
sensors

Article

A Microelectrode Array with Reproducible
Performance Shows Loss of Consistency Following
Functionalization with a Self-Assembled
6-Mercapto-1-hexanol Layer

Damion K. Corrigan 1,2 ID , Vincent Vezza 2, Holger Schulze 3, Till T. Bachmann 3,
Andrew R. Mount 1, Anthony J. Walton 4 ID and Jonathan G. Terry 4,*

1 EaStCHEM, School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings,
West Mains Road, Edinburgh EH9 3FJ, UK; damion.corrigan@strath.ac.uk (D.K.C.);
a.mount@ed.ac.uk (A.R.M.)

2 Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NS, UK;
vincent.vezza@strath.ac.uk

3 Division of Infection and Pathway Medicine, Edinburgh Medical School, The University of Edinburgh,
Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK; holger.schulze@ed.ac.uk (H.S.);
till.bachmann@ed.ac.uk (T.T.B.)

4 Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh,
The King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK; anthony.walton@ed.ac.uk

* Correspondence: jon.terry@ed.ac.uk

Received: 15 May 2018; Accepted: 6 June 2018; Published: 9 June 2018
����������
�������

Abstract: For analytical applications involving label-free biosensors and multiple measurements,
i.e., across an electrode array, it is essential to develop complete sensor systems capable
of functionalization and of producing highly consistent responses. To achieve this,
a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc
microelectrodes was designed in an integrated 3-electrode system configuration and then
fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for
initial electrochemical characterization of the individual working electrodes. These confirmed the
expected consistency of performance with a high degree of measurement reproducibility for each
microelectrode across the array. With the aim of assessing the potential for production of an enhanced
multi-electrode sensor for biomedical use, the working electrodes were then functionalized with
6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification
process, which involves the same principles of thiol attachment chemistry and self-assembled
monolayer (SAM) formation commonly employed in the functionalization of electrodes and the
formation of biosensors. Following this SAM formation, the reproducibility of the observed
electrochemical signal between electrodes was seen to decrease markedly, compromising the ability
to achieve consistent analytical measurements from the sensor array following this relatively
simple and well-established surface modification. To successfully and consistently functionalize the
sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support
adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore
demonstrates in a high throughput manner irreproducibility in the SAM formation process at the
higher concentration, even though these electrodes are apparently functionalized simultaneously in
the same film formation environment, confirming that the often seen significant electrode-to-electrode
variation in label-free SAM biosensing films formed under such conditions is not likely to be due to
variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer
formation process at these microelectrodes.
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1. Introduction

Sensor systems are required for effective monitoring and control of manufacturing processes [1–3],
measurement of water cleanliness [4,5], environmental sensing [6,7] and biomedical applications [8–11].
A range of sensing principles can be employed for system development and these include: optical,
piezoelectric and electrochemical devices. It is well established that due to their high Faradaic current
densities, hemispherical diffusion patterns and relative insensitivity to convection, microelectrodes
offer several advantages for electrochemical sensing [12,13]. In the manufacture of microelectrode
systems capable of sensing multiple analytes on a single device, photolithographic microfabrication
techniques from the silicon integrated circuit industry are particularly attractive due to the ability
to fabricate precise and reproducible structures of known shape and dimension [14]. Recent studies
have demonstrated the successful fabrication of devices using such methods and the subsequent
electrochemical measurements on electrodes of controlled shape and dimensions [15–17]. In addition,
recent work has systematically investigated the combinations of device layers and materials to achieve
optimal electrochemical responses and durability [18].

