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Abstract: The problem of vibrations of rotating rings has been of interest for its wide applications in
engineering, such as the vibratory ring gyroscopes. For the vibratory ring gyroscopes, the vibration
of a micro ring is usually actuated and sensed by means of electrostatics. The analytical models
of electrostatic microstructures are complicated due to their non-linear electromechanical coupling
behavior. Therefore, this paper presents for the first time the free vibration of a rotating ring
under uniform electrical field and the results will be helpful for extending our knowledge on the
problem of vibrations of rotating rings, helping the design of vibratory ring gyroscopes, and inspiring
the feasibilities of other engineering applications. An analytical model, based on thin-ring theory,
is derived by means of energy method for a rotating ring under uniformly distributed electrical field.
After that, the closed form solutions of the natural frequencies and modes are obtained by means of
modal expansion method. Some valuable conclusions are made according to the results of the present
analytical model. The electrical field causes not only an electrostatic force but also an equivalently
negative electrical-stiffness. The equivalent negative electrical-stiffness will reduce either the natural
frequencies or critical speeds of the rotating ring. It is known that the ring will buckle when its
rotational speed equals its natural frequencies. The introduction of electrical field will further reduce
the buckling speeds to a value less than the natural frequencies. The rotation effect will induce the
so-called traveling modes, each one travels either in the same direction as the rotating ring or in the
opposite direction with respect to stationary coordinate system. The electrical field will reduce the
traveling velocities of the traveling modes.
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1. Introduction

The problem of vibrations of rotating rings has been of interest for over a century due to its wide
applications in engineering [1], e.g., tires [2,3], bearing [4], compliant gears [5], sensors [6], etc. Many
scholars have continuously and systematically expanded our understanding of the behavior of rotating
rings by studying the effects of rotatory inertia and shear, foundation stiffness, pre-stress or rotation,
and the forced vibrations subjected to different types of loads, e.g., harmonic, periodic, distributed,
traveling, etc. [1–3,7,8]. On the other hand, the technologies of microelectromechanical systems
(MEMS) has been receiving much attention over the past two decades. MEMS are electromechanical
integrated systems whose feature size of structures are within micro-scale. One of the applications
of vibratory ring in MEMS is the vibratory ring gyroscopes. For the vibratory ring gyroscope,
the vibration of a micro ring is usually actuated and sensed by means of electrostatics [9,10].
The electrostatics are commonly used in MEMS for actuating/sensing due to the advantages of
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rapid response, low power consumption, and being compatible with the standard fabrication
process of Complementary-Metal-Oxide-Semiconductor (CMOS). The analytical models of electrostatic
microstructures are complicated due to their non-linear electromechanical coupling behavior. One of
the authors of this article, Hu, published a review article [11] to introduce the modeling of
micro-devices adopting electrostatic actuating/sensing methods as well as the effects of non-ideal
boundary conditions, fringing fields, pre-strain/-stress, and non-homogeneous structures. In 2004,
Hu investigated the dynamical stability of a microstructure driven by alternative voltage for the first
time [12]. Since then, many studies about the dynamical stability of electrostatic microstructures
have been published continuously. As regards the vibration of micro rings, Hu, Chen, and Yu et al.
investigated the forced response and stability of a micro-ring subjected to the concentrated electrostatic
forces traveling around it along the radial direction [13,14]. After surveying many correlative studies,
we found that there is no research on the free vibrations of a rotating ring under uniform electrical
filed. Therefore, this paper presents for the first time the free vibration of a rotating ring under uniform
electrical field and the results will be helpful for extending our knowledge on the problem of vibrations
of rotating rings, helping the design of vibratory ring gyroscopes, and inspiring the feasibilities of
other engineering applications.

