Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Oxidation (TO) of Lubricating Oil
2.2. THz-TDS Spectrometer
3. Results
3.1. Measurement Error Analysis
3.1.1. Statistical Errors and Repeatability
3.1.2. Systematic Errors Due to Sample Preparation
3.1.3. Systematic Errors Due to the Spectroscopy System
3.2. Discussion of Error Sources
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.-B.; Chen, Y.; Bastiaans, G.J.; Zhang, X.-C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 2006, 14, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Munaim, A.M.; Méndez Aller, M.; Preu, S.; Watson, D.G. Discriminating gasoline fuel contamination in engine oil by terahertz time-domain spectroscopy. Tribol. Int. 2018, 119, 123–130. [Google Scholar] [CrossRef]
- Jeon, T.-I.; Grischkowsky, D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett. 1998, 72, 3032. [Google Scholar] [CrossRef]
- Piesiewicz, R.; Jansen, C.; Wietzke, S.; Mittleman, D.; Koch, M.; Kürner, T. Properties of Building and Plastic Materials in the THz Range. Int. J. Infrared Millim. Terahertz Waves 2007, 28, 363–371. [Google Scholar] [CrossRef]
- Abdulmunem, O.M.; Born, N.; Mikulics, M.; Balzer, J.C.; Koch, M.; Preu, S. High accuracy terahertz time-domain system for reliable characterization of photoconducting antennas. Microw. Opt. Technol. Lett. 2016, 59, 468–472. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fischer, B.M.; Lin, H.; Abbott, D. Uncertainty in terahertz time-domain spectroscopy measurement. J. Opt. Soc. Am. B 2008, 25, 1059–1072. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Naftaly, M. Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy. J. Infrared Millim. Terahertz Waves 2014, 35, 610–637. [Google Scholar] [CrossRef]
- Yang, F.; Liu, L.; Song, M.; Han, F.; Shen, L.; Hu, P.; Zhang, F. Uncertainty in Terahertz Time-Domain Spectroscopy Measurement of Liquids. J. Infrared Millim. Terahertz Waves 2017, 38, 229–247. [Google Scholar] [CrossRef]
- Ornik, J.; Watson, D.G.; Balzer, J.C.; Koch, M. Experimental characterization of dielectric parameter extraction uncertainty for low absorbing liquids using THz TDS. In Proceedings of the 42nd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar]
- Lansdown, A.R. Lubrication and Lubricant Selection a Practical Guide, 3rd ed.; The American Society of Mechanical Engineers: New York, NY, USA, 2004. [Google Scholar]
- Soleimani, M.; Sophocleous, M.; Glanc, M.; Atkinson, J.; Wang, L.; Wood, K.; Taylor, I. Engine oil acidity detection using solid state ion selective electrodes. Tribol. Int. 2013, 65, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Mortier, R.M.; Fox, M.F.; Orszulik, S.T. Chemistry and Technology of Lubricants, 3rd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Macian, V.; Tormos, B.; Gomez, Y.A.; Salavert, J.M. Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution. Tribol. Trans. 2012, 55, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Faure, D.; Hipeaux, J.C.; Guevellou, Y.; Legros, A. Oxidation stability of gasoline engine lubricants: Effect of base-oil chemistry in laboratory and engine tests. Lubr. Sci. 1999, 5, 337–360. [Google Scholar] [CrossRef]
- Zuidema, H.H. The Performance of Lubricating Oils; Reinhold Publishing Corporation: New York, NY, USA, 1959. [Google Scholar]
- Ikeda, T.; Matsushita, A.; Tatsuno, M.; Minami, Y.; Yamaguchi, M.; Yamamoto, K.; Tani, M.; Hangyo, M. Investigation of inflammable liquids by terahertz spectroscopy. Appl. Phys. Lett. 2005, 87, 034105. [Google Scholar] [CrossRef]
- Al-Douseri, F.M.; Chen, Y.; Zhang, X.-C. THz wave sensing for petroleum industrial products. Int. J. Infrared Millim. Terahertz Waves 2006, 27, 481–503. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R.E. Terahertz Time-Domain Spectroscopy for Material Characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, Q.; Jin, B.; Zhou, K.; Zhao, S.; Shi, Y.; Zhang, C. Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range. Sci. China Ser. G 2009, 52, 1938–1943. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, K.; Zhou, Q.-L.; Shi, Y.-L.; Zhang, C.-L. Quantitative Analysis for Monitoring Formulation of Lubricating Oil Using Terahertz Time-Domain Transmission Spectroscopy. Chin. Phys. Lett. 2012, 29, 043901-1–043901-3. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Reuter, M.; Koch, M.; Watson, D.G. Distinguishing Gasoline Engine Oils of Different Viscosities using Terahertz Time-Domain Spectroscopy. Int. J. Infrared Millim. Terahertz Waves 2015, 36, 687–696. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Reuter, M.; Abdulmunem, O.M.; Balzer, J.C.; Koch, M.; Watson, D.G. Using terahertz time-domain spectroscopy to discriminate among water contamination levels in diesel engine oil. Trans ASABE 2016, 59, 795–801. [Google Scholar] [CrossRef]
- Ofunne, G.C. Studies on the Ageing Characteristics of Automotive Crankcase oils. Tribol. Int. 1989, 22, 401–404. [Google Scholar] [CrossRef]
- Egharevba, F.; Maduako, A.U. Assessment of oxidation in automotive crankcase lube oil: Effects of metal and water activity. Ind. Eng. Chem. Res. 2002, 41, 3473–3481. [Google Scholar] [CrossRef]
- George, D.K.; Markelz, A.G. Terahertz Spectroscopy of Liquids and Biomolecules. In Terahertz Spectroscopy and Imaging; Peiponen, K.-E., Zeitler, A., Kuwata-Gonokami, M., Eds.; Springer: Berlin, Germany, 2013; pp. 229–250. [Google Scholar]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Optics 1996, 35, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- SAS. SAS Enterprise Guide 7.1; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Krüger, M.; Funkner, S.; Bründermann, E.; Havenith, M. Uncertainty and Ambiguity in Terahertz Parameter Extraction and Data Analysis. J. Infrared Millim. Terahertz Waves 2011, 32, 699–715. [Google Scholar] [CrossRef]
- Pupeza, I.; Wilk, R.; Koch, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 2007, 15, 4335–4350. [Google Scholar] [CrossRef] [PubMed]
Repeatability Error (Case I) | Total Error Incl. Sample Preparation (Case II) | Inter-System Comparability Error (Case III) | |
---|---|---|---|
Δn at 1 THz | 0.0048% | 0.04% | 0.13% |
Δα at 1 THz | 0.22% | 0.56% | 8.49% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez Aller, M.; Abdul-Munaim, A.M.; Watson, D.G.; Preu, S. Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil. Sensors 2018, 18, 2087. https://doi.org/10.3390/s18072087
Méndez Aller M, Abdul-Munaim AM, Watson DG, Preu S. Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil. Sensors. 2018; 18(7):2087. https://doi.org/10.3390/s18072087
Chicago/Turabian StyleMéndez Aller, Mario, Ali Mazin Abdul-Munaim, Dennis G. Watson, and Sascha Preu. 2018. "Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil" Sensors 18, no. 7: 2087. https://doi.org/10.3390/s18072087
APA StyleMéndez Aller, M., Abdul-Munaim, A. M., Watson, D. G., & Preu, S. (2018). Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil. Sensors, 18(7), 2087. https://doi.org/10.3390/s18072087