Label-free sensing is an important area, particularly for biomedical applications where fast times to
result are desirable and there is a requirement to design assays requiring minimal training for operators
and which do not have overly complex protocols. In addition, the need to perform multi-analyte
assays is becoming increasingly important, particularly since the complexity of many modern clinical
conditions has become better understood. For example, the range of antibiotic resistance genes is very
large, along with the range of pathogenic organisms which can cause an infection. As a result, it is
important to be able to design multiplex, label-free assays which can simultaneously detect several
targets. A common approach for carrying out label-free electrochemical measurements is to use
electrochemical impedance spectroscopy (EIS) [19,20] where a DC bias is imposed upon the electrode
and then a small AC voltage perturbation is applied across a range of frequencies. The response,
often plotted as a Nyquist plot, allows for the determination of several important physical processes
taking place at the electrode-solution interface. These phenomena include the solution resistance
(Rs), the double layer capacitance (CDL), the charge transfer resistance (RCT), the Warburg impedance
(W) and the non-linear resistance (RNL) which is usually indicative of steady state diffusion to a
microelectrode. This measurement has been used for many biosensing applications and a common
variant is to functionalize the electrode surface with a biological receptor (e.g., DNA or an antibody)
and measure a change in RCT upon binding of the target analyte [21].

Previous work has demonstrated the development of label-free biomedical assays which
utilize traditionally sized “macro” electrodes and there are several well-established approaches
and protocols for the functionalization and development of such electrochemical assays [22–25].
What is less commonly reported is the development of label-free measurements which utilize
microelectrodes, EIS [26,27] and in particular arrays of chemically functionalized microelectrodes
for biomedical measurements. This is in part due to the additional complexity of the EIS response
for a microelectrode [28] and also because of the difficulties associated with reliable and reproducible
manufacture of microelectrodes and effective SAM formation on microelectrode surfaces [29].

In this paper, we report the design, fabrication and characterization of a multi electrode array.
Initially device performance is investigated to quantify variation between electrode sensors on
the array. The electrodes are then chemically functionalized with a self-assembled monolayer
(SAM) and the variation inherent following the functionalization procedure is quantified. Finally,
the chemical functionalization step is modified in order to produce a more consistent and more
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typical microelectrode response, which points towards an enhanced method for chemically modifying
microelectrode systems for label-free biosensing applications involving EIS measurements.

2. Materials and Methods

2.1. Microfabrication of Electrode Devices

The chip was designed to bear 24 equivalent 50 µm equivalent Pt disc electrodes. The electrodes
are positioned in groups of 12 around two reference electrodes in a manner which means they are all
equidistant from and in an equivalent configuration with respect to the relevant reference electrode
(see Figure 1A,B). Each interdigitated finger has been passivated with Parylene which was later etched
to expose a 50 µm disc (see Figure 1C). The chip was produced following the process flow illustrated
in Figure 1D. Firstly, a 1 µm thick layer of silicon dioxide was thermally grown to provide electrical
isolation between the electrodes and underlying silicon carrier wafer (a). The conductive electrode
layer was patterned using a lift-off process (b,c) and the electrodes themselves comprised a 150 nm
layer of platinum upon a 5 nm adhesion layer of chrome (d). To ensure that only the desired electrode
areas came into contact with the solution under test, a 1 µm layer of Parylene was deposited over the
samples to act as a passivation layer (f). Contact holes were then opened in the Parylene to reveal
only the electrodes and contact pads of the device. This was achieved by patterning of the wafer
using standard photolithography (g), followed by reactive ion etching in oxygen plasma to reveal the
electrode areas (h). Full details off the fabrication process are detailed elsewhere [28].
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Figure 1. (A) Layout of the device. (B) Structures on the wafer prior to dicing. (C) Close up image of the
working electrodes located at the end of the tracks. Reference electrode located in the spaces between
the microdiscs. (D) Illustration of the microfabrication processes (a–h) used for device production.

2.2. Electrochemical Measurements

CV and EIS measurements were performed in a measurement buffer consisting of various
concentrations of potassium ferricyanide, potassium ferrocyanide, potassium chloride and potassium
nitrate. CV measurements were performed using the on chip platinum counter and Ag/AgCl/Cl−

reference electrode formed by placing the Ag/AgCl derivatized reference electrode in known and
constant concentration Cl− electrolyte solutions and the potential of the working electrode was
swept between −0.05 and 0.5 V with a scan rate of 0.02 Vs−1. EIS measurements were performed
by superimposing an AC potential of 10 mV rms onto the open circuit potential over a frequency
range of 100 kHz to 0.1 Hz and measuring the current response. Thirty frequencies were measured,
and frequency values were selected on a logarithmic basis. Nyquist plots were produced (Z’ vs. −Z”)
and circuit fitting was performed in order to extract values for the different circuit elements of an
equivalent circuit.
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2.3. Plating of Silver Reference Electrode and Electrode Cleaning