The feature of rings in engineering applications is usually in the scope of thin ring, i.e., rings with
the thickness-to-radius ratio inferior to 0.1 [7]. Furthermore, the diameter of the ring of a vibratory
ring gyroscope is about several hundred micrometers while its thickness and the gap between the
ring and the driving/sensing electrodes are only about several micrometers and one micrometer
respectively [9,10,15]. Therefore, it is rational to model the rotating ring based on Euler–Bernoulli
theory and uniform electrical field. Firstly, the authors derive the energy expressions of a rotating
ring under a uniformly distributed electrical field around the ring along the radial direction. The total
energy includes the translational kinetic energy and mechanical strain energy of the ring and the work
done by the uniform electrical field. Then, the equations of motion are derived by means of Hamilton’s
principle [16]. The operation of the ring gyroscope relies on the electrostatic actuation and capacitive
sensing in the radial direction of the ring and on the first two flexural vibration modes and these
modes are bending-dominant. Furthermore, the deformation of the ring is limited in the gap between
the ring and the driving/sensing electrode and thus is in the scope of small deformation because its
deformation is smaller than its thickness. Therefore, based on the above-mentioned bending-dominant
modes and small deformation, the authors further linearize the electrostatic force term by means of
truncating the non-linear higher-order terms of its Taylor series expansion and reduce the order of the
system by means of inextensible approximation. After that, the closed-form solution of free vibration
is obtained by means of modal expansion method. The effects of rotation and electrical field on the
natural frequencies and modes of rotating ring are investigated as well.

2. Equations of Motion

Consider a rotating ring surrounded by a circular fixed electrode (Figure 1). Both have the same
width. An electrical potential difference (V) is made between the rotating ring and fixed electrode and
thereby causes a uniformly distributed electrical field along the radial direction of the ring. According
to thin ring theory [1], which is based on Euler–Bernoulli assumption, the plane sections remain plane
after deformation and normal to the neutral surface, the shear deformation in transverse direction is
negligible and the only significant strain is therefore in the circumferential direction. The rotary inertia
is also negligible for thin rings. In Figure 1, X-Y is a stationary coordinate system while the coordinate
system x-y rotates with the rotating ring at the angular speed of Ω. The circumferential and transverse
deflections of the ring are denoted by uθ and u3, respectively; θ and ψ denote the angular position
on the ring with respect to the rotating and stationary coordinate systems, respectively; a, h, and b
denote the mean radius, thickness, and width of the ring, respectively; g is the initial gap between the
ring and fixed electrode; and t is time. There is a potential difference, V, between the ring and fixed
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electrode. The mean radius of the ring is much larger than its thickness and the gap between the ring
and fixed electrode is of the same order of magnitude of the ring’s thickness.Sensors 2018, 18, x 3 of 13 

 

 

Figure 1. A flexural rotating ring surrounded by a circular fixed electrode, a uniformly distributed 
electrical field along the radial direction is made by applying an electrical potential difference between 
the ring and fixed electrode. 

The total energy (L) of the entire system equals the sum of the kinetic energy (T) and strain 
energy (U) of the rotating ring and the work done (W) by the electrostatic force due to the uniformly 
distributed electrical field. For a mass element of the rotating ring with length adθ, its kinetic energy 
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The strain energy of the ring per unit width is given by [1]  
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where D = Eh3/12 is the bending stiffness and K = Eh is the membrane stiffness. As there is an electrical 
potential difference between the rotating ring and fixed electrode, the work done by the electrostatic 
force on the rotating ring per unit width is 
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where ε is the permittivity of the dielectric material between the rotating ring and fixed electrode. 
Consider the motion of the rotating ring between two instants t1 and t2. Its configuration changes 

with time, tracing a path known as the true path. A slightly different path, known as the varied path, 
is obtained if at any given instant one allows a small variation in deflections (δuθ and δu3) with no 
associated change in time (δt = 0) and that the true and varied paths coincide at the two instants t1 
and t2. Along the varied path, the variations of the associated energy expressions are given by 

( ) ( ) ( ) ( )[ ] Ω+Ω++ΩΩ−−Ω−+ΩΩ+Ω+=
π

θθθθθθ θδδδδρδ
2

0 333333 duauuuuuuuuuauuhaT  , (6)

X

Y

x

y

θ

a

h

g

3u

tΩ

θu

ψ

Figure 1. A flexural rotating ring surrounded by a circular fixed electrode, a uniformly distributed
electrical field along the radial direction is made by applying an electrical potential difference between
the ring and fixed electrode.

