

Wind speed: 5.2 m/s
Temperature: 15.2 ◦C,

autumn, sunny
Illuminance:1800 lux

Landing speed: 5.5 m/s
Auto mode of camera shutter speed
(8~1/8000 s) and ISO (100~3200)

Close 641

Close (from
DdroneC-DB1 [3]) 425

Humidity: 41.5%
Wind speed: 1.4 m/s
Temperature: 8.6 ◦C,

spring, sunny
Illuminance: 1900 lux

Landing speed: 4 m/sAuto mode of
camera shutter speed(8~1/8000 s)
and ISO (100~3200)

Afternoon

Far 2140
Humidity: 82.1%

Wind speed: 6.5 m/s
Temperature: 28 ◦C,

summer, sunny
Illuminance:2250 lux

Landing speed: 7 m/s
Auto mode of camera shutter speed
(8~1/8000 s) and ISO (100~3200)

Close 352

Close (from
DdroneC-DB1 [3]) 148

Humidity: 73.8%
Wind speed: 2 m/s

Temperature: −2.5 ◦C,
winter, cloudy

Illuminance: 1200 lux

Landing speed: 6 m/s
Auto mode of camera shutter speed
(8~1/8000 s) and ISO (100~3200)

Evening

Far 3238
Humidity: 31.5%

Wind speed: 7.2 m/s
Temperature: 6.9 ◦C,

autumn, foggy
Illuminance: 650 lux

Landing speed: 6 m/s
Auto mode of camera shutter speed
(8~1/8000 s) and ISO (100~3200)

Close 326

Close (from
DdroneC-DB1 [3]) 284

Humidity: 38.4%
Wind speed: 3.5 m/s
Temperature: 3.5 ◦C,

winter, windy
Illuminance: 500 lux

Landing speed: 4 m/s
Auto mode of camera shutter speed
(8~1/8000 s) and ISO (100~3200)
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To evaluate detection accuracy, we performed two-fold cross validation. For each fold, among
a total of 10,642 images, we randomly chose 5231 images for training and the remainder were used for
testing purposes.

4.2.2. CNN Training for Marker Detection

Recent CNN object detectors such as Faster R-CNN [37] or single-shot multibox detector (SSD) [58]
achieve high performance on object detection by performing fine-tuning on a well-trained backbone
architecture [43–45] trained from scratch using the ImageNet dataset [59]. In our research, we did
not train our network from scratch, but we copied the weights from the first two dense blocks of
DenseNet-201 model to our first two liteDenseNet dense blocks. This DenseNet-201 model was also
trained with the ImageNet dataset and yielded a performance similar to a very deep 101-layer ResNet
model [42]. The weights of two additional lateral connections and additional convolutional layers
of lightDenseNet were initialized by Xavier initialization [60] with zero mean and a small variance.
We obtained the lightDenseYOLO model by fine-tuning the lightDenseNet model using the Darknet
library [61] with two-fold cross validation. For each fold, we fine-tuned the network for 60 epochs and
performed testing on the other. Throughout the training, we used a batch size of 64, a momentum of
0.9, and a decay of 0.0005. Our initial learning rate in the first 20 epochs was 10−4, and we reduced it
by half for each of the 20 epochs until the training finished. We used the YOLO v2 data augmentation
strategy with random scaling, translations, and by randomly adjusting the exposure, saturation of
the image.

To make a fair comparison, we used the same two-fold cross-validation with Faster R-CNN [37],
MobileNets-SSD [62], and YOLO v2 [39]. We trained the YOLO v2 marker detection model with the
same hyper parameters we used for our lightDenseYOLO. We applied fine-tuning on Darknet-19
448 × 448 in the case of YOLO v2. Furthermore, we used TensorFlow object detection API [63] to
train the Faster R-CNN and MobileNets-SSD models with our DDroneC-DB2. Table 6 summarizes the
training parameters we used on training the marker detection model.