To obtain a silver/silver chloride reference electrode it was necessary to plate silver onto
the platinum structure intended for use as reference electrode. Using a three electrode system
(which consists of the on-chip platinum electrode to be plated, and external Ag/AgCl reference
and platinum wire counter electrodes) and a degassed solution of 2.0 M potassium thiocyanate and
20 mM silver nitrate, chronopotentiometry was performed (Figure 2A shows the chronopotentiogram).
This involved passing a current of −500 µA for 45 s. Once plated, exposure of the silver surface to
50 mM ferric chloride solution for 1 min [19], resulting in the complete functionalization to Ag/AgCl.
Electrode structures can be seen in Figure 2B–E respectively.
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Figure 2. (A) Chronopotentiogram resulting from galvanostatic silver plating (−500 nA) of the
on-chip reference electrode in 2.0 M potassium thiocyanate and 10 mM silver nitrate vs. an external
Ag/AgCl/Cl− (3.5 M) reference electrode. (B–E) Images of electrode devices—unplated ×20 (B) and
×80 (C) and following plating and Ag/AgCl functionalization ×20 (D) and ×80 (E). (F) Cleaning
voltammogram of Pt microelectrodes in 0.1 M sulfuric acid.

Before performing electrochemical characterization experiments, it was necessary to ensure
equivalence of area and cleanliness of the microdisc electrodes. Cleaning was carried out by cycling the
electrode potential between −0.35 and 1.8 V vs. an external Ag/AgCl/Cl− (3 M) reference electrode
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in 0.1 M H2SO4 starting at 0 V, using a scan rate of 100 mVs−1. A cleaning voltammogram for one of
the electrodes is shown in Figure 2F, in which the characteristic peaks of hydrogen absorption in the
cathodic section of the scan can be seen (a), followed by platinum oxide reduction (b) and formation
of platinum oxide at the anodic end of the sweep (c). Repeated cycling of the electrodes caused a
growth in the peaks associated with cycling platinum in sulfuric acid, which eventually stabilized
after 30–40 cycles. Once the voltammograms had stabilized and the electrodes showed equivalence,
the cleaning process continued until all electrodes were ready for analytical measurements.

3. Results and Discussion

3.1. Electrochemical Characterisation of a 50 µM Disc from the Array

In this section, the initial electrochemical response from a single electrode is considered.
The consistency of responses, which was then measured using different electrodes on the chip,
is reported in later sections. Figure 3A shows the voltammetric response in 1.0 mM potassium
ferri-ferrocyanide, 1.0 mM potassium chloride and 100 mM potassium nitrate solution, which is an
initial characterization and for which the diffusion limiting current for the oxidation of potassium
ferrocyanide to ferricyanide was evident (at and above E = +0.4 V) of 7.7 nA. The limiting current
associated with the reduction of potassium ferricyanide to ferrocyanide (at and around E = 0.0 V) was
larger, at −9.3 nA which is expected as a consequence of the slightly faster diffusion coefficient for
this species [30]. The overall response observed in the voltammogram was typical of a microelectrode,
in that a “wave”-like CV was apparent which, when the scan rate was changed, was found to be scan
rate independent.

The impedimetric response was also typical of a microelectrode (Figure 3B); fitting to the
established modified Randles’ equivalent circuit (Figure 3C), which includes a non-linear resistance
in parallel with the Warburg impedance in order to model the hemispherical diffusion profile [28].
(EIS data is presented in the form of a Nyquist plot with each point representing a single frequency
and points going from high to low frequency away from the origin). The red line in Figure 3B is the
equivalent circuit fit, which produced values for CDL of 0.589 nF, RCT of 2.77 MΩ and RNL of 7.23 MΩ.
The error associated with these fitted values ranged between 0.4 and 2%, confirming the goodness of fit.