The total energy (L) of the entire system equals the sum of the kinetic energy (T) and strain
energy (U) of the rotating ring and the work done (W) by the electrostatic force due to the uniformly
distributed electrical field. For a mass element of the rotating ring with length adθ, its kinetic energy is

dK =
1
2

ρhbadθ
→
v ·→v , (1)

where the velocity vector
→
v is given by

→
v = aΩ

→
j + (
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u3
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uθ
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j ) + Ω
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k × (u3

→
i + uθ
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j . (2)

Thus, the total kinetic energy of the ring per unit width is

T =
1
2

ρha
∫ 2π

0

[( .
u3 − uθΩ

)2
+
( .
uθ + u3Ω + aΩ

)2
]
dθ, (3)

The strain energy of the ring per unit width is given by [1]

U =
∫ 2π

0

[
K

2a2 (u
′
θ + u3)

2
+

D
2a4 (u

′
θ − u′′3 )

2
]

adθ, (4)

where D = Eh3/12 is the bending stiffness and K = Eh is the membrane stiffness. As there is an electrical
potential difference between the rotating ring and fixed electrode, the work done by the electrostatic
force on the rotating ring per unit width is

W =
∫ 2π

0

1
2

εV2

g− u3
adθ, (5)

where ε is the permittivity of the dielectric material between the rotating ring and fixed electrode.
Consider the motion of the rotating ring between two instants t1 and t2. Its configuration changes

with time, tracing a path known as the true path. A slightly different path, known as the varied path,
is obtained if at any given instant one allows a small variation in deflections (δuθ and δu3) with no
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associated change in time (δt = 0) and that the true and varied paths coincide at the two instants t1 and
t2. Along the varied path, the variations of the associated energy expressions are given by

δT = ρha
∫ 2π

0

[( .
uθ + u3Ω + aΩ

)
Ωδu3 +

( .
u3 − uθΩ

)
δ

.
u3 −

( .
u3 − uθΩ

)
Ωδuθ +

( .
uθ + u3Ω + aΩ

)
δ

.
uθ

]
dθ, (6)
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∫ 2π

0
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u′′′θ − u′′′′3

)
+ K

a2

(
u′θ + u3

)]
δu3 +

[
− D

a4

(
u′′θ − u′′′3

)
− K

a2

(
u′′θ + u′3

)]
δuθ

}
adθ, (7)

δW =
∫ 2π

0

εV2

2(g− u3)
2 δu3adθ. (8)

Hamilton’s principle [16] states that the true path of a system between two specified states at two
instants t1 and t2 renders the integral of the total energy variation in time stationary with respect to all
possible varied paths, namely ∫ t1

t0

(δU − δT − δW)dt = 0, (9)

which gives

∫ t1
t9

∫ 2π
0

{[
− D

a4

(
u′′′θ − u′′′′3

)
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(
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)
+ ρh
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.
uθ − (a + u3)Ω2

)
− εV2

2(g−u3)
2

]
δu3

+
[
− D
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(
u′′θ − u′′′3

)
− K

a2

(
u′′θ + u′3

)
+ ρh

( ..
uθ + 2Ω

.
u3 − uθΩ2

)]
δuθ

}
adθdt = 0

. (10)

The equation can be satisfied only if each of the double integral parts is 0 individually. Moreover,
since the displacement variations are arbitrary, each integral equation can be satisfied only if the
coefficients of the displacement variations are 0. Thus, setting the coefficients of the double integral to
zero gives the following two equations of motion:

D
a4

(
u′′′′3 − u′′′θ

)
+

K
a2

(
u′θ + u3

)
+ ρh

( ..
u3 − 2Ω

.
uθ − u3Ω2

)
− ρhaΩ2 − εV2

2(g− u3)
2 = 0, (11)