Table 6. Summary of training hyper parameters used on different models for DDroneC-DB2 dataset.

lightDenseYOLO (Ours) YOLO v2 Faster
R-CNN MobileNets-SSD

Input size (unit: px) Multi-scale training (from
128 × 128 to 640 × 640)

Multi-scale training (from
128 × 128 to 640 × 640) 320 × 320 320 × 320

Number of epochs 60 60 60 60

Batch size 64 64 64 64

Initial learning rate 0.0001 0.0001 0.0001 0.004

Momentum 0.9 0.9 0.9 0.9

Decay 0.0005 0.0005 0.0005 0.9

Backbone architecture lightDenseNet Darknet-19 448 × 448 VGG 16 MobileNets

4.2.3. Marker Detection Accuracy and Processing Time

Using DDroneC-DB2, we compared the proposed CNN marker detection (lightDenseYOLO
+ Profile Checker v2) with that obtained by state-of-the-art CNN object detectors such as Faster
R-CNN [37], MobileNets-SSD [62], and YOLO v2 [39]. These state-of-the-art CNN object detectors
were designed to predict only bounding boxes. Therefore, we adapted these schemes for marker
detection using the center of the predicted bounding box as the detected center. However, these
methods cannot detect the direction of a marker; therefore, we could only compare the center prediction
accuracy between our lightDenseYOLO, Faster R-CNN, MobileNets-SSD, and YOLO v2 without Profile
Checker v2. To have fairly compared the methods, we also applied the Profile Checker v2 algorithm in
conjunction with the above methods and calculated the accuracy again. All results are the average
values of two-fold cross validation.
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Analysis on precision and recall at different intersection over union (IoU) thresholds has become
the standard method to evaluate object detection accuracy [64–66]; therefore we evaluated precision
and recall for different IoU thresholds. In our DDroneC-DB2, there was only one marker at each
image; therefore, there was only one ground truth bounding box. If any detected bounding box had
an IoU value larger than the predefined IoU threshold and the predicted class was marker, the box
was considered as a true positive. Any predicted box with an IoU value smaller than the IoU threshold
was considered as false positive. If there was a marker in the image but there was no detected box, it
was considered as a false negative case.

At an IoU value of 0.5, Table 7 shows that the precision and recall of our lightDenseYOLO
were slightly worse than those of other CNN object detectors, whereas they were better than that
of YOLO v2. The reason for this is that our method was based on the YOLO detection algorithm;
therefore, it obviously returned less accurate bounding boxes compared to those of the region proposal
network (RPN) approaches such as Faster R-CNN. The reason why MobileNets-SSD showed better
accuracy than lightDenseYOLO is that MobileNets-SSD is based on multi-scale feature maps to predict
bounding boxes, whereas lightDenseYOLO is based on a single-scale feature map for fast processing.
To overcome this problem, we first use lightDenseYOLO to obtain the initial prediction and then
applied Profile Checker v2 to detect the precise center of the marker. Therefore, our final detected
marker had a higher IoU with the ground-truth data which increased both the precision and the recall
of our proposed method. As shown in Table 8, our approach (lightDenseYOLO + Profile Checker v2)
performed on-par with other state-of-the-art methods such as Faster R-CNN and MobileNets-SSD.
In addition, our method was better than that of lightDenseYOLO + Profile Checker v1 and YOLO v2 +
Profile Checker v2.

To investigate further, we used different IoU thresholds to see which method performed the best.
Figure 13 shows the precision and recall of various CNN marker detectors at different IoU thresholds.
As shown in Figure 13, both the precision and recall curves of our lightDenseYOLO were lower than
those of both Faster R-CNN and MobileNets-SSD by a small margin. However, our proposed network
presented superior performance against YOLO v2. The main difference between our lightDenseYOLO
and YOLO v2 was the backbone architecture. Compared to Darknet-19 448 × 448, our lightDenseNet
was not only deeper but also able to learn much more complex features because of the many dense
connections. One of YOLO v2’s known weaknesses is having low detection accuracy on small objects.
By using lightDenseNet as the feature extractor, our lightDenseYOLO overcame this weakness and
detected a wide range of markers from large to small sizes with high proficiency.