Equation (1) describes the limiting current for a microdisc electrode:

iL = 4nFDc∞r (1)

where iL is the limiting current, n is the number of electrons transferred, F is Faraday’s constant, D is
the diffusion coefficient, c∞ is the bulk concentration of the redox species and r is the electrode radius.
Equation (2) describes the non-linear resistance (RNL) which is associated with the limiting current and
is observed in the impedimetric response for a microelectrode:

RNL =
4RT
nFiL

(2)

Since RNL will be a more accurate measure of electrode performance due to the slight
amount of double layer charging in the voltammogram, using literature values of 7.3 × 10−6 and
6.7 × 10−6 cm2 s−1 [30,31] respectively for the diffusion of ferri and ferrocyanide (298 K) to give a
combined diffusion coefficient of 7.0 × 10−6 cm2 s−1, the fitted value for RNL and Equation (2), the total
magnitude of the current is predicted to be 14.2 nA. The initial voltammetric characterization followed
by EIS measurements and equivalent circuit fitting provided satisfactory evidence of microelectrode
performance. Given that electrode behavior was satisfactory it was then decided to investigate
inter-electrode variation across the array.
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Figure 3. (A) CV and (B) (EIS) from a 50 µm electrode on the chip which was immersed in 1 mM
potassium ferri-ferro cyanide + 1 mM potassium chloride + 100 mM potassium nitrate. Scan range—0.05
to 0.5 V and scan rate 0.02 Vs−1. EIS performed at open circuit potential. (C) Modified Randles’
equivalent circuit for EIS response of a microelectrode.

3.2. Electrochemical Response Following Functionalisation with 6-Mercapto-1-hexanol (MCH)

Cyclic Voltammetry

The microelectrodes were incubated with the short chain alkanethiol MCH using an established
protocol [22]. The molecule forms self-assembled monolayers on platinum and gold surfaces and
briefly, involved exposing the chip to a 30 µM MCH solution for 24 h with a final backfilling step of
1 h in 1.0 mM MCH solution. The formation of an alkane thiol layer is observed experimentally as
an increased insulation of the electrode manifesting as a reduction in total current and an increase
in impedance compared to clean electrodes. The cyclic voltammograms (Figure 4A) maintained a
sigmoidal shape but showed reduced limiting currents due to a reduction in effective electrode radius
due to presence of a chemical film on the surface. Figure 4B shows the mean limiting currents and
standard deviations associated with the clean and functionalized electrodes. To summarize, IL for
oxidation decreased from 7.35 to 5.31 nA with the S.D. increasing from 0.3 to 1.45 and for the reduction
reaction the limiting current decreased from 9.07 nA to 6.41 nA with the S.D. increasing from 0.31
to 1.87. The decrease in limiting current is due to the formation of a blocking film, which reduces
the effective area. Within the film there are pinholes which facilitate more rapid electron transfer
reactions than areas bearing SAM. It is these sites which it has previously been suggested are more
prevalent within SAMs formed on microelectrodes than macroelectrodes [29]. The increase in current
variation as shown by increased S.D. for the limiting current reflects the irreproducibility associated
with SAM formation on the electrode surface. Characterization of the electrodes as displayed in
Figure 4A and reported in the S.D. associated with the limiting current showed the response to be
highly consistent across the chip prior to chemical modification. These initial data recorded prior to
MCH functionalization, with low inter electrode variation highlight the benefit of the microfabrication
approach for microeletrode production and display similar errors to our previously published work
which contrast with the higher errors typically observed from employing glass pulled microelectrodes
to perform electroanalytical measurements [32].
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3.3. Electrochemical Impedance Spectroscopy

