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Abstract: In this paper, a novel scheme using hybrid l1/l2 norm minimization and the orthogonal
matching pursuit (OMP) algorithm is proposed to design the sparse finite impulse response (FIR)
decision feedback equalizers (DFE) in multiple input multiple output (MIMO) systems. To reduce the
number of nonzero taps for the FIR DFE while ensuring its design accuracy, the problem of designing
a sparse FIR DFE is transformed into an l0 norm minimization problem, and then the proposed
scheme is used to obtain the sparse solution. In the proposed scheme, a sequence of minimum
weighted l2 norm problems is solved using the OMP algorithm. The nonzero taps positions can be
corrected with the different weights in the diagonal weighting matrix which is computed through
the hybrid l1/l2 norm minimization. The simulation results verify that the sparse FIR MIMO DFEs
designed by the proposed scheme get a significant reduction in the number of nonzero taps with a
small performance loss compared to the non-sparse optimum DFE under the minimum mean square
error (MMSE) criterion. In addition, the proposed scheme provides better design accuracy than the
OMP algorithm with the same sparsity level.

Keywords: multiple input multiple output (MIMO); decision feedback equalization (DFE);
sparse representation; hybrid l1/l2 norm minimization; orthogonal matching pursuit (OMP)

1. Introduction

In high-speed wireless communication systems, the multipath effect in channels will cause severe
intersymbol interference (ISI). The orthogonal frequency division multiplexing (OFDM) system [1–3],
with the presence of the orthogonal subcarriers and the cyclic prefix, has a strong ability to combat the
ISI and generally requires simple equalization. However, compared with OFDM, the single-carrier
communication has the advantage of low peak-to-average power ratio of the transmitted signal
and insensitivity to carrier frequency offsets [4]. Therefore, the single-carrier communication is
widely applied in many communication systems, such as in underwater acoustic communication [5–7]
and vehicular communication systems [8]. One of the widely used methods to reduce the ISI in
single-carrier systems is employing the finite impulse response (FIR) decision feedback equalizers
(DFE) with a large number of taps to filter the received signals. However, the design complexity of FIR
DFEs grows proportional to the square of the number of nonzero taps. Especially in multiple input
multiple output (MIMO) systems, the design complexity can be much higher because the number of
DFE taps grows proportional to the number of multiple antennas [9]. Therefore, to reduce the design
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complexity, it is necessary to design the FIR DFE with only a few nonzero taps (i.e., sparse FIR DFE).
In [10], the number of nonzero taps is reduced by choosing only a few significant taps of the minimum
mean square error (MMSE) equalizer which is not sparse in general. Nevertheless, the non-sparse
MMSE solution must be calculated first which increases the design complexity. Therefore, how to
determine the positions and values of nonzero taps directly is one of the main difficulties to design the
sparse FIR DFE.

In recent years, some new ways of designing sparse FIR DFE have arisen with the research
and application of sparse representation and compressed sensing theory [11–16]. Among them,
the compressed sensing framework for sparse signal processing is proposed in [11]. A greedy search
method to determine the nonzero taps positions of a single input single output (SISO) system is
presented in [12]. The l1 norm minimization method to design sparse filters is proposed in [13],
but the modeling without wireless channel is quite different from the sparse equalizer design. In [14],
a sparse adaptive equalizer design approach using the stochastic gradient pursuit algorithm based on
compressed sensing is proposed, but the channel impulse response in the approach is assumed to be
sparse. The new design frameworks for sparse FIR MIMO equalizers based on the orthogonal matching
pursuit algorithm (OMP) and sparse approximation of a vector using different dictionaries are exploited
in [15,16], respectively. They achieve better performance than the method in [10] with the same number
of nonzero taps. Furthermore, for the pursuit of both sparse promotion and improved accuracy,
the sparse signals reconstruction algorithms inspired by l1 and weighted l1 regularization schemes are
proposed in [17,18]; the joint smoothed l0 norm algorithm for direction-of-arrival estimation in MIMO
radar is proposed in [19].

