
sensors

Article

A Kinect-Based Segmentation of Touching-Pigs for
Real-Time Monitoring

Miso Ju, Younchang Choi, Jihyun Seo ID , Jaewon Sa ID , Sungju Lee, Yongwha Chung * and
Daihee Park

Department of Computer Convergence Software, Korea University, Sejong City 30019, Korea;
misoalth@korea.ac.kr (M.J.); ycc4477@korea.ac.kr (Y.C.); goyangi100@korea.ac.kr (J.S.);
sjwon92@korea.ac.kr (J.S.); peacfeel@korea.ac.kr (S.L.); dhpark@korea.ac.kr (D.P.)
* Correspondence: ychungy@korea.ac.kr; Tel.: +82-44-860-1343

Received: 2 May 2018; Accepted: 27 May 2018; Published: 29 May 2018
����������
�������

Abstract: Segmenting touching-pigs in real-time is an important issue for surveillance cameras
intended for the 24-h tracking of individual pigs. However, methods to do so have not yet been
reported. We particularly focus on the segmentation of touching-pigs in a crowded pig room with
low-contrast images obtained using a Kinect depth sensor. We reduce the execution time by combining
object detection techniques based on a convolutional neural network (CNN) with image processing
techniques instead of applying time-consuming operations, such as optimization-based segmentation.
We first apply the fastest CNN-based object detection technique (i.e., You Only Look Once, YOLO) to
solve the separation problem for touching-pigs. If the quality of the YOLO output is not satisfied,
then we try to find the possible boundary line between the touching-pigs by analyzing the shape.
Our experimental results show that this method is effective to separate touching-pigs in terms of both
accuracy (i.e., 91.96%) and execution time (i.e., real-time execution), even with low-contrast images
obtained using a Kinect depth sensor.

Keywords: agriculture IT; computer vision; depth information; touching-objects segmentation;
convolutional neural network; YOLO

1. Introduction

When caring for group-housed livestock, the early detection and management of problems related
to health and welfare is important. In particular, the care of individual animals is necessary to minimize
the potential damage caused by infectious disease or other health and welfare problems. However,
it is almost impossible for a small number of farm workers to care for individual animals on a large
livestock farm.

Several studies have recently used surveillance techniques to automatically monitor livestock [1–4].
In this study, we focus on video-based pig monitoring applications with non-attached (i.e., non-invasive)
sensors [5–16]. Furthermore, we employ a top-view depth sensor [17–22] due to the practical difficulties
presented in commercial farms where the light is turned off at night (i.e., light fluctuations, shadowing,
cluttered backgrounds, varying floor status caused by urine/manure, etc.). In fact, we previously
reported results for Kinect-based pig detection [22]. The 24-h tracking of individual pigs requires for
touching-pigs in a crowded room to be separated. However, the depth values obtained from low-cost
sensors, such as Microsoft Kinect, may be inaccurate, and the input video stream data needs to be
processed in real-time through an online analysis.

In this study, we propose a low-cost and real-time method to separate touching-pigs. In particular,
caring for weaning pigs (25 days old) is the most important issue for pig management due to their weak
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immunity. Therefore, we aim to develop a method to separate weaning pigs, and the contributions of
the proposed method can be summarized as follows:

• Touching-pigs are separated using a low-cost depth camera, such as Microsoft Kinect. However,
the size of an 8-kg weaning pig is much smaller than that of a 100-kg adult pig. Furthermore, if we
install a Kinect at 3.8 m above the floor to cover a larger area (i.e., minimizing the installation cost
for a large-scale farm), then the accuracy of the depth data measured from the Kinect sensor is
significantly degraded. To handle the low-contrast images, we consider both deep learning-based
object detection techniques and image processing techniques.

• A real-time solution is proposed. Separating touching-pigs is a basic low-level vision task
for intermediate-level vision tasks, such as tracking, and/or high-level vision tasks, such as
aggressive analysis. To complete all of the vision tasks in real-time, we need to decrease the
computational workload of the separation task. We apply the fastest deep learning-based object
detection technique (i.e., You Only Look Once, or YOLO [23]), and develop lightweight algorithms
to evaluate the quality of the YOLO output and find the possible boundary line between the
touching-pigs by analyzing their shape.

In the following, we use the terms segmentation and separation interchangeably, and the remainder
of this paper is structured as follows. Section 2 summarizes previous methods for segmentation.
Section 3 describes the proposed method to separate touching-pigs in various touching cases (i.e., both
“easy-to-separate” and “difficult-to-separate” cases). The experimental results are presented in
Section 4, and the conclusions are presented in Section 5.

2. Background

The present study contributes to our final goal of 24-h automatic pig behavior analysis by focusing
on identifying individual pigs based on pig segmentation. Previous studies performed segmenting
and tracking [15,16], but the mean times between tracking failures were less than a few minutes.
For example, Figure 1 shows tracking failures with the simplest tracking algorithms (i.e., mean
shift [24], continuously adaptive mean (CAM) shift [25], and Kalman filter [26]) implemented using the
open-source software OpenCV [27]. Clearly, typical tracking algorithms can segment and track each
isolated moving pig correctly. When multiple moving pigs are very close to each other (we designate
these adjacent “moving” pigs as touching-pigs), the tracking algorithms cannot identify each pig,
and thus tracking failures occur. Furthermore, the higher the pig room density, the more difficult it will
be to segment the pigs in the room [14]. Therefore, the key problem when segmenting and tracking
weaning pigs continuously during the automatic analysis of pig behavior is to separate touching-pigs
in a crowded environment.

As explained in Section 1, we consider a low-cost depth camera such as Microsoft Kinect because
of the practical difficulties (i.e., light fluctuation, shadowing, cluttered background, varying floor
status caused by urine/manure, etc.) and 24-h monitoring (i.e., even with no-light conditions at night).
However, a low-cost Kinect camera has a limited distance range (i.e., up to 4.5 m), and the accuracy
of the depth data measured by a Kinect decreases quadratically as the distance increases [28]. Thus,
the accuracy of the depth data of the Kinect is significantly degraded when the distance between it and
a pig is larger than 3.8 m. Considering this difficulty, it is very challenging to separate 8-kg weaning
pigs using a Kinect camera installed 3.8 m above the floor.

