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Abstract: The traditional nonlocal filters for polarimetric synthetic aperture radar (PolSAR) images
are based on square patches matching to obtain homogeneous pixels in a large search window.
However, it is still difficult for the regular patches to work well in the complex textured areas, even
when the patch size has a small enough setting (e.g., 3 × 3 windows). Therefore, this paper proposes
an adaptive nonlocal mean filter with shape-adaptive patches matching (ANLM) for PolSAR images.
Mainly, the shape-adaptive (SA) matching patches are constructed by combining the polarimetric
likelihood ratio test for coherency matrices (PolLRT-CM) and the region growing (RG), which is called
PolLRT-CMRG. It is used to distinguish the homogeneous and heterogeneous pixels in textured areas
effectively. Then, to enhance the filtering effect, it is necessary to take the adaptive threshold selection
of similarity test (Simi-Test) into consideration. The simulated, low spatial resolution SAR580-Convair
and high spatial resolution ESAR PolSAR image datasets are selected for experiments. We make a
detailed quantitative and qualitative analysis for the filtered results. The experimental results have
demonstrated that the proposed ANLM filter has better performance in speckle suppression and
detail preservation than that of the traditional local and nonlocal filters.

Keywords: polarimetric synthetic aperture radar (PolSAR); polarimetric likelihood ratio test (PolLRT);
region growing (RG); shape-adaptive (SA) patches matching; nonlocal means (NLM)

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) can measure the polarimetric characteristic of
terrain echo and play an important role in remote sensing field [1]. PolSAR images acquired by airborne
and spaceborne sensors can observe abundant terrain features used for many applications, for example,
terrain classification [2–4], target detection [5,6], disaster monitoring [7,8], topography [9,10] and
biomass estimation [11,12], etc. However, the application performance of PolSAR images is easily
affected by speckle noise in coherent radar echo imaging systems because speckle noise seriously
degrades the image quality [13,14]. Therefore, speckle filtering methods of PolSAR images have
attracted the attention of many scholars and prompted many investigations in the past several decades.

With the purpose of maintaining a good balance between speckle removal and polarimetric
characteristic preservation, many effective local or nonlocal speckle filtering methods have been
proposed for PolSAR images [13,15–17]. The basic methodology of speckle filtering mainly consists of
two key problems: (1) how to select homogeneous pixels, (2) how to estimate the central value from
the selected pixels. Currently the second step has already been studied well, with many methods
including average, weighted average [16,18], Lee filter [13,15,19], distributed Lee filter [20] and
nonlocal reduced bias estimation (NLRB) [17] being proposed. To be specific, the weighted average is
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based on the similarity value and obtains the weighted maximum-likelihood result [16,18]; the Lee
filter uses the intensity-based local linear minimum mean square (LLMMSE) estimate to prevent the
strong multilook operation [13,15,19]; the distributed Lee filter combines the structure similarity and
homogeneity similarity in a distributive way [20]; the NLRB estimate, a well-known and most reliable
one, not only considers the similarity difference between homogeneous pixels but also gets an optimal
basis-reduction result [17]. However, for the first problem of how to select homogeneous pixels there
still exist many problems.

In local PolSAR speckle filtering, the way to select homogeneous pixels mainly involve the
Oriented Windows (OW) method [13,21], Region Growing (RG) method [15,22], Point-Wise (PW)
method [19,23,24], etc. It is noticed that the local methods mentioned above are basically based on
pixel-wise similarity measures with intensities. Compared with the local speckle filtering methods,
the nonlocal methods extend the point-wise similarity measure to patch-wise, which assumes that
similar patches have similar center pixels. Obviously, the structure similarity measure can offer
more accurate and robust performance in the selection of homogeneous pixels than point similarity
measures, even when applied in a large search area (e.g., 15 × 15 windows). The nonlocal idea is
firstly proposed by Buades et al., and since then most state-of–art speckle filtering methods draw on
the structure similarity concept [25]. Deledalle et al. put forward an iterative weighted maximum
likelihood denoising with probalistic patch-based weights [26] and then extended it to PolSAR [27] and
interferometric SAR (InSAR) [28] images. Based on the complex Wishart distribution of PolSAR data,
Chen et al. firstly proposed the likelihood ratio test as the adjustment criterion of similarity patches [16].
D’Hondt [24] and Torres [29] proposed a bilateral filtering method of PolSAR data based on stochastic
and geodesic distance. Deledalle et al. offered a unified nonlocal framework for resolution-preserving
(Pol)(In)SAR denoising, which provided the effect of efficient speckle reduction and good resolution
preservation for subsequent applications [17]. Wang et al. proposed a finite mixture model (FMM) to
adaptively fit the in-scene variation and then introduced a mixture-based NLM polarimetric filtering
to better estimate the target statistics [30].