D
a4

(
u′′′3 − u′′θ

)
− K

a2

(
u′′θ + u′3

)
+ ρh

( ..
uθ + 2Ω

.
u3 − uθΩ2

)
= 0. (12)

In Equation (11), the first term attributes to bending moment, the second term to membrane force,
the third term to inertia and rotation effects, the fourth term to the centrifugal force, and the fifth term
to the uniformly distributed electrical field along the radial direction. In Equation (12), the first term
attributes to bending moment, the second term to membrane force, and the third term to inertia and
rotation effects. If the electrical potential difference V is 0, then Equations (11) and (12) reduce to the
equations of motion of a rotating ring; and if the rotating speed Ω is further 0, then further reduce to
the equations of motion of non-rotating ring. In summary, the analytical model is based on thin ring
theory, the plane section of the ring remains plane after deformation and normal to the neutral surface,
the shear deformation in transverse direction is negligible and the only significant strain is therefore in
the circumferential direction. The rotary inertia is also negligible for thin rings.

In practice, the mean radius of the ring is much larger than its thickness and the gap between
the ring and fixed electrode is of the same order of magnitude of the ring’s thickness. Therefore,
the deflection u3 is much smaller than the dimensions of the ring. Expanding the electrical-field term
of Equation (11) by Taylor series with respect to the initial equilibrium position and, because the
deflection u3 is much smaller than the dimensions of the ring in practice, neglecting the second- and
higher-order terms based on the small deformation assumption gives

− εV2

2(g− u3)
2 = − εV2

2

[
1
g2 +

2
g3 u3 +

3
g4 u2

3 +
4
g5 u3

3 +
5
g6 u4

3 + · · ·
]
≈ − εV2

2

[
1
g2 +

2
g3 u3

]
. (13)
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Therefore, Equation (11) is linearized to be

D
a4

(
u′′′′3 − u′′′θ

)
+

K
a2

(
u′θ + u3

)
+ ρh

( ..
u3 − 2Ω

.
uθ − u3Ω2

)
− εV2

g3 u3 = ρhaΩ2 +
εV2

2g2 . (14)

Equation (14) depicts that, in addition to causing a uniformly distributed electrostatic force along
radial direction, the uniformly distributed electrical field also causes an equivalently electrical stiffness,
−εV2/g3, along radial direction and thus alter the dynamical characteristic of the ring. It must be
emphasized that the equivalently electrical stiffness is a negative value. On the other hand, in addition
to causing a centrifugal force ρhaΩ2, the Coriolis acceleration due to rotation further alter the dynamical
characteristic of the rotating ring. The sum of ρhaΩ2 + εV2/2g2 in Equation (14) causes an initially
static equilibrium position of the ring.

Since there is no circumferential forcing, then the transverse (bending modes) vibration is
predominant in the present case. Start with the linearized equations of motion, Equations (12) and (14),
in terms of force and moment resultants:

1
a2

∂2Mθθ

∂θ2 − Nθθ

a
− ρA

(
∂2u3

∂t2 − 2Ω
∂uθ

∂t
−Ω2u3

)
+

εbV2

g3 u3 = −ρhabΩ2 − εbV2

2g2 , (15)

1
a

∂Nθθ

∂θ
+

1
a2

∂Mθθ

∂θ
− ρA

(
∂2uθ

∂t2 + 2Ω
∂u3

∂t
−Ω2uθ

)
= 0. (16)

where A = bh is the cross-sectional area of the ring and I = bh3/12 is the area inertia moment of the
cross-sectional area, and [1]

Mθθ =
EI
a2

(
∂uθ

∂θ
− ∂2u3

∂θ2

)
, Nθθ =

EA
a

(
∂uθ

∂θ
+ u3

)
. (17)