As shown in Figure 14, we applied Profile Checker v2 algorithms not only to our proposed
network but also to other CNNs for fair comparison. It is clear that Faster R-CNN with Profile Checker
v2 (green line with diamond shape) had the best precision and recall curve and our lightDenseYOLO
+ Profile Checker v2 (yellow line with circle shape) was the second best. Our research focused on
autonomous landing; therefore, finding the marker center to guide the drone to land was the most
important task. Other information such as predicted width and height of the marker was not important.
In the analysis above, the first step to distinguish a predicted box as true positive or false positive
was by comparing that box’s IoU value with the IoU threshold. Figure 15 shows the marker detection
results of all CNN models with Profile Checker v2. All methods successfully detected the marker box,
but they had different IoU values. If we set the IoU threshold value as 0.8, the predicted boxes created
by our method and YOLO v2 + Profile Checker v2 were counted as false positive. Even though our
method more accurately predicted the center as shown in the upper image of Figure 15, the precision
and recall by our method were lower than those of the others. Therefore, measuring detection accuracy
only by precision and recall cannot show the correct accuracy of our marker detection application.
Therefore, we measured accuracy based on other criterion in another experiment.
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Table 7. Precision (P) and recall (R) at IoU = 0.5 of different CNN marker detectors.

Morning Afternoon Evening Entire Dataset

Far Close Far Close Far Close Far Close Far + Close

P R P R P R P R P R P R P R P R P R

lightDenseYOLO 0.96 0.95 0.96 0.96 0.94 0.96 0.95 0.95 0.95 0.96 0.97 0.96 0.95 0.96 0.96 0.96 0.96 0.96
YOLO v2 0.95 0.95 0.96 0.95 0.92 0.94 0.93 0.95 0.94 0.93 0.95 0.96 0.94 0.94 0.95 0.95 0.94 0.95

Faster R-CNN 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
MobileNets-SSD 0.98 0.98 0.99 0.98 0.97 0.96 0.97 0.98 0.98 0.97 0.97 0.99 0.98 0.97 0.98 0.98 0.98 0.98

Table 8. Precision (P) and recall (R) at IoU = 0.5 of different CNN marker detectors with Profile Checker algorithms.

Morning Afternoon Evening Entire Dataset

Far Close Far Close Far close Far Close Far +close

P R P R P R P R P R P R P R P R P R

lightDenseYOLO +Profile Checker v1 0.97 0.96 0.96 0.95 0.96 0.97 0.96 0.98 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
lightDenseYOLO +Profile Checker v2 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99

YOLO v2 + Profile Checker v2 0.98 0.97 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.98
Faster R-CNN + Profile Checker v2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

MobileNets-SSD + Profile Checker v2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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As the next experiment, we calculated the center location error (CLE) to identify the best method
to determine the marker center. CLE is the Euclidean pixel distance between the predicted marker
center and the ground-truth center shown as:

CLE = ‖OE
K −OGT

K ‖ (7)

where OE
K and OGT

K are the estimated and ground-truth positions of the marker’s center, respectively.
To further investigate detection accuracy, we calculated CLE in three cases: only long-distance
images (Figure 16), only close-distance images (Figure 17) and the entire dataset (Figure 18). In the
long-distance image case, proposed lightDenseYOLO ranked first with 1.3 px mean error, followed by
Faster R-CNN, MobileNets-SSD, and YOLO v2. In addition, our proposed method (lightDenseYOLO +
Profile Checker v2) outperformed the other methods as shown in Figures 17 and 18.

In Figure 19, we further compared the CLE of our CNN-based method not only with our previous
remote marker-based tracking algorithm [3] but also with conventional non-CNN object trackers such
as multiple instance learning (MIL) [67], tracking-learning-detection (TLD) [68], Median Flow [69],
and kernelized correlation filter (KCF) [70]. Our CNN-based method showed superior detection
accuracy above the other methods. These state-of-the-art object trackers [67–70] produced high CLE
because they were not designed to track objects whose appearance and size keep changing in the
captured image like our marker. However, our method can track a marker from a long distance even
the size of the marker changes drastically.

To compare the accuracy of predicted marker’s direction, we calculated the predicted direction
error (PDE) as:

PDE = ‖DE
K − DGT

K ‖ (8)