For example, the images in Figure 2a,b respectively show a Kinect depth image and a gray image
converted from the corresponding color image. We can clearly see the difference in contrast between
the two gray images. In order to improve the low-contrast image shown in Figure 2a, we applied one of
the most widely used techniques (i.e., contrast limited adaptive histogram equalization, CLAHE [29])
to improve the low-contrast images, such as for computed tomography (CT)/magnetic resonance
imaging (MRI) in biomedical applications. Figure 2c shows the result of CLAHE after background
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subtraction, and it is difficult to find the possible boundary lines between the touching-pigs. As shown
in Figure 2d, various edge detectors [30] could not detect the possible boundary lines either.
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Figure 1. Tracking failures caused by touching-pigs: (a) results of the mean shift algorithm [24]; (b) 
results of CAM shift algorithm [25]; (c) results of Kalman filter algorithm [26]. 

For example, the images in Figure 2a,b respectively show a Kinect depth image and a gray image 
converted from the corresponding color image. We can clearly see the difference in contrast between 
the two gray images. In order to improve the low-contrast image shown in Figure 2a, we applied one 
of the most widely used techniques (i.e., contrast limited adaptive histogram equalization, CLAHE 
[29]) to improve the low-contrast images, such as for computed tomography (CT)/magnetic 
resonance imaging (MRI) in biomedical applications. Figure 2c shows the result of CLAHE after 
background subtraction, and it is difficult to find the possible boundary lines between the touching-
pigs. As shown in Figure 2d, various edge detectors [30] could not detect the possible boundary lines 
either. 

  

Figure 1. Tracking failures caused by touching-pigs: (a) results of the mean shift algorithm [24];
(b) results of CAM shift algorithm [25]; (c) results of Kalman filter algorithm [26].

Sensors 2018, 18, x FOR PEER REVIEW  4 of 25 

 

   
(a) (b) (c) 

 
(d) 

Figure 2. Difficulty of separating touching-pigs: (a) depth image; (b) gray image converted from a 
corresponding color image (during daytime); (c) result of contrast limited adaptive histogram 
equalization (CLAHE) [29] after background subtraction; (d) results of the edge detectors [30]. 

Table 1 summarizes some of previous methods that have been used for segmentation. Some of 
the methods solved the separation problem of touching-objects (i.e., “management of touching 
objects = Yes”, as shown in Table 1), whereas some others did not (i.e., “management of touching 
objects = No”, as shown in Table 1). To analyze low-contrast images, such as CT/MRI and 
thermal/depth, many previous methods employed time-consuming optimization techniques, such as 
active contour (snake), level set, graph cut, etc. Although online monitoring applications should 
satisfy the real-time requirements, many previous results did not specify the processing speed or 
could not satisfy the real-time requirements. To the best of our knowledge, this is the first report on 
separating touching objects in real-time with low-contrast images obtained using a Kinect sensor. By 
carefully balancing the trade-offs between the computational workload and accuracy, we propose a 
lightweight method with an acceptable accuracy with the final goal of achieving a “complete” real-
time vision system, consisting of intermediate and high-level vision tasks, in addition to low-level 
vision tasks. 

Table 1. Some of the segmentation results (published during 2012–2017). YOLO: You Only Look Once. 

Application Data 
Type Data Size Algorithm 

Management 
of Touching 

Objects 
No. of Objects 

Execution 
Time 

(Seconds) 
Reference 

Biomedical 
2D 

(Gray/
Color) 

256 × 256 Voting No Not Specified 540 [31] 
512 × 512 Hierarchical Bayesian No Not Specified 300 [32] 

91 × 103 Finite Element Method 
(FEM) Yes 3 540 [33] 

Not Specified Watershed Yes 117 1 [34] 
1360 × 1024 Watershed Yes 47 2 [35] 

Not Specified 
K-Means/ 

Gradient Vector Flow 
(GVF)/Snake 

Yes 253 125 [36] 

1000 × 1000 Watershed Yes 104 90 [37] 

Not Specified Pulse Coupled Neural 
Network (PCNN) Yes 554 20 [38] 

1024 × 1280 Saliency Map Yes 396~610 Not Specified [39] 
1344 × 1024 Active Contour Yes 496 Not Specified [40] 
2080 × 1542 Watershed/Mean Shift Yes Not Specified Not Specified [41] 

Figure 2. Difficulty of separating touching-pigs: (a) depth image; (b) gray image converted from
a corresponding color image (during daytime); (c) result of contrast limited adaptive histogram
equalization (CLAHE) [29] after background subtraction; (d) results of the edge detectors [30].
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Table 1 summarizes some of previous methods that have been used for segmentation. Some of
the methods solved the separation problem of touching-objects (i.e., “management of touching objects
= Yes”, as shown in Table 1), whereas some others did not (i.e., “management of touching objects
= No”, as shown in Table 1). To analyze low-contrast images, such as CT/MRI and thermal/depth,
many previous methods employed time-consuming optimization techniques, such as active contour
(snake), level set, graph cut, etc. Although online monitoring applications should satisfy the real-time
requirements, many previous results did not specify the processing speed or could not satisfy the
real-time requirements. To the best of our knowledge, this is the first report on separating touching
objects in real-time with low-contrast images obtained using a Kinect sensor. By carefully balancing
the trade-offs between the computational workload and accuracy, we propose a lightweight method
with an acceptable accuracy with the final goal of achieving a “complete” real-time vision system,
consisting of intermediate and high-level vision tasks, in addition to low-level vision tasks.

Table 1. Some of the segmentation results (published during 2012–2017). YOLO: You Only Look Once.