We aim to reduce the number of nonzero taps for the FIR DFE while ensuring its design accuracy
by applying the OMP algorithm to hybrid l1/l2 norm minimization. The OMP algorithm is a popular
greedy algorithm that determines a nonzero tap position for each iteration [20]. However, there is
no correction for the selected nonzero taps positions in the previous iterations, which will reduce the
design accuracy for the sparse FIR DFE. The hybrid l1/l2 norm minimization is proposed in [21] to
make the solution for data fitting less sensitive to large residuals and more robust, and it has been
applied in many fields such as geophysics, image processing and machine learning. Within this context,
we propose a scheme using hybrid l1/l2 norm minimization and OMP algorithm. In the proposed
scheme, a minimum weighted l2 norm problems is solved using the OMP algorithm in each iteration,
and the nonzero taps positions can be corrected with the iteratively updated weights in the diagonal
weighting matrix, then the weighting matrix is updated through the hybrid l1/l2 norm minimization.

In this paper, we transform the problem of designing a sparse FIR MIMO DFE into an l0 norm
minimization problem, then use the proposed scheme to solve the l0 norm minimization problem
and obtain the sparse solution. It is verified through simulations that, when compared with the
non-sparse optimum MMSE DFE, the sparse FIR MIMO DFEs designed by the proposed scheme
obtain a significant reduction in the number of nonzero taps with a small performance loss. In addition,
the proposed scheme provides better design accuracy than the OMP algorithm with the same nonzero
taps percentage.

2. System Model

Consider a baseband equivalent discrete signal model in the MIMO systems with ni transmit
(input) antennas and no receive (output) antennas. Assuming that the channel is a linear time-invariant
Rayleigh fading channel with an oversampling factor of l, the output of the MIMO channel at time k,
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i.e., the received samples from the no receive antennas which are grouped into a lno × 1 vector can be
formed as:

yk =


y(1)

k
y(2)

k
...

y(no)
k

 =
[

H0 H1 · · · Hν

]


xk
xk−1

...
xk−ν

+


n(1)

k
n(2)

k
...

n(no)
k

, (1)

where y(j)
k = [y(j)

k (1), y(j)
k (2), · · · , y(j)

k (l)]
T
(1 ≤ j ≤ no) is the l × 1 output vector of the j-th receive

antennas, Hm(0 ≤ m ≤ ν) is the lno × ni m-th MIMO channel matrix, xk−m is the input vector of the
transmit antennas at time (k − m). The parameter ν is the maximum length of all the subchannel
impulse response. n(j)

k is an additive white Gaussian noise vector of the j-th receive antennas with
mean 0 and variance σ2. Considering a block of Nf received vector yk, (1) can be rewritten as [9]

yk:k−N f +1 = Hxk:k−N f−ν+1 + nk:k−N f +1, (2)

where

H =


H0 H1 · · · Hν

0 H0 H1 · · ·
...

. . . . . . . . .
0 · · · 0 0

0 0 · · · 0
Hν 0 · · · 0
. . . . . . . . .

...
H0 H1 · · · Hν

. (3)

Assuming that the transmit signals are independent with the average power εx, the input
autocorrelation matrix can be expressed as

Rxx , E
[
xk:k−N f−ν+1xH

k:k−N f−ν+1

]
= εxIni(N f +ν), (4)

where I is the identity matrix, and the noise autocorrelation matrix can be expressed as

Rnn , E
[
nk:k−N f +1nH

k:k−N f +1

]
= σ2In0 N f . (5)

Furthermore, the output-input crosscorrelation and the output autocorrelation matrices are
as follows

Ryx , E
[
yk:k−N f +1xH

k:k−N f−ν+1

]
= HRxx, (6)

Ryy , E
[
yk:k−N f +1yH

k:k−N f +1

]
= HRxxHH + Rnn. (7)