Solving Equation (15) for Nθθ gives

Nθθ =
1
a

∂2Mθθ

∂θ2 − ρaA
(

∂2u3

∂t2 − 2
∂uθ

∂t
Ω− u3Ω2

)
+

εabV2

g3 u3 +
εabV2

2g2 + ρha2bΩ2, (18)

and substitute it in Equation (16),

1
a2

∂3 Mθθ
∂θ3 + 1

a2
∂Mθθ

∂θ − ρA
(

∂2uθ
∂t2 + 2Ω ∂u3

∂t −Ω2uθ

)
− ρA

(
∂3u3
∂t2∂θ

− 2Ω ∂2uθ
∂t∂θ −Ω2 ∂u3

∂θ

)
+ εbV2

g3
∂u3
∂θ = 0. (19)

By the inextensible approximation [1], namely the normal strain in circumferential direction of
the neutral surface of the ring is zero:

ε0
θθ =

∂uθ

a∂θ
+

u3

a
= 0, (20)

which implies that
∂uθ

∂θ
= −u3. (21)

Applying the inextensible approximation in the relationship of moment and deflection, Equation
(17), gives

Mθθ = −EI
a2

(
u3 +

∂2u3

∂θ2

)
, (22)

and substituting it in Equation (19) results in

D
a4

(
∂6u3
∂θ6 + 2 ∂4u3

∂θ4 + ∂2u3
∂θ2

)
− εV2

g3
∂2u3
∂θ2 + ρh

[
∂4u3

∂θ2∂t2 + 4Ω ∂2u3
∂θ∂t −

∂2u3
∂t2 + Ω2

(
u3 − ∂2u3

∂θ2

)]
= 0. (23)
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Equation (23) is the equation of motion of a rotating ring under a uniformly distributed electrical
field based on inextensible approximation.

3. Natural Frequencies

Since the geometrical periodicity of ring, let its transverse deflection function be

u3(θ, t) = Anej(nθ+ωnt). (24)

Substituting it into Equation (23) gives the equation of natural frequency

ω2
n −

4nΩ
(n2 + 1)

ωn −
n2(n2 − 1)2

(n2 + 1)
D

ρha4 +
n2

(n2 + 1)
εV2

ρhg3 + Ω2 = 0. (25)

Then, one has two natural frequencies (ωn1 and ωn2) for every value of n ≥ 2:

ωn1 =
2n

n2 + 1
Ω−

√√√√n2(n2 − 1)2

(n2 + 1)
D

ρha4 −
n2

(n2 + 1)
εV2

ρhg3 −
(n2 − 1)2

(n2 + 1)2 Ω2, (26)

and

ωn2 =
2n

n2 + 1
Ω +

√√√√n2(n2 − 1)2

(n2 + 1)
D

ρha4 −
n2

(n2 + 1)
εV2

ρhg3 −
(n2 − 1)2

(n2 + 1)2 Ω2. (27)

This is different from the case of non-rotating ring in which only one natural frequency for every
value of n. The bifurcations of natural frequencies are resulted from the Coriolis acceleration. For the
flexural modes (n ≥ 2), Equations (26) and (27) can be expressed as

ωnk
ω f n

=
2n

(n2 + 1)
Ω

ω f n
∓

√√√√1− n2

(n2 + 1)

(√
εV2/(ρhg3)

ω f n

)2

− (n2 − 1)2

(n2 + 1)2

(
Ω

ω f n

)2

, for k = 1, 2 (28)

where ω f n is the natural frequencies of a non-rotating ring (Ω = 0) in the absence of electric field (V = 0),

ω f n =

√
n2(n2 − 1)2

(n2 + 1)
D

ρha4 . (29)

It should be mentioned that Equation (28) is not valid for n = 0 and 1 because of the inextensible
approximation and rigid-body mode. The mode at n = 0 is sometimes called the breathing mode of the
ring due to pure extension. At n = 1, the natural frequency, ωf1, of a non-rotating ring in the absence of
electric field is zero. Thus, a flexural vibration still does not exist. One has to think of the ring as simply
being displaced in a rigid body motion. The roots of the frequency equation, Equation (25), have three
possibilities: two distinct roots of real numbers, two double roots of real numbers, and two complex
conjugate roots. To ensure two distinct or double roots of real numbers, the terms in the square root
symbol of Equation (28) must be equal or greater than zero, i.e.,(√

εV2/(ρhg3)/ω f n

)2

(n2 + 1)/n2 +

(
Ω/ω f n

)2

(n2 + 1)2/(n2 − 1)2 ≤ 1, (30)

otherwise two complex conjugate roots of the form α − jβ and α + jβ where the latter makes the
vibration of ring decaying with time and the former makes it diverging, namely unstable.