where DE
K and DGT

K are the predicted and ground-truth directions of a marker, respectively.
Figure 20 shows the PDE comparison between our method and that of other CNN marker detectors.
Conventional CNN detectors such as YOLO v2, Faster R-CNN, and MobileNets-SSD do not predict
marker direction; therefore, we applied the Profile Checker v2 algorithm for fair comparison with
our method. Our method not only had the smallest PDE, but also the smallest standard deviation as
shown in Figure 20. In addition, Profile Checker v2 showed better marker-direction prediction than
that of Profile Checker v1.
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Figure 21 shows the marker detection examples obtained by our method and previous methods
from our DDroneC-DB2 dataset at three different time of day: morning (Figure 21a), afternoon
(Figure 21b), and evening (Figure 21c). In our experiment, we used the DJI Phantom 4 remote
controller with its default setting of Mode 2 (left stick controlling the throttle) and manually pushed the
left stick up until the drone reached a height of 50 m. Then we let it descend using the return-to-home
(RTH) function to land it safely on the ground. For simplicity, we showed the detected center and
direction only by our method of lightDenseYOLO + Profile Checker v2 in red. As shown in Figure 21,
the marker was successfully detected at both long and close distances in all cases, and our method
showed comparatively better results than those obtained by other methods. Moreover, using the
detected center obtained by our proposed method, we improved accuracy of center detection and the
direction of the marker using the Profile Checker v2 algorithm. The other circular targets in Figure 21b,c
are used for testing whether our method generates false positives or not. As shown in Figure 21, there
were no false positive cases even with the other circular targets in the experimental images.
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(a) morning; (b) afternoon; and (c) evening.

Table 9 shows the comparative processing speed of our method and previous methods.
We measured the processing time on both a desktop computer and the Snapdragon 835 mobile
hardware development kit. On a desktop computer, our lightDenseYOLO was much faster than
previous methods, and our CNN architecture operated with a real-time speed of about 50 fps (20 ms
per image) on the desktop computer. The Profile Checker v2 algorithm runtime was only 5 ms per
image; therefore, the proposed lightDenseYOLO + Profile Checker v2 operated at about 40 fps (25 ms
per image) on the desktop. In our research, we showed that our method also operates at real-time
speed with the commercially available Snapdragon 835 mobile hardware development kit. We used
SNPE SDK to convert the trained model into a deep learning container file so that it could be used
for the Snapdragon neural processing runtime. As shown in Table 9, the processing speed of the
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proposed lightDenseYOLO + Profile Checker v2 was about 20 fps on the Snapdragon 835 kit, which
shows that our method can be used to perform autonomous landing in a drone system powered by
the Snapdragon 835 processor.

Table 9. Comparisons of average processing speed of proposed method with those of other CNN
marker detectors (fps).

Desktop Computer Snapdragon 835 kit

lightDenseYOLO ~50 ~25
YOLO v2 ~33 ~9.2

Faster R-CNN ~5 ~2.5
MobileNets-SSD ~12.5 ~7.14

lightDenseYOLO + Profile Checker v1 ~40 ~20.83
lightDenseYOLO + Profile Checker v2 ~40 ~20

YOLO v2 + Profile Checker v2 ~28.6 ~7.7
Faster R-CNN + Profile Checker v2 ~4.87 ~2

MobileNets-SSD + Profile Checker v2 ~11.8 ~6.75

5. Conclusions

In this research we proposed a method for detecting a marker center and estimating the marker
direction based on a light-weight CNN of lightDenseYOLO, the Profile Checker v2 algorithm,
and a Kalman Filter. Our method was robust in various environmental conditions and at various
distances when the marker image was captured. In addition, our method showed higher processing
speed than the state-of-the-art CNN object detectors tested on desktops and with the Snapdragon
835 mobile hardware development kit. We confirmed that our method can be adopted in the embedded
system of the commercially available Snapdragon 835 drone system. The errors of marker detection
by our method happened when the marker was heavily occluded or moving too fast. Although our
Profile Checker v2 successfully predicted a marker center and a direction in some difficult images but
there are still some unsuccessful cases.

As the circle detection in our Profile Checker v2, Hough or other sophisticate circle finder can be
considered. However, they take larger processing time. Because our method should be operated on
the drone’s embedded system of low processing power, we used simple algorithm (the processing
time for our Profile Checker v2 is just 10 ms on Snapdragon 835 embedded system as shown in
Table 9). We would research more sophisticate method of circle detection such as Hough transform
or others but having low processing time considering the operation on embedded system in future
work. In addition, we will apply our marker-based-tracking algorithm to low-cost drones or UAVs
equipped with inexpensive and low-resolution cameras to allow our works to be more easily integrated
in a variety of systems. In addition, we will attempt to adopt our method to various types of images
such as near infrared (NIR) or thermal images captured by drone camera and we will further research
detection methods whose accuracies and processing speeds are greater than those of Faster R-CNN.
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