All though CV experiments give an indication of electrode behavior and degree of
functionalization, EIS experiments allow several important electrochemical processes to be quantified
simultaneously. Following functionalization with MCH, EIS experiments revealed an overall increase in
impedance (see Figure 5A,B), most obviously through increases in RCT and RNL which were indicative
of blocking of the electrode surface (increased tunneling distance at sites bearing the SAM and a
reduction in effective electrode radius). Figure 5A is intended as a simple visual demonstration of the
increased variation in the EIS response when measured in 2.5 mM ferri-ferrocyanide before and after
chemical modification. Figure 5B shows changes in the equivalent circuit parameters as fitted for EIS
responses recorded in 1.0 mM potassium ferri-ferrocyanide solution and as expected, changes were
observed for CDL due to the formation of a dielectric barrier, which can be modelled as a parallel plate
capacitor [33]. An increase in RS was also noteworthy due to the presence of an organic film on the
electrode surface changing the conductivity between working and reference electrodes. Changes in
RS were not observable when using an external reference electrode to record the measurement and
also not when monitoring changes in benchmark macro electrode systems during testing. This finding
is interesting because it demonstrates the high sensitivity of the designed array with close spacing
between WE and RE allowing visualization of a formed organic film through its presence in the
conducting path. EIS data and fitted circuit parameters presented in Figure 5A,B provide a picture
of increased inter electrode variation in the EIS response following SAM functionalization. Not only,
as previously discussed, do the individual fitted parameters change but also the overall “goodness
of fit” as represented by the χ2 value decreased following functionalization. This is visualized in
Figure 5A where EIS responses from modified electrodes showed heterogeneity, raising the issue of
selection of an appropriate equivalent circuit for optimum fitting of the response. To interpret these
data, it is useful to consider the factors which affect the magnitude of both RCT and the limiting current
(see Equations (2) and (3)).

RCT =
4RTL

n2 ADF2c∞
(3)

The value of the limiting currents recorded during cyclic voltammetry decreased by 28% and
29% for oxidation and reduction respectively. Changes in IL could result from a decrease in effective
electrode area of a change in D, due to the presence of MCH film. In comparison, the fitted value of
RCT increased by 740%. One way to interpret this is to consider the expressions for IL, RCT and RNL
(Equations (1)–(3)). RCT is inversely proportional to the electrode area and IL and RNL proportional to
and inversely proportional to the electrode radius respectively. As a result, RCT will be more sensitive
to a change in effective area through formation of a film containing pinholes and this is in agreement
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with previously published studies which examine the formation of SAM layers on microelectrodes
and conclude that increased pinhole formation is observed [29]. In this work the authors also reported
that it was necessary to include additional elements in the equivalent circuit fit in order to successfully
model the pinholes and defects present on a microelectrode-based SAM. However, although it should
be noted that this modification to the equivalent circuit should produce better individual fits to
EIS data collected on individual electrodes, it is the variation in overall impedance response across
multiple electrodes in Figure 5A that is most striking, and indicates the observed variation is due to
the differences in the SAM film formation process.
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potassium nitrate. (B) Mean and Standard Deviations (Bars) associated with the parameters obtained
from equivalent circuit fitting (RS, CDL, RCT, RNL and global χ2) for clean and chemically modified
microelectrodes (n = 6), recorded in 1.0 mM ferri-ferrocyanide + 1 mM potassium chloride + 100 mM
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3.4. Attempts to Improve Consistency of the Chemical Modification of Sensor Surface

In the standard protocol developed for a macroelectrode, a sixteen hour incubation and a SAM
forming solution in the micromolar concentration range, there is a large excess of available SAM
forming molecules in the solution and several orders of magnitude greater timescale than that required
to generate a monolayer of chemisorbed SAM molecules. For microelectrode systems with their
enhanced diffusional rates this excess is even larger. Such high concentration conditions also favor the
formation of multilayers, despite the weaker surface bonding characteristic of physisorption, and of
SAM aggregates/micelles in solution. To produce a consistent SAM layer on microelectrodes the
results presented so far show that it is necessary to modify the conditions of formation to improve
reproducibility of the resulting electrochemical response. There are examples in the literature of
dilution of SAM forming solutions [34] and protocols with abbreviated incubation times compared
to the standard sixteen hours [26]. In this study, it was therefore decided to dilute the SAM forming
molecules by a factor of ten thousand from 30 µM to 3 nM with the aim of reducing SAM aggregation
and/or the degree of multilayer formation. The incubation time remained unchanged at 16 h and a 1 h
backfilling step using 1.0 mM MCH was also employed. Figure 6A shows the EIS response from three
electrodes: a clean electrode, an electrode incubated in 30 µM MCH plus backfilling and an electrode
incubated with diluted SAM forming solution (3 nM) plus backfilling and it can be seen that the largest
resistance was recorded from the electrode prepared using the diluted SAM forming solution. It can
also be seen that the response appeared typical of a microelectrode with one semi-circle apparent for
RCT and another feature still evident at low frequencies, which is the second near semi-circle (W in
parallel with RNL) and is indicative of steady state diffusion. Figure 6B shows the values of RCT