Application Data Type Data Size Algorithm
Management of

Touching
Objects

No. of Objects Execution Time
(Seconds) Reference

Biomedical

2D
(Gray/
Color)

256 × 256 Voting No Not Specified 540 [31]
512 × 512 Hierarchical Bayesian No Not Specified 300 [32]

91 × 103 Finite Element Method
(FEM) Yes 3 540 [33]

Not Specified Watershed Yes 117 1 [34]
1360 × 1024 Watershed Yes 47 2 [35]

Not Specified
K-Means/Gradient

Vector Flow
(GVF)/Snake

Yes 253 125 [36]

1000 × 1000 Watershed Yes 104 90 [37]

Not Specified Pulse Coupled Neural
Network (PCNN) Yes 554 20 [38]

1024 × 1280 Saliency Map Yes 396~610 Not Specified [39]
1344 × 1024 Active Contour Yes 496 Not Specified [40]
2080 × 1542 Watershed/Mean Shift Yes Not Specified Not Specified [41]

3D
(Gray/
Color)

408 × 308 × 308 Deformation No Not Specified 330 [42]
256 × 256 × 171 Active Contour No Not Specified 300 [43]

Not Specified Conditional Random
Field (CRF) No Not Specified 300 [44]

Not Specified Level-Set No Not Specified Not Specified [45]
167 × 172 × 39 K-Means Yes 610 37 [46]

250 × 250×250 Delayed Agglomeration
(DA) Yes Not Specified 162 [47]

1024 × 1256 ×
91

Maximum Intensity
Projection (MIP) Yes Not Specified 180 [48]

1824 × 834 ×
809 Region Competition Yes Not Specified

60 (128 Central
Processing Units

(CPUs))
[49]

Non-Bio/
Medical

2D
(Gray/
Color)

2000 × 2500 Active Contour No Not Specified 18 [50]
800 × 600 K-Means/Level-Set No Not Specified 2 [51]

Not Specified Butterworth Filter No Not Specified Not Specified [52]

Not Specified
Deep Convolutional

Neural Network
(DCNN)

No Not Specified Not Specified [53]

640 × 480 Active Contour No 1 79 [54]

Not Specified Active Contour/
Graph Cut No 1 Not Specified [55]

Not Specified Watershed No Not Specified 5 [56]
Not Specified Linear System Yes 12 39 [57]
1000 × 1000 Watershed Yes Not Specified Not Specified [58]

2D
(Depth)

640 × 480 Active Contour Yes 12 2 [59]

512 × 424 YOLO/Shape Yes 13 0.001 Proposed
Method

3. Proposed Approach

In this study, we assume that the size of each pig is similar, and that each moving pig is detected
using the Gaussian mixture model (GMM). By analyzing the size of each connected component of the
GMM result, we can recognize each connected component as a single pig or a group of pigs, and we try
to separate the two adjacent moving pigs (i.e., touching-pigs) for high-level vision tasks, such as with
an aggressive analysis. It is well-known that each pig sleeps most of the time, and the moving activity
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of each pig (measured with GMM) was observed with a probability of less than 1% on the average [60].
The case of touching-pigs with more than three moving pigs is very rare, and thus, we focus on the case
of touching-pigs with two moving pigs in this study. Algorithm 1 displays the overall procedure of the
proposed method. The details of the preprocessing steps for the depth images (e.g., noise removal and
background subtraction) can be found in Kim et al. [22].

Our segmentation method consists of two modules (YOLO Processing Module and Image
Processing Module), and Figure 3 presents an overview of our method for touching-pigs detected
using the Kinect depth camera. Although YOLO can detect a single pig with acceptable accuracy,
YOLO may not separate touching-pigs with acceptable accuracy. Therefore, we first apply YOLO to
the touching pig to obtain the bounding boxes (BBs) from the YOLO Processing Module. One or two
useful BBs are selected by checking the quality of each BB, and then the touching-pigs are segmented
with the useful BBs. If the quality of either the BBs or the segmentation is not satisfied, then we try to
find the possible boundary line between the touching-pigs by analyzing the shape. Since any hole in
the touching-pigs can be useful to find the possible boundary line, we first check for any hole in the
Image Processing Module. If the touching-pigs do not have such a hole, then we artificially generate
hole(s) by analyzing the outline of the touching-pigs. Then, we generate both a guideline (i.e., part of
the boundary line) from the hole information and concave points (CPs) from the outline information.
Finally, we conduct segmentation using the guideline and the CPs.
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Algorithm 1 Overall algorithm with the proposed method

Input: An image sequence from a depth information video
Output: An image sequence where touching-pigs are individually separated

// Load a depth information video
Seq = Load(depth_video)
// Remove noises in depth images
SeqInterpolate = SpatioTemporalInterpolate(Seq)
// Perform background subtraction
SeqBS = BackgroundSubtract

(
SeqInterpolate

)
// Detect moving pigs only
SeqGMM = GMM(SeqBS)

// Separate touching-pigs using the proposed method
for (i = 1; i ≤ the number of connected components in SeqGMM; i ++)

If size of each connected component Ii
in(SeqGMM) > size of a single pig

Go to YOLO Processing Module with Ii
in(SeqGMM)

Save the separated results of the touching-pigs
Return;

3.1. YOLO Processing Module

• BB Generation

YOLO is a convolutional neural network (CNN)-based object detection technique, and it uses
the grid method, which allows efficient object detection in real-time. In particular, this study uses the
YOLO9000 technique. YOLO9000 offers improved performance compared with YOLO by applying
batch normalization on all of the convolutional layers and multi-scale learning on the training data.
The input image contains only touching-pigs, as we assumed earlier, and it is applied to YOLO.
Then, we can obtain the image with bounding boxes (BBs) for the possible boundary of each pig in
touching-pigs. Note that we assume YOLO was trained with images with ground truth-based BBs for
the individual pig of each touching pig.

In YOLO, the input image is equally and arbitrarily divided into a set of S× S grid cells, and B BBs
are generated through each grid cell with x coordinate, y coordinate, width, height, and probabilities
of existence of each object (i.e., a pig). In other words, through this step, each cell can generate a large
number of BBs with object probability information that is higher than the threshold value (denoted
as BB_probability_th). Also, YOLO is well known as one of the fastest techniques for object detection.
In this study, we set S, B, and BB_probability_th as 13, 5, and 1, respectively.

• BB Evaluation

After generating BBs, we need to select one or two useful BBs to separate each touching pig,
and Figure 4 shows the selection results for two useful BBs. For BB evaluation, we first set the region
of interest (RoI) as an enclosing box for each touching-pig, and we then remove the YOLO BBs that are
not included in the RoI. As shown in Figure 5, YOLO can generate more than one BB within the RoI.

To evaluate the usefulness of each BB within the RoI, we first compute the number of pig pixels
within the RoI (denoted as PPRoI). Then, for each BB, we compute the number of pig pixels within
the BB (for example, denoted as PPBB_A for “BB_A”) and check if 0.4 PPRoI ≤ PPBB_A ≤ 0.6 PPRoI
(denoted as BB size condition).