3. Design of Sparse FIR DFE Using Hybrid l1/l2 Norm Minimization and OMP Algorithm

In the FIR MIMO DFE model, in order to eliminate ISI and inter-antenna interference, then recover
the input signal of the i-th transmit antenna, the feedforward filter wi with lnoNf taps processes the
received signals yk, and the feedback filter bi with niNb taps convolves with the previous decision
signals, then the result combined both together is applied to the decision device to obtain current
decision signal. If the previous decision signals before time k are correct, the DFE error sample at time
k for the i-th input antenna is given by

e(i)k = x(i)k−∆ −
[
wH

i − bH
i

]
︸ ︷︷ ︸

,w̃H
i

[
yk:k−N f +1

xk−4−1:k−4−Nb

]
︸ ︷︷ ︸

,ỹ

, (8)

where x(i)k−∆ is the transmit signal at time (k − ∆) by the i-th input antenna, and ∆ is an integer
representing the decision delay, usually 0 ≤ ∆ ≤ N f + ν− 1. Using N = lno N f + ni Nb to represent
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the number of DFE taps for simplicity, so w̃i is an N × 1 vector. Then the equalizer mean square error
(MSE) for the i-th input antenna is expressed as

ξi , E
[∣∣∣e(i)k

∣∣∣2] = E
[∣∣∣x(i)k−∆ − w̃H

i ỹ
∣∣∣2]

= εx − w̃H
i r̃∆,i − r̃H

∆,iw̃i + w̃H
i Rỹỹw̃i

, (9)

where Rỹỹ , E
[
ỹỹH

]
, r̃∆,i = Rỹx1∆,i, Rỹx , E

[
ỹxH

k:k−N f−ν+1

]
and 1∆,i is the (ni∆ + i)-th column of

Ini(N f +ν). Performing the Cholesky decomposition Rỹỹ = L̃L̃
H

, where L̃ is an N × N lower triangular
matrix, (9) can be rewritten as

ξi = εx − r̃H
∆,iL̃

−H
L̃
−1

r̃∆,i︸ ︷︷ ︸
,ξmin,i

+ ‖L̃H
w̃i − L̃

−1
r̃∆,i‖

2

2︸ ︷︷ ︸
,ξexcess,i

. (10)

From (10) it shows that the different choice of w̃i can only change ξexcess,i, and ξmin,i remains
unchanged. Obviously, ξexcess,i ≥ 0. Therefore, when ξexcess,i = 0, w̃i achieves the optimum solution
under the MMSE criterion as

w̃opt,i = L̃
−H

L̃
−1

r̃∆,i = R−1
ỹỹ r̃∆,i. (11)

w̃opt,i is usually non-sparse with too much complexity to compute directly. Therefore, in order to
reduce the computational complexity, considering to reduce the number of the DFE nonzero taps at
the cost of a small increase in the equalizer MSE, i.e., finding the sparse solution w̃s,i for w̃i when
ξexcess,i ≤ θ (θ > 0), the sparse FIR MIMO DFE design problem can be transformed into the l0 norm
minimization problem as follows [15]

w̃s,i = argmin
w̃i

‖w̃i‖0 subject to ‖L̃H
w̃i − L̃

−1
r̃∆,i‖

2

2 ≤ θ. (12)

In general, finding the optimal solution of the above l0 norm minimization problem is NP-hard.
One of the approaches to computing the suboptimal solution for the approximation of (12) is greedy
algorithms. To design the sparse solution for the FIR MIMO DFE, in this paper, we propose the scheme
based on the OMP algorithm which is a widely-used greedy algorithm.

The OMP algorithm selects an atom from the matrix L̃
H

(i.e., the column vector of the matrix

L̃
H

) that is most correlated with the current residual, then solves a constraint least squares problem
to obtain all the selected atoms coefficients and updates the residual in each iteration. There is no
correction for the selected nonzero taps positions in OMP algorithm, which will reduce the design
accuracy for the sparse FIR DFE. To solve the problem, in this paper, we propose the scheme using
hybrid l1/l2 norm minimization and OMP algorithm.

