
sensors

Article

Wireless Passive Ultra High Frequency RFID Antenna
Sensor for Surface Crack Monitoring and
Quantitative Analysis

Jun Zhang 1,* ID , Bei Huang 2 ID , Gary Zhang 1 and Gui Yun Tian 3

1 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
garyzhang@gdut.edu.cn

2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
1111702006@mail2.gdut.edu.cn

3 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; g.y.tian@ncl.ac.uk
* Correspondence: junzhang@gdut.edu.cn

Received: 11 May 2018; Accepted: 29 June 2018; Published: 3 July 2018
����������
�������

Abstract: An exponential increase in large-scale infrastructure facilitates the development of wireless
passive sensors for permanent installation and in-service health monitoring. Due to their wireless,
passive and cost-effective characteristics, ultra-high frequency (UHF) radio frequency identification
(RFID) tag antenna based sensors are receiving increasing attention for structural health monitoring
(SHM). This paper uses a circular patch antenna sensor with an open rectangular window for crack
monitoring. The sensing mechanism is quantitatively studied in conjunction with a mode analysis,
which can uncover the intrinsic principle for turning an antenna into a crack sensor. The robustness
of the feature is examined when the variation of crack position associated with an aluminum sample
and the antenna sensor is considered. The experimental results demonstrate a reasonable sensitivity
and resolution for crack characterization.

Keywords: antenna sensor; circular patch; crack characterization; ultra-high frequency (UHF); radio
frequency identification (RFID); structural health monitoring (SHM)

1. Introduction

Structural health monitoring (SHM) enabling with wireless sensor networks (WSNs) is widely
used for condition-based maintenance of large-scale infrastructure [1]. Despite the fact that engineering
components or structures are intensively designed against fatigue failures, more than 50% of
mechanical failures are due to fatigue crack [2], which may cause the economic loss and jeopardize
the human safety. Due to the development and maturity of internet of things (IoT), wireless passive
sensors are highly desirable in large-scale infrastructure for ubiquitous and life-long monitoring [3].

Power consumption and power harvesting/scavenging capability are two issues in the design
and development of wireless passive sensors. Recently, simultaneous wireless power and information
transfer (SWIPT) is receiving increasing attention in fifth generation (5G) cellular network [4–6].
Because of continuous scaling down of power consumption of integrated circuits, backscattering
communication using scavenging energy from 5G base station can make ubiquitous sensing possible.
The concept of power harvesting and backscattering communication has been verified in the remote
TV station assistance ambient backscattering [7–9].

Enabling with power harvesting from electromagnetic (EM) source, radio frequency identification
(RFID) tag antenna based sensors are a promising candidate to be developed into wireless passive
sensors [10–12]. Antenna sensors in ultra-high frequency (UHF) band provide benefits of ultra-low
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cost in crack monitoring, whose evolution can be found in [13]. In the absence of power consumption
from sensing component, the communication range of this type of sensor can reach up to ten meters.
Therefore, this type of sensor can be used to monitor crack growth in large-scale infrastructures instead
of other traditional technologies with wire and battery.

Since the sensing information is extracted from EM signature of antenna sensors through
backscattering communication in the UHF RFID band, the RFID sensing system is quite susceptible
to interferences from wireless channel [14]. This scenario becomes worse for chipless RFID antenna
sensors. Considering the quality of service (QoS) in the big data, the sensor design and interrogation
method are critical for the source reliability of IoT [15].

Because the detuning based antenna sensor detects defect through varying the tag antenna’s
impedance and gain, its sensitivity, resolution and robustness are influenced by the following factors.
First, the defect detection underneath the antenna sensor is closely related to its mode and relative
position between antenna and defect. This challenges the practical installation when the location
of defect is unknown in priori. Second, the basic EM signatures suitable for sensing purpose are
constrained. More to the point, the EM signatures, for example, power and phase, transfer the
sensing information through backscattering in an analog form; hence, the sensing information is quite
susceptible to interference and noise from both wireless channel and receiver. Third, the limited
bandwidth in the UHF band imposes a tradeoff between sensitivity and dynamic range under a
constant distance constraint. In addition, the multiple influences from both sensing and communication
needs physical-based signal processing method for reliable feature extraction [16].