Then, we compute the number of boundary pixels of the RoI (denoted as BPRoI). For each
BB, we also compute the number of boundary pixels of the BB near the boundary pixels of the RoI
(for example, denoted as BPBB_A for “BB_A”) and check if 0.2 BPRoI ≤ BPBB_A (denoted as BB boundary
condition). If these two conditions are satisfied for a BB, then we refer to it as a useful BB.
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Finally, if the number of useful BBs that passed from the previous step is zero, then we segment this
case using the Image Processing Module (Section 3.2). On the contrary, if the number of useful BBs is
two or more, then we need to compute the BB confidence value of each useful BB. Equation (1) shows the
calculation of the BB confidence value for useful “BB_A”. That is, a higher BB confidence value means
that the useful BB satisfies both the BB size and boundary conditions with a high confidence level.

BB con f idence value =
BPBB_A − 0.2BPRoI

|PPBB_A − 0.5PPRoI |
(1)

Based on a descending order of the BB confidence value, we first select one useful BB with the
highest BB confidence value (for example, “BB_A” and denoted as first useful BB). Then, we check
whether each remaining useful BB covers at least half of the remaining pig pixels within the RoI
(i.e., PPRoI − PPBB_A). If a remaining useful BB satisfies this condition (denoted as the BB coverage
condition), then we select this useful BB (denoted as second useful BB) and pass these two useful BBs
(i.e., first and second useful BBs) to the next step. Otherwise, we pass only one useful BB (i.e., first
useful BB). In Figure 6, we illustrate the BB size, boundary, and coverage conditions. Note that the
computational time for this step is negligible, because the number of BBs within the RoI is relatively
small (i.e., typically, 1–3).
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according to the BB size condition; (b) the BB cannot be a useful BB, because it satisfies the BB size condition, but 
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Finally, we need to segment the case of two useful BBs. Depending on the relative positions 
between two useful BBs, we classify this case into three cases (see Figure 8): Case 1 creates an 
overlapping rectangle, Case 2 creates an overlapping line, and Case 3 creates no overlapping 
rectangle or line.  

Figure 6. Illustration of the BB size, boundary, and coverage conditions: (a) the BB is not satisfied as
useful according to the BB size condition; (b) the BB cannot be a useful BB, because it satisfies the BB
size condition, but it cannot satisfy the BB boundary condition; (c) both BBs satisfy the BB size and
boundary conditions, but the first BB 1© can finally be a useful BB, because the second BB 2© covers
less than half of the remaining pig pixels (i.e., violation of the BB coverage condition).

• Segmentation Using Useful BBs

If the number of useful BBs is one, and the number of boundary lines generated by the useful BB
is one, then we segment this case with the useful BB (See Figure 7a). If the number of useful BBs is one,
but the number of boundary lines generated by the useful BB is two, then we need to segment this
case with the Image Processing Module (See Figure 7b).
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Figure 7. Segmentation with a single useful BB: (a) single boundary line; (b) two boundary lines.

Finally, we need to segment the case of two useful BBs. Depending on the relative positions
between two useful BBs, we classify this case into three cases (see Figure 8): Case 1 creates an
overlapping rectangle, Case 2 creates an overlapping line, and Case 3 creates no overlapping rectangle
or line.Sensors 2018, 18, x FOR PEER REVIEW  9 of 25 
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• Segmentation Quality Evaluation

If a given case is segmented in the previous step, we need to determine the segmentation quality
produced by the previous step. Based on our preliminary experiment, we found that the YOLO
Processing Module produced an acceptable quality with short boundary line cases (i.e., the touching
region between two pigs is relatively small), but an unacceptable quality with long boundary line
cases (i.e., the touching region between two pigs is relatively large). Therefore, we first determine the
length of the boundary line (denoted as LBL), and check if LBL ≤ segmentation_length_th (denoted as
segmentation length condition). If this condition is satisfied, then we finally check the relative size of each
separated pig, as determined by the boundary line. That is, we check if (the size of a larger pig/size of
a smaller pig)≤ segmentation_size_th (denoted as segmentation size condition). If these two conditions are
not satisfied, then we segment this case with the Image Processing Module (Section 3.2). In this study,
we set the segmentation_length_th as 20, because the length of a pig observed by our experiment is
about 35 on average. We also set segmentation_size_th as 1.5. In Figure 9, we illustrate the segmentation
length and size conditions, and the proposed method using YOLO BBs is summarized in Algorithm 2,
which is given below.
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segmentation length condition; (b) case of dissatisfaction for the segmentation size condition while
satisfying the segmentation length condition; (c) case of satisfaction for both the conditions.

Algorithm 2 Separation algorithm of YOLO Processing Module

Input: An image of touching-pigs
Output: An image of individually separated pigs
// BB generation
Generate BBs by YOLO

// BB evaluation
Set RoI
Check BB size, boundary, and coverage conditions
Determine useful BBs
If the number of useful BBs is 0

Exit this function and go to Image Processing Module

// Segmentation using useful BBsConnect (two points with one or two useful BBs)
If the number of useful BBs is one and the number of generated boundary lines is two

Exit this function and go to Image Processing Module

// Segmentation quality evaluation
Check segmentation length and size conditions
If conditions are not satisfied,

Exit this function and go to Image Processing Module
Return;
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3.2. Image Processing Module

• Hole Generation

In the Image Processing Module, we separate the touching-pigs by analyzing the shape of the
touching-pigs. Since any hole in the touching-pigs can be useful to find the possible boundary line, we
first check for any hole within the touching-pigs. If the touching-pigs have such holes, then we use
it (denoted as natural holes, for the purpose of explanation). Otherwise, we generate holes (denoted
as artificial holes, for the purpose of explanation). The artificial holes can be simply generated by
shrinking the outline of the touching-pigs. That is, we repeatedly apply a morphological erosion
operator to the outline by erosion_repeat_th times (See Figure 10b). In this study, we set erosion_repeat_th
as 8, because the width of a pig observed by our experiment is about 10 on average.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 25 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Illustration of natural and artificial holes: (a) natural hole; (b) artificial hole using erosion 
operator; (c) artificial hole using skeleton operator. 