According to the hybrid l1/l2 norm minimization, at the (k + 1)-th iteration, the proposed scheme

will reweight the residual vector r = L̃
H

w̃i − L̃
−1

r̃∆,i with an N × N iteratively updated diagonal
weighting matrix Q(k), and minimize the weighted l2 norm

J(w̃i) = ‖Q(k)L̃
H

w̃i −Q(k)L̃
−1

r̃∆,i‖
2

2. (13)

Then solve the above problem using the OMP algorithm to find a sparse solution. Q(k) is updated
from the current residual through the hybrid l1/l2 norm minimization. The diagonal entries of Q(k)

are as follows
q(k)nn =

1(
1 + (r(k)n /µ)

2
)1/4 , 1 ≤ n ≤ N, (14)
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where r(k)n is the n-th entry of the current residual r(k) and µ is determined by the sparse solution.
Substituting (14) into (13), minimizing (13) is equivalent to minimizing

J(w̃i) =
N

∑
n=1

j(r(k)n ) =
N

∑
i=1

(r(k)n )
2√

1 + (r(k)n /µ)
2

. (15)

For an arbitrary value of r(k)n , the approximation of j(r(k)n ) is

j(r(k)n ) ≈

 (r(k)n )
2
,
∣∣∣r(k)n

∣∣∣� µ

µ
∣∣∣r(k)n

∣∣∣, ∣∣∣r(k)n

∣∣∣� µ
(16)

which suggests J(w̃i) behaves like an l2 norm for small residuals and like an l1 norm for large residuals.
Therefore, the hybrid l1/l2 norm minimization will make the sparse solution more robust and accurate
by decreasing the sensitivity of the solution to large residuals.

The procedures of the proposed scheme for finding the sparse solution of the FIR MIMO DFE are
as follows:

Initialization: Set the initial residual r(0) = L̃
−1

r̃∆,i, define the index set Ω = {1, 2, · · · , N},
and initialize the diagonal weighting matrix Q(0) = diag(1, 1, · · · , 1) for the first iteration.

Main iteration: Set k = 1 and perform the following steps:

Step 1: Reweight the residual vector r = L̃
H

w̃i − L̃
−1

r̃∆,i and formulate the problem

min‖Q(k−1)L̃
H

w̃i −Q(k−1)L̃
−1

r̃∆,i‖
2

2 subject to ‖w̃i‖0 ≤ k. (17)

Set A(k) = Q(k−1)L̃
H

and normalize the column vectors {a(k)
j }

N

j=1
of the matrix A(k) as follows

d(k) = A(k)Λ(k) = [d(k)
1 , d(k)

2 , · · · , d(k)
N ] (18)

where Λ(k) = diag
(

1/‖a(k)1 ‖2, 1/‖a(k)2 ‖2, · · · , 1/‖a(k)N ‖2

)
. Set z(k) = (Λ(k))

−1
w̃i and β(k) = Q(k−1)L̃

−1
r̃∆,i,

then (14) becomes

min‖D(k)z(k) − β(k)‖
2
2 subject to ‖z(k)‖0 ≤ k (19)

Step 2: Solve (16) with the OMP algorithm. Set the equalizer nonzero taps initial index set I0 = ∅,
initialize the residual r0 = β(k). In the t-th (1 ≤ t ≤ k) iteration, the process is as follows:

(1) Calculate the correlation between the residual rt−1 and the column vector of the
matrix D(k), and find the index λt to the vector d(k)

λt
which is most correlated with rt−1, i.e.,

λt = argmax
j

∣∣∣〈rt−1, d(k)
j

〉∣∣∣, j ∈ Ω− It−1;

(2) Update the nonzero taps index set It = It−1 ∪ {λt}, and then update the set of column vectors
Φ(k)

t = [d(k)
λ1

, d(k)
λ2

, · · · , d(k)
λt

] corresponding to It;

(3) Compute the sparse solution ẑ(k)t = argmin‖Φ(k)
t z(k)t − β(k)‖2, and update the residual

rt = β(k) −Φ(k)
t ẑ(k)t ;

(4) Check the value of t. If t = k, update the sparse solution ẑ(k) = ẑ(k)t and residual

r(k) = (Q(k−1))
−1

rt, then proceed to Step 3, else set t = t + 1 and go to (1).