and RNL with standard deviations for clean, 30 µM MCH and 3 nM MCH modified electrodes also
presented. It can be seen that for both types of resistance there was a significant increase when the
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dilute SAM forming solution was used for chemical modification of the surface. In the case of RCT,
the standard deviation reduced when the dilute SAM forming solution was employed, implying more
consistent film formation. Importantly (see Figure 6C), the χ2 ‘goodness of fit’ also improved when
the dilute SAM forming solution was used in contrast to the more concentrated solution. This also
indicates formation of a film with greater homogeneity and fewer defects present since it is no longer
necessary to include additional elements in the equivalent circuit fit to model for pinholes. This work
was performed on microfabricated arrays as well as glass pulled microelectrodes in order to confirm
the effect. In addition, we have previously published on the rapid formation of SAM layers using
nanoelectrodes [34] and on successful formation of a DNA-based SAM for MRSA detection [26].
In both of these reported studies, increases in the magnitude of the impedance similar to the results
presented herein were noted, giving additional confidence beyond the fact that six electrodes on these
arrays were tested each time, that the reported RCT increases and their magnitudes were realistic.
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Figure 6. (A) EIS plots from a clean, 30 µM and 3 nM MCH functionalized microelectrode. (B) Fitted
values for RCT and RNL on clean and functionalized electrodes prepared using both concentrations of
MCH. (C) χ2 ‘goodness of fit’ values for clean and 6-mercapto-1-hexanol solutions at 30 µM and 3 nM
concentrations (N = 6 and error bars represent standard deviation).

The data presented showing several responses were produced using six independent
microelectrodes from across the electrode array (Figures 4, 5 and 6B,C). Therefore, each experiment
presented has an N value of 6 and the present data set was chosen from a single experimental run in
order to provide a self-consistent data set for proper analysis and comparison of circuit parameters
with statistical significance. Also, in addition and over the course of the study, each experiment was
repeated three times in order to confirm the reported effect of dilution of SAM molecules with a
variety of redox buffer concentrations. Finally, and crucially, the immobilization experiments with
30 µM and 3 nM SAM solutions were performed using glass microelectrodes, again to confirm the
reported finding. All together these data importantly highlight the variability associated with the
formation of thiolated monolayers on micron scale noble metal surfaces, particularly when established
functionalization protocols for macroelectrodes are employed.
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4. Conclusions

When attempting to modify individual microelectrodes and arrays of microelectrodes for label-free
biological sensing it is not advisable to use SAM forming protocols established for macroelectrodes.
To take account of the improved mass transfer properties and reduced surface area of microelectrodes,
by diluting the SAM forming molecule to the nanomolar range it was possible to achieve electrode
functionalization with improved reproducibility and which could still be fitted using the established
equivalent circuit for a microelectrode without having to include additional circuit elements to model
for pinholes. These findings take account of the improved mass transfer properties and reduced surface
area of microelectrodes and are useful in the development and operationalization of microelectrode
sensors for biomedical applications such as the detection of DNA sequences and protein markers
of disease, particularly by EIS where the reported approach allows accurate measurement of RCT.
In addition, the presented data recorded from the microfabricated array highlight some of the benefits
of this approach for electrode production, i.e., high consistency of electrochemical signal between
electrodes through being able to define their critical dimensions and electrode environment accurately
and reproducibly everywhere on the array, particularly when compared to data recorded using e.g.,
glass pulled microelectrodes. These findings point towards a higher throughput method for improving
sensor functionalization and performance for biomedical sensing applications on microelectrodes,
particularly where the operator is aiming to measure changes in RCT based on surface hybridization or
localized binding events.
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