Figure 2 visualizes Equation (30), wherein both abscissa and ordinate are normalized to be
dimensionless rotational speed Ωn = Ω/ω f n and dimensionless voltage Vn =

√
εV2/ρhg3/ω f n.



Sensors 2018, 18, 2044 7 of 13

The stable region is a quarter ellipse, and as n gets larger, it approaches a quarter circle with a radius of
unity. The rotational speeds on the boundary of the stable region are known as the critical speeds of
the rotating ring. Due to the equivalent negative stiffness of the electrical field, the potential difference
will reduce the critical speed. This is similar to the stiffness softened phenomenon by electrostatic
force [12–14]. In the following, we discuss the vibration characteristics of the rotating ring under
uniformly distributed electrical field only in the stable region.
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and another intersection locates at the point satisfying Equation (32) which is exactly the point at the
boundary of the stable region shown in Figure 2. The potential difference or electrical field reduces
either the natural frequencies or the critical speeds of the rotating ring.∣∣∣∣∣ωnk

ω f n

∣∣∣∣∣ =
√

1− n2

(n2 + 1)
V2

n, (31)

(√
εV2/(ρhg3)/ω f n

)2

(n2 + 1)/n2 +

(
Ω/ω f n

)2

(n2 + 1)2/(n2 − 1)2 = 1. (32)

The dashed curves have a turning point at abscissa, namely a zero natural frequency occurs at
the rotational speeds given by Equation (33). This is a buckling phenomenon induced by rotation
effect. The rotating ring will buckle when the rotational speed equals its natural frequencies if V = 0.
The introduction of electrical field, namely V 6= 0, will further reduce the buckling speeds. In summary,
the electrical field will reduce the natural frequencies, critical speeds, and buckling speeds of the
rotating ring.

Ω
ω f n

=

√√√√1− n2

(n2 + 1)

(√
εV2/(ρhg3)

ω f n

)2

. (33)
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4. Natural Modes

Although Equation (24) defines the natural mode, it is instructive to use the stationary coordinate
system, ψ = θ + Ωt, instead of θ, which gives

u3k(θ, t) = Ankejn[ψ−(Ω−ωnk/n)t], (34)

for k = 1, 2. The natural modes are usually not functions of time. However, the modes defined in
Equation (34) are functions of time because the rotation effect makes it difficult to separate the space
and time coordinates in the usual manner, so the natural modes are time-dependent, which were
named as traveling modes by Huang [2,3], as each one travels either in the same direction as the
rotating ring or in the opposite direction to an observer who is not rotating with the ring, namely to an
stationary coordinate. One can set Ank to be unity because its choice is arbitrary. To explain at what
speeds the traveling modes rotate, we take the real part of Equation (34)

cos n[ψ− (Ω−ωnk/n)t]. (35)

We set Equation (35) to its maximum possible value, unity, to see at what speeds the mode
antinodes rotate:

cos n[ψmax − (Ω−ωnk/n)t] = 1. (36)

This gives
ψmax = 2mπ/n + (Ω−ωnk/n)t, (37)

where m = 0, 1, 2, 3, etc. Therefore, the speeds of the traveling modes with respect to a stationary
coordinate are given by

.
ψmax1 = Ω− ωn1

n
=

n2 − 1
n2 + 1

Ω +
1
n

√√√√n2(n2 − 1)2

(n2 + 1)
D

ρha4 −
n2

n2 + 1
εV2

ρhg3 −
(n2 − 1)2

(n2 + 1)2 Ω2, (38)

and

.
ψmax2 = Ω− ωn2

n
=

n2 − 1
n2 + 1

Ω− 1
n

√√√√n2(n2 − 1)2

(n2 + 1)
D

ρha4 −
n2

n2 + 1
εV2

ρhg3 −
(n2 − 1)2

(n2 + 1)2 Ω2. (39)
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For the flexural modes (n ≥ 2), Equations (38) and (39) can be expressed as