Step 3: Check the stopping rule whether ‖r(k)‖2
2 ≤ θ. If met, get the sparse solution w̃s,i = Λ(k)ẑ(k)

for the FIR DFE, and exit the algorithm; else update the diagonal weighting matrix Q(k) whose diagonal
entries are determined by (14). From [22], set µ = max(

∣∣∣ẑ(k)∣∣∣)/100. Then set k = k + 1 and go to Step 1.
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4. Simulation Results

In the following, the simulation results are provided to verify the performance of the proposed
scheme for sparse FIR MIMO DFE design in two different channels. As a comparison, the performance
of the optimum MMSE DFE and the OMP method in [15] are presented respectively.

Two different multipath Rayleigh fading channels, namely ITU (International Telecommunication
Union) Vehicular A channel [23] and an exponential decay channel, are simulated. ITU Vehicular
A channel has a sparse power delay profile (PDP) with 6-paths spanning about 13 symbol periods.
The exponential decay channel has a non-sparse PDP as ρ(n) = 10−n/10, 0 ≤ n ≤ 12 with 13-paths.
The simulation system uses binary phase shift keying (BPSK) modulation. The decision delay is set
to be ∆ = N f –1, which is optimum when Nb = ν for DFEs [24]. The small increase θ in the equalizer
MSE of the sparse DFE compared with the MMSE DFE is determined by the maximum tolerable
performance loss ηmax as θ = (10ηmax/10− 1)ξmin, where ξmin is the MSE for the MMSE DFE. We define
the signal-to-noise (SNR) as SNR , 10lg(εx/σ2), set the oversampling factor l = 2 and MIMO DFEs
with ni = 2 and no = 2.

Figure 1 plots the nonzero taps percentage for the sparse SISO DFEs and MIMO DFEs versus the
performance loss ηmax using the proposed scheme respectively. It is shown that the number of nonzero
taps for DFE is reduced with the increase of ηmax. When ηmax = 0.4 dB, the nonzero taps for both
the sparse SISO DFEs and MIMO DFEs are reduced by more than 70% and 60% in the two different
channels respectively. Therefore, comparing the ITU Vehicular A channel with sparse PDP, the FIR
DFEs needs more nonzero taps to eliminate the ISI caused by the multipath effect in the exponential
decay channel with more paths. Furthermore, in MIMO systems, the DFEs needs more nonzero taps
to eliminate both ISI and inter-antenna interference, as shown in Figure 1, MIMO DFEs has a larger
percentage of nonzero taps when compared with SISO DFEs.
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Figure 1. Nonzero taps percentage for the sparse SISO DFEs and MIMO DFEs versus ηmax with
SNR = 20 dB and Nf = 30.

Figure 2 gives a single example of the SISO DFE by the three design methods in ITU Vehicular A
channel. Note that only the nonzero taps are marked, and the tap indices below 25 are insignificant to
show. It is shown that there are many taps whose values are close to zero in the non-sparse MMSE DFE.
Compared with the MMSE DFE, most of the taps for sparse FIR DFEs designed by the OMP method
and the proposed scheme are zero, and the tap positions selected by the two methods are not identical.