Benefiting from low profile and low cost, patch antennas were used for crack sensing [17].
The sensing principle for this type of antenna sensor is straightforward: a presence of crack in the
ground plane along the width direction of patch antennas increases the current path in the length
direction. It causes a resonant frequency shift to the lower frequency when compared with the original
one without the presence of crack [18]. The work in crack monitoring based on antenna sensors falls
into two categories: crack initiation detection and crack growth characterization [19].

The severity of the failure depends on both the crack length and orientation with respect to the
loading direction. Longitudinal cracks are the most common and dangerous cracks because they
can reduce a structure’s cross section and therefore reduce its structural capacity/integrity. A patch
antenna sensor was proposed to monitor the growth of crack in a sub-mm resolution [20]. The crack
orientation was detected using dual-mode operating patch [21]. Meanwhile, a multiplexing antenna
sensor was designed to detect a multi-site crack [22]. Recently, a frequency-coded chipless antenna
sensor with high-temperature-resistant capability was developed for crack orientation and width
monitoring. Fatigue crack was also proved to be detectable in a sub-mm resolution [23]. Nevertheless,
the above systems were not compatible with the EPC Global C1G2 standard. An experimental result
demonstrated that the patch antenna sensor was capable of measuring sub-mm cracks and tracking
crack propagation in the Federal Communications Commission (FCC) band [24].

In addition, the length and orientation of the crack can be detected using a 2D grid of conventional
dipole tags in the UHF band with a commercialized RFID reader [25]. In spite of power, the
backscattered phase can function as an EM signature. A sub-mm resolution was achieved in crack
width detection using two coupled patch antennas [26]. However, the behavior of backscattered phase
is dependent on the wireless channel, for example, propagation loss between reader and tag antennas,
making it limited in the in-situ monitoring.

Above all, the feasibility of crack detection and characterization has been widely studied in the
literature. However, the sensitivity and reliability of crack detection are tightly related to crack position
with respect to antenna mode and the size of metal to be mounted. This paper aims to investigate the
reliability of crack detection and characterization via the mode analysis of an antenna. The antenna
sensor studied here is dedicated for monitoring the evolution of already existing cracks or of junctions
prone to cracks [27]. The rest of this paper is organized as follows. First, the wireless interrogation and
sensor setup are briefly described in Section 2. In Section 3, a mode analysis together with parametric
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study is investigated. The experiments are carried out and discussions are made in Section 4. The last
section concludes the research findings.

2. Wireless Interrogation and Sensor Setup

In this section, we first describe an interrogation method based on a measurable EM signature,
named threshold power to activate tag, in the downlink of the UHF RFID system. Then, one patch
antenna with an open rectangular window is designed for sensitive crack sensing.

2.1. Wireless Interrogation

Under the hypothesis of line-of-sight (LoS) propagation between reader and tag antennas, the
threshold power to activate the tag in reader antenna, PR, can be expressed as

PR =

(
4πd
λ0

)2 Pth
GR(Θ, Φ)GT(θ, ϕ)[Ψ]τ[Ψ]ηρ

, (1)

where d is the distance between the reader and tag antennas, λ0 is the free-space wavelength, Pth is
the minimum threshold power to activate the tag chip, GR(Θ, Φ) is the gain of the reader antenna,
GT(θ, ϕ)[Ψ] is the gain of the tag antenna and ηρ is the polarization mismatch between the reader and
tag antennas. The power transmission coefficient, τ[Ψ], which accounts for the impedance mismatch
between the tag chip (Zc = Rc + jXc) and the tag antenna (Za[Ψ] = Ra[Ψ] + jXa[Ψ]), is given by

τ[Ψ] = 1− |S11[Ψ]|2 = 1−
∣∣∣∣Zc − Z∗a [Ψ]

Zc + Za[Ψ]

∣∣∣∣2 =
4RcRa[Ψ]

|Zc + Za[Ψ]|2
. (2)

where * means the conjugate value, Ψ represents the crack defect and Za[Ψ] is dependent on the defect
to be monitored.