 Guideline Generation 

After the hole-generation step, we are able to take advantage of the hole information in any 
shape of the touching-pigs. In this step, we generate a guideline that can be a part of the boundary 
line by connecting the points in each hole. As shown in Figure 11, we first find two opposite points 
that are farthest from each other. Then, we draw a guideline by connecting the two points. If there 
are multiple holes (Case 2), we connect each guideline (denoted as a semi-guideline) of each hole in 
order to generate a final guideline. 

 
(a) 

 
(b) 

Figure 11. Generation of a guideline with a single hole and multiple holes: (a) Case 1: guideline with 
a single hole; (b) Case 2: guideline with multiple holes. 

Figure 10. Illustration of natural and artificial holes: (a) natural hole; (b) artificial hole using erosion
operator; (c) artificial hole using skeleton operator.

If a hole cannot be generated with the erosion operator, then we apply a skeleton operator
(i.e., medial axis transform, MAT) to a reduced resolution image to reduce the time of the computation.
After finding the skeleton, we apply skeleton tracing from the start points to find a centroid. We select
the “first” nearest point on the touching-pigs outline from the centroid, and then select the “second”
nearest point on the opposite outline from the centroid. With these two nearest points and the centroid,
we can generate a hole of length 4 (See Figure 10c). The details of the skeleton tracing can be found in
Chung et al. [61]. In Figure 10, we illustrate the natural and artificial holes.

• Guideline Generation

After the hole-generation step, we are able to take advantage of the hole information in any shape
of the touching-pigs. In this step, we generate a guideline that can be a part of the boundary line
by connecting the points in each hole. As shown in Figure 11, we first find two opposite points that
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are farthest from each other. Then, we draw a guideline by connecting the two points. If there are
multiple holes (Case 2), we connect each guideline (denoted as a semi-guideline) of each hole in order
to generate a final guideline.
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single hole; (b) Case 2: guideline with multiple holes.

• CP Generation

In order to find an acceptable boundary line, we additionally generate concave points (CPs)
located on the outline of the touching-pigs. Based on our preliminary experiment, we found that at
least one CP in the touching region was observed. However, the CPs can also be detected other than at
the touching region, since a pig can bend its back (see Figure 12). It is very important to distinguish
between the two cases. Therefore, we interpret two-dimensional outline data into one-dimensional
time-series data, and utilize the time-series data as a tool to make a distinction between the two cases.
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The CP generation step is as follows. We first apply a convex hull algorithm that was implemented
using OpenCV, and we obtain a minimum polygon that contains an outline of the touching-pigs.
The point segments of the polygon are stored in the list in counterclockwise order. The last stored
segment is set as a start point of the time-series data. Two types of time-series data are generated by
recording the distances from the minimum polygon and the outline of the touching-pigs clockwise.
In a time-series data L, the distances of the vertical lines between the line segments of the polygon and
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the outline corresponding to each segment from the start point are recorded. Similarly, in time-series
data G, the distances of each end point of the line segments and each point of the corresponding
outlines from the start point are recorded. The generation process of the time-series data L and G are
illustrated in Figure 12.

One of the goals of this step is to determine whether the CPs are detected in the touching region
or not. Figure 13 describes the generation of CPs with the two different types of time-series data L
and G. The time-series data L represents the local curvature information, since it is globally irregular.
On the other hand, the time-series data G represents the global curvature information, since it is
locally irregular. Therefore, we extract maximum values corresponding to each line segment of the
minimum polygon from the time-series data L, and set them as candidates of CPs (see blue points in
Figure 13L). Then, we calculate a proportion, which represents a degree of concavity, by dividing a
length of the concave section by the length of the corresponding line segment from the time-series
data G (see arrows in Figure 13G). The interval of the concave section is set to each candidate value
± candidate value × 0.1 (see bars near the candidates in Figure 13G). More than two CPs cannot be
created for the touching-pigs, and thus, if the number of the CPs is larger than two, we obtain only the
two points with large distance values recorded in the time series data L as the final CPs.Sensors 2018, 18, x FOR PEER REVIEW  13 of 25 

 

 

Figure 13. Generation of concave points (CPs) with two different types of time-series data. 

 Segmentation using Guideline and CPs 

The separation step is classified into three cases as shown in Figure 14. In Figure 14, the red 
points are the final CPs, and the yellow points are the end points of the guideline (yellow lines). First, 
if the number of the CPs is two (Case 1), then we just draw the possible boundary line by connecting 
the CPs and both end points of the guideline. Secondly, if there is only one CP (Case 2), then we 
connect the CP and an end point, which has a shorter distance from the CP between both end points 
of the guideline. Then, we set the opposite side of the CP to a searching region. We finally draw the 
possible boundary line by connecting the remaining end point of the guideline and the closest point 
in a searching region from the point. Finally, if there is no CP (Case 3), we select the closest point in 
the outline from any end points of the guideline. After connecting the guideline and the selected 
point, such as with Case 2, we set the search region. Finally, we connect the remaining end point of 
the guideline and the closest point located in the search region from the point. The proposed method 
using image processing techniques is summarized in Algorithm 3 and is given below. 

 
(a)    (b)       (c) 

Figure 14. Segmentation with a guideline and CPs: (a) Case 1: two CPs; (b) Case 2: one CP; (c) Case 3: 
no CP. 

  

Figure 13. Generation of concave points (CPs) with two different types of time-series data.

• Segmentation using Guideline and CPs

The separation step is classified into three cases as shown in Figure 14. In Figure 14, the red points
are the final CPs, and the yellow points are the end points of the guideline (yellow lines). First, if the
number of the CPs is two (Case 1), then we just draw the possible boundary line by connecting the CPs
and both end points of the guideline. Secondly, if there is only one CP (Case 2), then we connect the CP
and an end point, which has a shorter distance from the CP between both end points of the guideline.
Then, we set the opposite side of the CP to a searching region. We finally draw the possible boundary
line by connecting the remaining end point of the guideline and the closest point in a searching region
from the point. Finally, if there is no CP (Case 3), we select the closest point in the outline from any
end points of the guideline. After connecting the guideline and the selected point, such as with Case 2,
the search region. Finally, we connect the remaining end point of the guideline and the closest point
located in the search region from the point. The proposed method using image processing techniques
is summarized in Algorithm 3 and is given below.
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no CP.