.
ψmaxk
ω f n

=
n2 − 1
n2 + 1

(
Ω

ω f n

)
± 1

n

√√√√1− n2

n2 + 1

(√
εV2/(ρhg3)

ω f n

)2

− (n2 − 1)2

(n2 + 1)2

(
Ω

ω f n

)2

, (40)

for k = 1, 2, wherein ω f n is the natural frequencies of a non-rotating ring (Ω = 0) in the absence of
electric field (V = 0) and is given by Equation (29).

The modes become stationary if
.
ψmax = Ω−ωnk/n = 0; substituting this into Equation (40) gives

(Ω/ω f n)
2

(n2 + 1)/(n2 − 1)2 +

(√
εV2/(ρhg3)/ω f n

)2

(n2 + 1)/n2 = 1. (41)

This means that, if the relationship is satisfied, the mode does not rotate but appears as a stationary
distortion of the ring to an observer who is not rotating with the ring and the corresponding stationary
modes are given by

cos nψ. (42)

Figure 4 shows the first three stationary flexural modes of the rotating ring. If
.
ψmax = Ω−ωnk/n > 0,

wherein the ring’s rotational speed and the potential difference satisfy the relationship of Equation (43),
then the mode antinodes lag behind the rotational speed Ω of the ring.

(Ω/ω f n)
2

(n2 + 1)/(n2 − 1)2 +

(√
εV2/(ρhg3)/ω f n

)2

(n2 + 1)/n2 > 1. (43)

If
.
ψmax = Ω−ωnk/n < 0, wherein the ring’s rotational speed and the potential difference satisfy

the relationship of Equation (44), then the mode antinodes rotate in the direction opposite to the
rotational speed Ω of ring. Figure 5 visualizes Equations (41), (43), and (44), wherein both abscissa
and ordinate are normalized to be dimensionless rotational speed Ωn and voltage Vn. The blue curve,
satisfying Equation (41), is a quarter-ellipse and approaches to a horizontal line from the origin to
Vn = 1.0 as n getting large. This means that the higher-order modes will travel in the same direction
of the rotating ring but lag behind the rotational speed Ω of the ring.

(Ω/ω f n)
2

(n2 + 1)/(n2 − 1)2 +

(√
εV2/(ρhg3)/ω f n

)2

(n2 + 1)/n2 < 1. (44)
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Figure 6 visualizes the velocities of the traveling modes, Equations (46) and (47), wherein the 
abscissa and ordinate are normalized to be the dimensionless traveling speed of modes, ሶ߰ ௫ ߱ൗ , 
and the dimensionless rotational speed of ring, Ωഥ . The solid lines illustrate the velocities of the 
forward traveling modes while the dashed lines illustrate those of the backward traveling modes. It 
illustrates the effects of the potential difference and the ring’s rotational speed on the velocities of the 
traveling modes. The rotation effect of ring will make the speeds (the magnitudes of velocities) of the 
forward and backward traveling modes different. The forward traveling mode travels in the same 
direction of the rotating ring and its speed increases with the rotational speed of the ring. The 
backward traveling mode travels initially in the opposite direction of the rotating ring but its speed 
decreases with the rotational speed of the ring and becomes stationary when the rotational speed of 
the ring reaches at the value satisfying Equation (41); then, it turns to the same direction of the 
rotating ring and its speed increases with the rotational speed of the ring. The potential difference 
will reduce the traveling velocities of the forward and backward traveling modes. Figures 7 and 8 
show the traveling modes along the ring of n equal to 2 and 3, respectively. It is seen that the 
backward (clockwise) and forward (counterclockwise) modes travel at different speeds with respect 
to stationary coordinate system. 