2.2. Sensor Setup

From the antenna theory, the radiating patch and the ground plane can form a resonant cavity, so
the sensitive part of patch antennas can easily cover its underneath area. Increasing crack depth can
increase the effective electrical length of the antenna and therefore leads a shift of resonance to the
lower frequency region. By this way, the patch antenna can be easily turned into a crack sensor. Due to
the proximity coupling, the sensing performance of an antenna sensor, however, depends on the crack
position with respect to the antenna mode.

In general, the crack position may be hard to be predicted. The variation of sensitivity with crack
position will affect the reliability of crack characterization. Therefore, the linearity in the sensing
area is of paramount importance for robust crack monitoring. In this paper, a circular patch is used
as a radiator. A rectangular window is opened in the center of the patch to increase the sensitivity
when crack grows as well as to improve the robustness with respect to crack position. Meanwhile,
the antenna sensor is designed for conjugate impedance matching to the tag chip of NXP UCODE
G2iM+, the input impedance and typical read sensitivity of which are 21.2 − j199.7 Ω and −17.6 dBm
at 915 MHz, respectively. The geometry of the antenna sensor used in this paper is similar with [28]. To
reduce the cost, the material of antenna substrate is Flame Retardant 4 (FR4), with a relative permittivity
of 4.4, a loss tangent of 0.02 and a thickness of 2.0 mm. The conjugate impedance matching can be
easily achieved by tuning the length and width of the rectangular window.

The detailed size and simulation setup of the antenna sensor are shown in Figure 1. In order to
evaluate the sensing performance, the depth of crack is progressively increased. The crack is modeled
with a fixed width (w) of 2 mm and a variable depth of d. For reference convenience, the crack depth is
represented d1 = 1 mm, d2 = 2 mm, d3 = 3 mm, d4 = 4 mm, d5 = 5 mm, respectively. The antenna sensor
is directly put on the surface of the aluminum sample. The relative position between the antenna
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sensor and longitudinal crack moves from ∆ = −6 mm to ∆ = 0 mm for quantitative analysis of its
robustness. Like any other sensor, the calibration is an important issue. Therefore, five positions in the
backside of the aluminum sample corresponding to ∆ = 0 were simulated to refer the healthy state (d0

= 0 mm) and also to study the influence of antenna performance with respect to the sample.Sensors 2018, 18, x FOR PEER REVIEW  4 of 10 
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Figure 1. The antenna sensor and installation: (a) perspective view and (b) simulation setup.

3. Mode Analysis and Parametric Studies

In this section, the current distribution is analyzed in conjunction with a parametric study to
demonstrate a potential way leading to low-cost design of wireless passive sensors. The quality factor
of the antenna is extracted and discussed to uncover the intrinsic sensing principle associated with
further feature extraction.

3.1. Mode Analysis

The simulated current distribution of the antenna sensor at the healthy state is displayed in
Figure 2, where a shared scale is plotted on the left. The antenna sensor is excited with an identical
1-W input power at all frequencies. For an antenna operated at its fundamental mode, the current is
maximized at the patch center and decreases along the patch length [29]. The radiation occurs at the
two terminals of the patch. Therefore, it can be predicted that the sensing sensitivity is monotonically
decreased from the center to radiating terminals.

In general, a presence of crack will disturb the field distribution between the metallic surface
and radiating patch. This perturbation will affect the radiation and stored energies, therefore, the
resistant and reactant parts of input impedance. Figure 3 shows the simulated field distributions of the
antenna sensor at a presence of metal with crack. We can find that a constant increase of crack depth
will continuously shift the phase transition of the field distribution. This shift is contributed to the
increase of the effective electrical length of the current flow on the metallic surface.
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3.2. Parametric Studies

Figure 4a,b provides the simulated input impedances and reflection coefficients of the antenna
sensor in the variations of crack depth and position. The resonant frequency shifts to the lower
frequency region when crack grows, which is agreed with conclusions from the mode analysis. The
simulation results also indicate that the sensing sensitivity is maximized when the longitudinal crack
is positioned at the center of the sensing area. It will slightly decrease as the crack moves away from
its optimal position. Further simulation shows the sensitivity will decrease as crack orients toward
the transverse. That is to say, the sensitivity of crack detection and characterization will decrease
without in prior knowledge of the crack position and orientation. The worst case is that when the
crack becomes transverse (x-direction) or moves outside of the patch, the crack cannot be detected.