Algorithm 3 Separation algorithm of Image Processing Module

Input: An image of touching-pigs
Output: An image of individually separated pigs
// Hole generation
Check natural holes from the touching-pigs
If any hole is not detected

Generate artificial holes with erosion or skeleton operator

// Guideline generation
Select two points with the longest distance in each hole
Semi-guideline = Connect (two points of each hole)
Guideline = Connect (all of the semi-guidelines)

// CP generation
ConvexHull (shape of the touching-pigs)
Make time-series data L and G
Find candidates of CPs with time-series data L
Find at most two CPs from the candidates with time-series data G
// Segmentation using guideline and CPs
If the number of final CPs is two

Connect (guideline, concave points)
Else if the number of final CPs is one

Connect (guideline, CP, selected point in the searching region)
Else if there is no CP

Connect (guideline, the closest point, selected point in the searching region)
Return;

4. Experimental Results

4.1. Experimental Environment and Dataset

In our experiment, the training for the object detection with YOLO was conducted in the following
environment: Intel Core i7-7700K 4.20 GHz (Intel, Santa Clara, CA, USA), 32 GB RAM, Ubuntu 16.04.2
LTS (Canonical Ltd., London, UK), NVIDIA GeForce GTX1080 Ti 11 GB VRAM (NVIDIA, Santa Clara,
CA, USA), and OpenCV 3.2. Furthermore, the test to separate the touching-pigs through the training
model derived from YOLO was performed in the same environment.

In order to collect the video sequences in a pig room, we first installed a Kinect depth camera
(Version 2.0, Microsoft, Redmond, WA, USA) on a ceiling above 3.8 m from the floor in a 2.4 m × 2.7 m
pig room located in Sejong city, Korea. Then, we obtained depth video sequences in the pig room
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in which 13 weaning pigs were raised. Figure 15 shows the entire monitoring environment in the
pig room.
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The video sequences had a length of 10 minutes obtained at 10 am (i.e., most pigs show moving
activity [60]), which had a resolution of 512 × 424 and 30 frames per second (fps). Although we
focused only computation using depth images, we selected daytime (i.e., light-on) images in order to
evaluate the accuracy according to the ground truth (derived from the corresponding color images).
In addition, a background depth image was obtained to preprocess the foreground segmentation in
the video sequences. To reduce the noises, such as holes on the floor, we applied a spatial interpolation
technique using a 2 × 2 window, and thus the spatial resolution was reduced to 256 × 212. The details
of the background subtraction method can be found in Kim et al. [22]. From the detected foreground
(i.e., pigs), the moving pigs were extracted using the GMM method. Note that we focus on the pigs’
moving activity to segment the touching-pigs. Among the extracted moving pigs, two adjacent moving
pigs were derived through a threshold according to the object’s size (i.e., the number of pixels for
the object). In other words, if the object’s size is larger than the threshold of 500, then the object is
determined as touching-pigs. Finally, we obtained 3760 touching-pig images, trained YOLO (starting
learning rate of 0.1, weight decay of 0.0005, momentum of 0.9, and activation Function of leaky ReLU)
with 2260 images, and then tested YOLO and the Image Processing Module with 1500 images.

4.2. Results with YOLO Processing Module

We first confirmed the separation results (i.e., BB or BBs) of the touching-pigs with test images
by only using YOLO9000. Figure 16 shows the segmentation results for touching-pigs using a single
useful BB or two useful BBs.

Through the training model with YOLO, a single useful BB or two useful BBs on the touching-pigs
were generated in the 1500 test images. Then, touching-pigs were separated using the corresponding
segmentation strategies according to the number of BBs. First, in the segmentation strategy of a single
useful BB, the touching-pigs were segmented into individual pigs using a boundary line created by
projecting the BB into the touching-pigs. Then, the segmentation quality of the segmented pigs was
checked by segmentation_length_th for a boundary line and segmentation_size_th for the segmentation
size of the touching-pigs at 20 and 1.5, respectively. We confirmed that the touching-pigs can be
separated using a single useful BB in 24 test images, as shown in Figure 16a.

Second, concerning the segmentation strategy of the two useful BBs, a boundary line created
between the two useful BBs segmented the touching-pigs to individual pigs by using Case 1
(i.e., overlapping BBs), because most of the two BBs were produced in an overlapped state on the
touching-pigs. After segmenting the touching-pigs by using the boundary line created between the BBs,
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we evaluated the segmentation quality of the segmented pigs in the same manner of the segmentation
strategy of a single useful BB. Finally, we confirmed that the segmentation quality of the segmented
touching-pigs was satisfied in 1104 test images, and that the touching-pigs were separated using two
useful BBs, as shown in Figure 16b.

As a result, from 1500 touching-pig images, the proposed method separated 1128 images with
the YOLO Processing Module. Although both single useful BB and two useful BBs can separate the
touching-pigs, the image processing method was required to improve the accuracy rate.Sensors 2018, 18, x FOR PEER REVIEW  16 of 25 
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4.3. Results with Image Processing Module

Contrary to Section 4.2, we performed only the Image Processing Module without the YOLO
Processing Module. In 70 depth images, a natural hole in the touching-pigs was presented according
to the touching shape between the pigs. In this case, a guideline could be generated in the natural
hole and connected to the CPs or the nearest points, which would be located on the outline of the
touching-pigs using a convex hull algorithm. Based on the connected guideline, the touching-pigs
were separated as individual pigs. However, in 1430 depth images, we needed to consider a case in
which the natural hole did not occur on the touching-pigs. To separate the touching-pigs in the case,
artificial holes should be generated using the erosion operator or MAT algorithm. Note that the erosion
operator is basically exploited to generate artificial holes, while the MAT algorithm is used when the
erosion operator cannot generate the artificial holes. We repeatedly executed the erosion operator eight
times to generate artificial holes, and then artificial holes were derived in 282 depth images. In the
artificial holes, some guidelines were connected to the CPs or the nearest points of the touching-pigs.
Accordingly, the touching-pigs were separated as individual pigs by using the connected guidelines.
Meanwhile, in the remaining 1148 depth images, a MAT algorithm was exploited to generate artificial
holes, because the holes were removed by the erosion operator through eight repetitions. Using the
MAT algorithm, artificial holes could be generated in the region of the touching-pigs, and then the
touching-pigs were separated in a manner similar to the above procedures. Figure 17 presents the
separation results of the touching-pigs in some sequences by using the Image Processing Module.
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4.4. Evaluation of Segmentation Performance