Figure 5. The signs (directions) of the speed of traveling modes, wherein both abscissa and ordinate
are normalized to be dimensionless voltage, Vn =

√
εV2/(ρhg3)/ω f n, and dimensionless rotational

speed of ring, Ωn = Ω/ω f n. (a) n = 2; (b) n = 3; (c) n = 4.

For Ω−ωnk/n 6= 0, there are two traveling modes corresponding to every value of n, namely the
forward and backward traveling modes:

cos n(ψ−
.
ψmax1t), cos n(ψ−

.
ψmax2t), (45)

where the rotational speeds of the two traveling modes are given by

.
ψmax1
ω f n

=
n2 − 1
n2 + 1

Ω
ω f n

+
1
n

√√√√1− n2

n2 + 1

(√
εV2/ρhg3

ω f n

)2

−
(

n2 − 1
n2 + 1

)2
(

Ω
ω f n

)2

, (46)

and
.
ψmax2
ω f n

=
n2 − 1
n2 + 1

Ω
ω f n
− 1

n

√√√√1− n2

n2 + 1

(√
εV2/ρhg3

ω f n

)2

−
(

n2 − 1
n2 + 1

)2
(

Ω
ω f n

)2

. (47)

Figure 6 visualizes the velocities of the traveling modes, Equations (46) and (47), wherein the
abscissa and ordinate are normalized to be the dimensionless traveling speed of modes,

.
ψmaxk/ω f n,

and the dimensionless rotational speed of ring, Ωn. The solid lines illustrate the velocities of the
forward traveling modes while the dashed lines illustrate those of the backward traveling modes.
It illustrates the effects of the potential difference and the ring’s rotational speed on the velocities of
the traveling modes. The rotation effect of ring will make the speeds (the magnitudes of velocities) of
the forward and backward traveling modes different. The forward traveling mode travels in the same
direction of the rotating ring and its speed increases with the rotational speed of the ring. The backward
traveling mode travels initially in the opposite direction of the rotating ring but its speed decreases with
the rotational speed of the ring and becomes stationary when the rotational speed of the ring reaches
at the value satisfying Equation (41); then, it turns to the same direction of the rotating ring and its
speed increases with the rotational speed of the ring. The potential difference will reduce the traveling
velocities of the forward and backward traveling modes. Figures 7 and 8 show the traveling modes
along the ring of n equal to 2 and 3, respectively. It is seen that the backward (clockwise) and forward
(counterclockwise) modes travel at different speeds with respect to stationary coordinate system.
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Figure 6. The rotational speeds of the forward (solid lines) and backward (dashed lines) traveling
modes, where Ωn = Ω/ω f n and Vn =

√
εV2/(ρhg3)/ω f n. (a) n = 2 and Vn = 0; (b) n = 2; (c) n = 3;

(d) n = 4.
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Figure 7. The traveling modes of n = 2 at various instance of time as viewed by a stationary observer.
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5. Conclusions

This paper derives an analytical model for a rotating ring under the uniformly distributed
electrostatic field along the radial direction. By setting the potential difference between the ring and
fixed electrode to zero, namely no electrical field, the present analytical model can be reduced to the
well-known thin rotating ring model. It can also be further reduced to the well-known thin non-rotating
ring model by setting both the potential difference and rotational speed to zero. The closed form
solutions of the natural frequencies and modes of a rotating ring under uniform electrical field are
obtained in this paper. Some conclusions are made according to the results of the present analytical
model. The electrical field causes not only an electrostatic force but also an equivalently negative
electrical-stiffness. Due to the equivalent negative stiffness, the electrical field will reduce either the
natural frequencies or critical speeds of the rotating ring. For a rotating ring without the action of
electrical field, it will buckle when the rotational speed equals its natural frequencies. The introduction
of electrical field will further reduce the buckling speeds. The rotation effect will induce the so-called
traveling modes, each one traveling either in the same direction as the rotating ring or in the opposite
direction with respect to stationary coordinate system. The electrical field will reduce the traveling
velocities of the traveling modes.
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