On a lossy dielectric, the radiation efficiency of an antenna can be approximated using the antenna
quality factor (Q) and the loss tangent of the dielectric, that is tan δ [30],

η =
Rrad

Rrad + Rloss
≈ 1

1 + Q· tan δ
. (3)

That is to say, the radiation efficiency might be improved by reducing the antenna Q. For a single
resonance, the impedance of an antenna can imply its quality factor as [31]
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Qz =
ω0

2R0

∣∣Z′0(ω0)
∣∣. (4)

For a conductor-backed dipole array, it was found that 58.8% and 62.5% of the total electric and
magnetic energies were stored between the array and the ground plane, respectively [32]. The quality
factor of the antenna at a presence of metal with defect is displayed in Figure 5a. We can find that
the quality factor decreases with an increase of crack depth. And also, the quality factor is slightly
dependent on the relative position between crack and patch. It can be predicted that the antenna gain
of the antenna will be slightly improved as crack increases. The resonant frequency is extracted from
Figure 4b and used as a feature to characterize the crack. The results are shown in Figure 5b. The first
order curve fitting technique is utilized to extract the relation between the feature and crack, which
can be used to quantify the crack depth once the resonant frequency of the antenna sensor is obtained.
We can see that a 1-MHz decrease in the resonant frequency from the healthy state means a 0.14-mm
increase in the crack depth.

Sensors 2018, 18, x FOR PEER REVIEW  5 of 10 

 

In general, a presence of crack will disturb the field distribution between the metallic surface 
and radiating patch. This perturbation will affect the radiation and stored energies, therefore, the 
resistant and reactant parts of input impedance. Figure 3 shows the simulated field distributions of 
the antenna sensor at a presence of metal with crack. We can find that a constant increase of crack 
depth will continuously shift the phase transition of the field distribution. This shift is contributed to 
the increase of the effective electrical length of the current flow on the metallic surface. 

 
Figure 3. Simulated z-direction E-field of the antenna sensor at 920 MHz and Δ = −6 mm, where the 
field is extracted from the center of cavity formed by the circular patch and metallic surface: (a) full 
scale and (b) zoom in. 

3.2. Parametric Studies 

Figure 4a,b provides the simulated input impedances and reflection coefficients of the antenna 
sensor in the variations of crack depth and position. The resonant frequency shifts to the lower 
frequency region when crack grows, which is agreed with conclusions from the mode analysis. The 
simulation results also indicate that the sensing sensitivity is maximized when the longitudinal crack 
is positioned at the center of the sensing area. It will slightly decrease as the crack moves away from 
its optimal position. Further simulation shows the sensitivity will decrease as crack orients toward 
the transverse. That is to say, the sensitivity of crack detection and characterization will decrease 
without in prior knowledge of the crack position and orientation. The worst case is that when the 
crack becomes transverse (x-direction) or moves outside of the patch, the crack cannot be detected. 

  
(a) (b) 

Figure 4. Simulated (a) input impedances and (b) reflection coefficients in the variations of crack 
depth and position, where solid line represents the backside reference when Δ = 0 mm. 

On a lossy dielectric, the radiation efficiency of an antenna can be approximated using the 
antenna quality factor (Q) and the loss tangent of the dielectric, that is tanδ [30], 

Figure 4. Simulated (a) input impedances and (b) reflection coefficients in the variations of crack depth
and position, where solid line represents the backside reference when ∆ = 0 mm.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 10 

 

ߟ = ܴௗܴௗ + ܴ௦௦ ≈ 11 + ܳ ∙ tanδ. (3) 

That is to say, the radiation efficiency might be improved by reducing the antenna Q. For a single 
resonance, the impedance of an antenna can imply its quality factor as [31] ܳ௭ = ߱2ܴ |ܼᇱ ሺ߱ሻ|. (4) 