From 1500 touching-pig images, the proposed method separated 1128 images with the
YOLO Processing Module and 372 images with the Image Processing Module, based on the BB
evaluation and segmentation quality evaluation steps explained in Section 3.1. Figure 18 shows the
segmentation results of some cases with the YOLO Processing Module and Image Processing Module.
Generally, the YOLO Processing Module produced acceptable results with short boundary line cases
(i.e., the touching region between two pigs was relatively small), and unacceptable results with long
boundary line cases (i.e., the touching region between two pigs was relatively large in frame #808
and #1215). However, the actual segmentation results depended on the quality of each BB generated
from the YOLO detector. For example, both the YOLO and Image Processing Modules could produce
acceptable results with a short boundary line case (Frame #964). For some of the short boundary
line cases, the YOLO Processing Module could produce a better result (Frame #19), while in others,
the Image Processing Module could produce a better result (Frame #1373). Another aspect of the
YOLO Processing Module is that it can provide much faster results (by a factor of 200) than the Image
Processing Module. In the proposed method, we carefully evaluated the quality of each BB generated
from the YOLO detector such that the hybrid solution (i.e., check-YOLO-first-then-Image-Processing)
can provide superior performance in terms of both accuracy and execution time.

Sensors 2018, 18, x FOR PEER REVIEW  19 of 25 

 

4.4. Evaluation of Segmentation Performance 

From 1500 touching-pig images, the proposed method separated 1128 images with the YOLO 
Processing Module and 372 images with the Image Processing Module, based on the BB evaluation 
and segmentation quality evaluation steps explained in Section 3.1. Figure 18 shows the segmentation 
results of some cases with the YOLO Processing Module and Image Processing Module. Generally, 
the YOLO Processing Module produced acceptable results with short boundary line cases (i.e., the 
touching region between two pigs was relatively small), and unacceptable results with long 
boundary line cases (i.e., the touching region between two pigs was relatively large in frame #808 and 
#1215). However, the actual segmentation results depended on the quality of each BB generated from 
the YOLO detector. For example, both the YOLO and Image Processing Modules could produce 
acceptable results with a short boundary line case (Frame #964). For some of the short boundary line 
cases, the YOLO Processing Module could produce a better result (Frame #19), while in others, the 
Image Processing Module could produce a better result (Frame #1373). Another aspect of the YOLO 
Processing Module is that it can provide much faster results (by a factor of 200) than the Image 
Processing Module. In the proposed method, we carefully evaluated the quality of each BB generated 
from the YOLO detector such that the hybrid solution (i.e., check-YOLO-first-then-Image-Processing) 
can provide superior performance in terms of both accuracy and execution time.  

 
Figure 18. Comparison of the separation results with YOLO Processing Module and the Image 
Processing Module. 

We compared the proposed method with the k-means method [36,46,51] and watershed method 
[34,35,37,41,56,58] implemented in OpenCV, which is often used to separate touching objects for 
qualitative analysis. The segmentation results of some typical cases are shown in Figure 19. Although 
the typical methods were fast enough for real-time performance, it was difficult to assign an 

Figure 18. Comparison of the separation results with YOLO Processing Module and the Image
Processing Module.

We compared the proposed method with the k-means method [36,46,51] and watershed
method [34,35,37,41,56,58] implemented in OpenCV, which is often used to separate touching objects
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for qualitative analysis. The segmentation results of some typical cases are shown in Figure 19.
Although the typical methods were fast enough for real-time performance, it was difficult to assign an
individual ID to the result of the segmentation for some cases. As shown in Figure 19, for example,
the k-means method could assign each ID to two pigs (i.e., one pig based on a blue color and
another pig based on a green color) for Frame #47 and Frame #539, whereas we could not assign an
individual ID for Frame #157 and Frame #304. It is also commonly known that the watershed method
has an over-segmentation problem. However, as shown in Figure 19, it had over-segmentation
(e.g., Frame #157) and under-segmentation (e.g., Frame #304 and #539) problems in cases with
touching-pigs. In fact, the depth difference within touching-pigs was not observed by a watershed
method in the under-segmentation cases. Although a few boundary pixels were assigned to the blue
color for Frame #304 and Frame #539, such few blue pixels could not be used to make an acceptable ID
assignment. We confirm that the proposed method can provide a superior performance compared
with the typical methods, regardless of various touching-pigs cases.
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To produce the quantitative analysis, we also evaluated the performance of each method.
The problem of the touching-pigs separation can be interpreted as a problem of ID assignment
for each pixel of the touching-pigs. Therefore, we formally define accuracy as the ratio of the number of
pixels having the correct ID (based on the ground truth) to the size of the touching-pigs, instead of
typical precision/recall metrics that are used for object detection problem. Table 2 shows the accuracy
and execution time of each method with 1500 touching-pig images. To evaluate the effectiveness of
the proposed method, we measured the performance of the YOLO Processing Module and the Image
Processing Module separately. That is, the YOLO Processing-only method shown in Table 2 means the
performance of the YOLO Processing Module with all 1500 touching-pigs images, whereas the Image
Processing-only method shown in Table 2 refers to the performance of the Image Processing Module
with all 1500 touching-pig images. Although the YOLO Processing-only method could provide the
fastest solution, its accuracy depended on the quality of each BB generated from the YOLO detector.
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By selecting the better module for a given case carefully at the run time, the proposed hybrid method
(YOLO + Image Processing, as shown in Table 2) could provide the best accuracy with the second
best execution time. Especially, for the final goal of 24-h continuous monitoring, ID switch is the most
critical factor. For all 1500 touching-pigs, the proposed method provided a pixel-level accuracy greater
than 85%. Since the pixel-level accuracy greater than 85% did not cause an ID switch, the proposed
method could separate all 1500 touching-pigs without any ID switch. Furthermore, the high-speed
execution of the segmentation can have a better chance in producing a complete vision system for
higher-level analysis in real-time.

Table 2. Comparison of accuracy and execution time.