To verify the performance of the proposed scheme, we compare the bit error rate (BER) and the
normalized mean square error (NMSE) for the three design methods. Figures 3 and 4 compare the
BER performance and the equalizer NMSE respectively in ITU Vehicular A channel. The sparse DFEs
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designed by the proposed scheme and the OMP algorithm are constrained to have the same sparsity
level in the simulation. The simulation results show that the maximum SNR loss for the SISO DFEs and
MIMO DFEs designed by the proposed scheme are only 0.4 dB and 0.6 dB when the number of nonzero
taps is reduced by more than 83% and 80%, respectively. That is, the BER performance and the NMSE
for the sparse DFEs designed by the proposed scheme are similar to the MMSE DFE performance.
As shown in Figure 3, the BER performance for the sparse DFEs designed by the proposed scheme
outperform the OMP algorithm with the same sparsity level. Besides, by comparing the NMSE of the
two methods, it is known that the design accuracy of the proposed scheme is superior to the OMP
method. Considering that the MIMO system has a certain diversity gain, the simulation results in
Figure 3 show that the BER performance of the MIMO DFEs have a significant improvement than the
SISO DFEs.

Sensors 2018, 18, x 7 of 11 

Figure 2 gives a single example of the SISO DFE by the three design methods in ITU Vehicular 
A channel. Note that only the nonzero taps are marked, and the tap indices below 25 are insignificant 
to show. It is shown that there are many taps whose values are close to zero in the non-sparse MMSE 
DFE. Compared with the MMSE DFE, most of the taps for sparse FIR DFEs designed by the OMP 
method and the proposed scheme are zero, and the tap positions selected by the two methods are not 
identical. 

 

Figure 2. Single example of the SISO DFE by the three design method in Vehicular A channel with 

maxη  = 0.6 dB, SNR = 20 dB and Nf = 25. 

To verify the performance of the proposed scheme, we compare the bit error rate (BER) and the 
normalized mean square error (NMSE) for the three design methods. Figures 3 and 4 compare the 
BER performance and the equalizer NMSE respectively in ITU Vehicular A channel. The sparse DFEs 
designed by the proposed scheme and the OMP algorithm are constrained to have the same sparsity 
level in the simulation. The simulation results show that the maximum SNR loss for the SISO DFEs 
and MIMO DFEs designed by the proposed scheme are only 0.4 dB and 0.6 dB when the number of 
nonzero taps is reduced by more than 83% and 80%, respectively. That is, the BER performance and 
the NMSE for the sparse DFEs designed by the proposed scheme are similar to the MMSE DFE 
performance. As shown in Figure 3, the BER performance for the sparse DFEs designed by the 
proposed scheme outperform the OMP algorithm with the same sparsity level. Besides, by comparing 
the NMSE of the two methods, it is known that the design accuracy of the proposed scheme is 
superior to the OMP method. Considering that the MIMO system has a certain diversity gain, the 
simulation results in Figure 3 show that the BER performance of the MIMO DFEs have a significant 
improvement than the SISO DFEs. 

Figure 2. Single example of the SISO DFE by the three design method in Vehicular A channel with
ηmax = 0.6 dB, SNR = 20 dB and Nf = 25.Sensors 2018, 18, x 8 of 11 

 

Figure 3. BER versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with maxη  = 0.6 
dB and Nf = 50. 

 

Figure 4. NMSE versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with maxη  = 
0.6 dB and Nf = 50. 

To verify the performance of the proposed scheme in different channels, Figures 5 and 6 show 
the simulation results in the exponential decay channel. Comparing with the OMP method, the 
results also show that the proposed scheme has better BER performance and smaller NMSE with the 
same sparsity level. Therefore, the proposed scheme provides excellent performance in different 
channel conditions. 

Figure 3. BER versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with ηmax = 0.6 dB
and Nf = 50.



Sensors 2018, 18, 1860 8 of 10

Sensors 2018, 18, x 8 of 11 

 

Figure 3. BER versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with maxη  = 0.6 
dB and Nf = 50. 

 

Figure 4. NMSE versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with maxη  = 
0.6 dB and Nf = 50. 