For a conductor-backed dipole array, it was found that 58.8% and 62.5% of the total electric and 
magnetic energies were stored between the array and the ground plane, respectively [32]. The quality 
factor of the antenna at a presence of metal with defect is displayed in Figure 5a. We can find that the 
quality factor decreases with an increase of crack depth. And also, the quality factor is slightly 
dependent on the relative position between crack and patch. It can be predicted that the antenna gain 
of the antenna will be slightly improved as crack increases. The resonant frequency is extracted from 
Figure 4b and used as a feature to characterize the crack. The results are shown in Figure 5b. The first 
order curve fitting technique is utilized to extract the relation between the feature and crack, which 
can be used to quantify the crack depth once the resonant frequency of the antenna sensor is obtained. 
We can see that a 1-MHz decrease in the resonant frequency from the healthy state means a 0.14-mm 
increase in the crack depth. 

  
(a) (b) 

Figure 5. (a) Simulated quality factor in the variations of crack depth and position corresponding, 
where solid line represents the backside reference when Δ = 0 mm and (b) crack characterization. 

The simulated radiation pattern and peak realized gain (்߬ܩ) are depicted in Figure 6. As Figure 
6a shows, the 3-dB beam-width in both xz- and yz-planes are larger than 120°. This broad beam-width 
makes the tag be easily identified. The resonant frequency of the antenna will monotonically decrease 
when crack grows. Meanwhile, the gain value will be continuously enhanced with the increase of 
crack depth, which is due to the constant improvement in the radiation efficiency. Nevertheless, we 
see from Figure 6b that the antenna position with respect to the small beam of the aluminum sample 
has significant influence on antenna’s radiation performance. At the healthy state, the antenna has 
the smallest gain at the center of the beam and the gain will increase when the antenna moves away 
from the center. That is to say, both crack position and depth will affect the maximum value of the 
antenna gain. However, the influence of crack position in the resonant frequency is not apparent. The 
peak realized gain of the antenna could reach its maximum value of 933 MHz at the healthy state. It 
reaches its maximum value of 898 MHz when d5 = 5 mm and Δ = 0 mm, which is a little higher than 
the value of d1 = 1 mm. This difference results from the depth increase. Therefore, the maximum 
sensitivity (at Δ = 0 mm) of the antenna sensor is 7.0 MHz/mm. 

Figure 5. (a) Simulated quality factor in the variations of crack depth and position corresponding,
where solid line represents the backside reference when ∆ = 0 mm and (b) crack characterization.

The simulated radiation pattern and peak realized gain (GTτ) are depicted in Figure 6. As
Figure 6a shows, the 3-dB beam-width in both xz- and yz-planes are larger than 120◦. This
broad beam-width makes the tag be easily identified. The resonant frequency of the antenna will
monotonically decrease when crack grows. Meanwhile, the gain value will be continuously enhanced
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with the increase of crack depth, which is due to the constant improvement in the radiation efficiency.
Nevertheless, we see from Figure 6b that the antenna position with respect to the small beam of the
aluminum sample has significant influence on antenna’s radiation performance. At the healthy state,
the antenna has the smallest gain at the center of the beam and the gain will increase when the antenna
moves away from the center. That is to say, both crack position and depth will affect the maximum
value of the antenna gain. However, the influence of crack position in the resonant frequency is not
apparent. The peak realized gain of the antenna could reach its maximum value of 933 MHz at the
healthy state. It reaches its maximum value of 898 MHz when d5 = 5 mm and ∆ = 0 mm, which is a
little higher than the value of d1 = 1 mm. This difference results from the depth increase. Therefore, the
maximum sensitivity (at ∆ = 0 mm) of the antenna sensor is 7.0 MHz/mm.Sensors 2018, 18, x FOR PEER REVIEW  7 of 10 
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4. Experimental Studies and Results

4.1. Test Setup

The test setup of the UHF RFID sensing system is depicted in Figure 7a. The measurement
was carried out using a commercial RFID reader with an adjustable transmitting power. The reader
antenna was circularly polarized (CP) with a 9 dBic antenna gain. The transmitting power input to the
terminal of reader antenna was increased from 10 dBm in a step of 0.25 dB to find the threshold power.
The maximum allowed input power was limited to be 27 dBm, yielding a maximum 4-W effective
isotropic radiated power (EIRP). The measurement was carried out under the frequency range of
902.75–927.25 MHz with a resolution of 0.5 MHz. The communication distance between the reader
and tag antennas was fixed at 1 m while the orientation of reader and tag antennas was kept fixed
through all tests.