Method Accuracy (Avg) Execution Time (Avg)

K-Means 67.49% 15.38 ms
Watershed 49.28% 2.22 ms

Proposed
YOLO Processing-only 75.02% 0.75 ms
Image Processing-only 88.78% 4.50 ms

YOLO+Image Processing 91.96% 1.13 ms

4.5. Discussion

The proposed method focused on separation of the touching-pigs in real-time using a low-cost
camera (i.e., Kinect) in a pig pen. However, there are some issues to be discussed. First, the depth
values obtained from Kinect needed to be improved by removing some noises for detecting the
foreground (i.e., pigs in the pen). For example, the Kinect camera has limitations in relation to
distance and field-of-view, which degrade the depth data obtained from the camera according to
the installed location. In the case of the pig pen, the Kinect camera was installed at a height of
3.8 m above the floor to include the whole area of the pen (i.e., 2.4 m × 2.7 m). From the Kinect
camera, either noises were generated at some locations (e.g., undefined depth values, as shown in
Figure 2a), or the depth values obtained from a location under the same condition were not consistent
(e.g., for the same location, different depth values of 76, 112, and 96 were obtained as time progressed).
Furthermore, these problems need to be solved in real-time (i.e., we cannot apply time-consuming
methods for improving the depth values). To improve the depth values in real-time, we applied a
spatial interpolation technique using a 2 × 2 window, and thus, the spatial resolution was reduced
to 256 × 212. Then, the spatial interpolation technique was also applied from a current image to two
consecutive images (i.e., temporal interpolation), so that it was able to solve the inconsistency problem
of the depth values at the same location. The details of the technique can be found in Kim et al. [22].

Second, we had to consider the low-contrast images obtained from the Kinect camera. As shown
in Figure 2a,b, the contrast of the depth image is poorer than that of the gray image converted from
the corresponding color image. In fact, any separation method for touching-pigs may produce good
performance with the high-contrast images. However, low-contrast images are inevitable with our
experimental environment. Furthermore, one of the most widely used techniques (i.e., CLAHE [29])
cannot improve the low-contrast problem (see Figure 2c), even with the heavy computational workload.
Therefore, it is very challenging to separate 8-kg weaning pigs in real-time using a Kinect camera
installed 3.8 m above the floor. In this study, to solve this problem, we analyze the quality of the
YOLO result (i.e., detailed discussion in Sections 3.1 and 4.2), not the quality of the input image. Thus,
we exploited the advantages of both YOLO and Image Processing Modules in order to solve the
low-contrast problem in real time.

Finally, we trained a detection model of pigs using the depth images through YOLO from the
scratch (for explanation, we denote this solution as YOLOscratch). However, in order to evaluate the
effect of the transfer learning, we additionally conducted an initial experiment using the pre-trained
model with ImageNet [62] as the parameter transfer [63]. That is, we separated the touching-pigs
with the YOLO Processing Module through the pre-trained model with ImageNet (for explanation,
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we denote this solution as YOLOtransfer). Based on the additional experiment, we confirmed that
YOLOtransfer could provide the slightly better performance than YOLOscratch (i.e., 77.50% with
YOLOtransfer vs. 75.02% with YOLOscratch). Note again that the focus of this study is to develop
a hybrid method exploiting the advantages of both CNN and image processing techniques in order
to separate the touching-pigs in real time. That is, the goal of this study is not to develop a new
CNN technique for segmentation (especially for separating touching objects), but rather to develop a
hybrid method for segmentation and evaluate its effectiveness in a pig farm environment with the
well-known CNN-based object detection technique (i.e., YOLO), by analyzing its result with respect
to segmentation and designing a new image processing-based post-processing technique. However,
there are many research issues related to transfer learning, and thus improving the accuracy of the
YOLO Processing Module with transfer learning will be interesting in future work. Although the
theoretical analysis of CNNs is not within the scope of this study, CNNs are computing progressively
more powerful invariants as depth increases [64], and this needs to be considered in future work that
develops new CNN techniques. For example, we conducted an experiment by varying the number
of training iterations with YOLOscratch. The accuracy varied with the number of training iterations
(i.e., 73.90% with 10,000 iterations, 75.02% with 50,000 iterations, 74.05% with 100,000 iterations, 70.03%
with 200,000 iterations, and 68.18% with 300,000 iterations), while the memory requirement was
independent of the number of training iterations. That is, we could empirically derive the best number
of training iterations. Although theoretically analyzing the invariant property of YOLO is out of
scope of this study, the solid theory of CNNs is still lacking [65], and thus will make for an interesting
future work.

5. Conclusions

The touching-pigs segmentation in a surveillance camera environment is an important issue to
efficiently manage pig farms. However, with a straightforward method, touching-pigs cannot be
separated accurately in real-time due to the relatively low-contrast images obtained from a Kinect
depth sensor.

In this study, we focused on separating touching-pigs in real-time using low-contrast images
in order to analyze individual pigs, with an ultimate goal of achieving 24-h continuous monitoring.
That is, we proposed a method to separate touching-pigs without the need for time-consuming
techniques. In the YOLO Processing Module, the quality of each bounding box generated from the
YOLO detector was evaluated and selected. Then, the selected bounding boxes were used to separate
the touching-pigs individually according to their relative positions in the bounding boxes. If the
results of the YOLO Processing Module were suspect, then we detected a possible boundary line
between the touching-pigs in the Image Processing Module. In particular, we utilized the hole and
concavity information to find the possible boundary line in “difficult-to-separate” cases. In other
words, the proposed method can improve the performance of the separating technique by applying
both the YOLO method and the image processing method as a hybrid approach, rather than using
only the YOLO method or using only the image processing method.

Based on the experimental results for 1500 touching-pigs obtained over 10 daytime minutes,
we confirmed that the separation accuracy was much higher than the typical object segmentation
methods (i.e., 67.49% and 49.28% of the k-means method and watershed method, respectively).
Furthermore, we also confirmed that the execution time of the proposed method was more than twice
as fast as the typical segmentation methods. That is, we could correctly separate all of the touching-pigs
without any ID switch (while the ground truth-based accuracy was 91.96%) in real-time. By extending
this study, we will develop a separation method for more than three touching-pigs, and finally a
real-time 24-h individual pig tracking system for individual pig care. In addition, the proposed method
to separate the touching-pigs can be extended to separate other touching objects, such as cells with
low-contrast images in real-time.
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