To verify the performance of the proposed scheme in different channels, Figures 5 and 6 show 
the simulation results in the exponential decay channel. Comparing with the OMP method, the 
results also show that the proposed scheme has better BER performance and smaller NMSE with the 
same sparsity level. Therefore, the proposed scheme provides excellent performance in different 
channel conditions. 

Figure 4. NMSE versus SNR for SISO DFE and MIMO DFE in the Vehicular A channel with ηmax = 0.6 dB
and Nf = 50.

To verify the performance of the proposed scheme in different channels, Figures 5 and 6 show the
simulation results in the exponential decay channel. Comparing with the OMP method, the results also
show that the proposed scheme has better BER performance and smaller NMSE with the same sparsity
level. Therefore, the proposed scheme provides excellent performance in different channel conditions.Sensors 2018, 18, x 9 of 11 

 

Figure 5. BER versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with 

maxη  = 0.6 dB and Nf = 50. 

 

Figure 6. NMSE versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with 

maxη  = 0.6 dB and Nf = 50. 

5. Conclusions 

In this paper, a novel scheme using hybrid l1/l2 norm minimization and OMP algorithm has been 
proposed to design the sparse FIR MIMO DFE. The proposed scheme solves a of minimum weighted 
l2 norm problem using OMP algorithm in each iteration, then the weights weighting matrix is 
updated through the hybrid l1/l2 norm minimization. The simulation results demonstrate that the 
sparse FIR MIMO DFEs designed by the proposed scheme achieve a significant reduction in the 
number of nonzero taps with a small performance loss compared to the non-sparse MMSE DFE. 
Meanwhile, the proposed scheme provides better design accuracy than the OMP algorithm with the 
same sparsity level. 

Author Contributions: Conceptualization, L.Y. and J.Z.; Investigation, L.Y., J.Z., W.X. and H.L.; Writing–original 
draft, L.Y. 

Figure 5. BER versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with
ηmax = 0.6 dB and Nf = 50.



Sensors 2018, 18, 1860 9 of 10

Sensors 2018, 18, x 9 of 11 

 

Figure 5. BER versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with 

maxη  = 0.6 dB and Nf = 50. 

 

Figure 6. NMSE versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with 

maxη  = 0.6 dB and Nf = 50. 

5. Conclusions 

In this paper, a novel scheme using hybrid l1/l2 norm minimization and OMP algorithm has been 
proposed to design the sparse FIR MIMO DFE. The proposed scheme solves a of minimum weighted 
l2 norm problem using OMP algorithm in each iteration, then the weights weighting matrix is 
updated through the hybrid l1/l2 norm minimization. The simulation results demonstrate that the 
sparse FIR MIMO DFEs designed by the proposed scheme achieve a significant reduction in the 
number of nonzero taps with a small performance loss compared to the non-sparse MMSE DFE. 
Meanwhile, the proposed scheme provides better design accuracy than the OMP algorithm with the 
same sparsity level. 

Author Contributions: Conceptualization, L.Y. and J.Z.; Investigation, L.Y., J.Z., W.X. and H.L.; Writing–original 
draft, L.Y. 

Figure 6. NMSE versus SNR for SISO DFEs and MIMO DFEs in the exponential decay channel with
ηmax = 0.6 dB and Nf = 50.

5. Conclusions

In this paper, a novel scheme using hybrid l1/l2 norm minimization and OMP algorithm has
been proposed to design the sparse FIR MIMO DFE. The proposed scheme solves a of minimum
weighted l2 norm problem using OMP algorithm in each iteration, then the weights weighting matrix
is updated through the hybrid l1/l2 norm minimization. The simulation results demonstrate that
the sparse FIR MIMO DFEs designed by the proposed scheme achieve a significant reduction in
the number of nonzero taps with a small performance loss compared to the non-sparse MMSE DFE.
Meanwhile, the proposed scheme provides better design accuracy than the OMP algorithm with the
same sparsity level.
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