The schematic of an aluminum alloy 6061 sample sized of 400 mm × 80 mm × 10 mm is shown
in Figure 7b. The detailed size of the beam is the same with Figure 1b. Five cracks were artificially
made with an increasing crack depth from 1 to 5 mm in a step of 1 mm with a fixed crack width of
2 mm. The prototype antenna sensor was directly placed on the surface of the aluminum sample.
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4.2. Results and Discussion

The defect influences the impedance of the antenna sensor, thus power transmission coefficient
and therefore the threshold power to activate the tag varies with crack growth. Figure 8 plots
the measured EM signature of PR versus frequency with different crack depths and positions and
corresponding features of the resonant frequency. A 5-point moving average is utilized to smooth the
data and therefore enhance the signal to noise ratio of PR for robust feature extraction. The resultant
curves are displayed in Figure 8a. It could be noticeably observed that the resonance of the antenna
sensor continuously shifts from the higher frequency region to the lower frequency region when crack
grows. Therefore, there is a tradeoff between sensing and communication for wireless passive antenna
sensors in the limited band. The curve shape of PR can partly reflect the reduction in quality factor as
crack grows, which is agreed with the simulation. Meanwhile, we can find that the relative position of
crack and sample has some not negligible effects on the quality factor of the antenna sensor, which is
due to the influence from limited size of the ground plane. The variation in the minimum value of
PR can also be observed when antenna moves from one beam edge to another. However, this relative
position has a little influence on the resonant frequency of the antenna sensor.

For an in-situ monitoring application, the feature of PR in a fixed frequency point away from the
resonance can be used to characterize the crack depth. However, this feature might be influenced by the
beam size. At a sacrifice of sensitivity, the feature of the resonant frequency is more robust compared
with feature of PR at a fixed frequency. The resonant frequency where the minimum threshold happens
is extracted and displayed in Figure 8b. We can find that the sensitivity has a negligible variation
when crack moves away from its optimal position in the range of sensing area. Due to the parasitic
capacitance in the soldering between tag chip and tag antenna, the impedance mismatch occurs in
the fabricated prototype, which causes a shift of resonant frequency at the healthy state and therefore
leads to a lower sensitivity in the measurement when comparing with the simulated one. Meanwhile,
the nonlinearity in the measurement can be observed, which is partly attributed to the resolution in
the transmitter and also the interference from the wireless channel.

Considering the variations in geometry size and properties (e.g., permittivity and permeability),
the fabrication error of the antenna and tolerance in the tag chip, the resonant frequency of the antenna
sensor may shift [33]. In addition, the air gap between the metal and antenna due to the surface
roughness or installation error, for example, glue used to firmly connect the antenna and metal, has
a significant influence on the resonance. That is to say, we need to calibrate each sensor after its
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installation for robust and reliable crack monitoring. This calibrated data can be recorded thereafter to
refer the healthy state.
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5. Conclusions

The sensing performance of RFID tag antenna based sensor will degrade when the crack is not
at its optimal position. In this paper, a circular patch antenna sensor with a rectangular window has
been utilized for metal-mountable applications. The variation in the crack position is examined for
quantitative investigation of robust crack monitoring. In conjunction with mode analysis, we find
that the crack growth will constantly reduce the quality factor and therefore improve the realized
gain of the antenna, where the profile is a key factor to determine the tradeoff between sensing and
communication. Meanwhile, the size of the metallic geometry that the antenna sensors are going to
be mounted has significant influence on their radiation performance, for example, directivity and
efficiency. The experimental results validate that the uncovered sensing mechanism can provide
potential guidance for robust feature extraction in longitudinal crack monitoring.

In this paper, the antenna sensor has been demonstrated to work on a small beam with longitudinal
crack. However, the antenna sensor needs to be miniaturized to be mounted on a smaller beam; the
beam may also become one piece of large-scale infrastructure. Without a reference tag, the antenna
itself can be calibrated after the installation. Using the feature of resonant frequency, the monitoring
may be taken automatically with unmanned vehicles in harsh environments.
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