Previous nonlocal polarimetric filtering methods are mainly based on matching square patches to
select the homogeneous pixels. However, the square patches have limited performance in textured
areas (e.g., edges, corner points and stripes), because they contain such complex textured information.
In this case, homogeneous pixels cannot be found or heterogeneous pixels are selected incorrectly
in the search windows. In optical image denoising concepts, some methods have demonstrated
the effectiveness of shape-adaptive (SA) patch matching, including BM3D with shape-adaptive
principal component analysis (SAPCA-BM3D) [31] and non-local methods with shape-adaptive
patches (NLM-SAP) [32]. However, it is difficult to obtain an accurate SA patch for a PolSAR
image due to speckle noise. Currently, to solve this problem, the patch size must be small enough
(e.g., 3 × 3 windows) to capture the textured information and prevent blurring, whose denoising
performance is unfortunately still limited in textured areas. For example, in the ideal case, the capability
of homogeneous pixel selection near corner point based on SA patches matching is much stronger
than that based on square patches matching obviously in Figure 1. In result, the regular patches cannot
find homogeneous pixels in textured areas; on the contrast, the result based on SA matching patches
has many homogeneous pixels due to the adaptive capability. The second point is filtering parameters
adaptation, and many efforts are focused on the optimum search windows size, matching patches size
and pre-estimation scale [17,33,34]. Currently, the threshold selection of similarity test (Simi-Test) on
patches matching has not attracted too much attention, and it is just set to a fixed value empirically,
which ensures the suitable tradeoff between speckle reduction and detail preservation. However, in a
homogeneous area, a larger threshold is preferred to achieve the maximum speckle reduction effect;
in textured areas, a smaller threshold is beneficial for distinguishing homogeneous and heterogeneous
pixels. For solving the above two problems, we propose the ANLM filter to improve the performance
on homogeneous pixel selection more accurately and robustly. The proposed method based on the SA
patches can match more homogeneous pixels successfully, especially in textured areas. Also, based



Sensors 2018, 18, 2215 3 of 21

on the estimated equivalent number of looks (ENL) with the NLRB method, an optimal threshold
of Simi-Test can be found adaptively to perform a better denoising effect for every pixel in both
homogeneous and textured areas.
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Figure 1. Homogeneous pixel selection of regular and SA matching patches near corner point,
respectively. If it is used by the regular patches marked by red box in (a), the selected homogeneous
pixels highlighted with yellow are very small in (b). On the contrary, based on SA matching patches in
(c), the selection capability is flexible and the selected homogeneous pixels are much large in (d).

The paper is organized as follows: Section 2 illustrates PolLRT-CMRG method for constructing SA
matching patches. Section 3 describes the main detailed steps of the adaptive polarimetric SAR filtering,
including pre-estimation, nonlocal mean (NLM) estimate with SA patches matching, NLRB estimate
from the selected homogeneous pixels and optimal selection of multiple estimations with multiple
parameters. In Section 4, we simulate a 3-look PolSAR image dataset and compare the proposed
ANLM filter to other traditional filters by the error analysis and detail preservation. Two low spatial
resolution SAR580-Convair and high spatial resolution ESAR PolSAR image datasets are selected for
the real experiments and we make a detailed analysis for the filtered results on speckle reduction and
information preservation in Section 5. Finally, we draw the conclusions in Section 6.

2. The Construction of SA Matching Patches Based on the Proposed PolLRT-CMRG Method

In this section, we review the PolSAR image statistics. Then the proposed PolLRT-CMRG method
combines the polarimetric likelihood ratio test for coherency matrices (PolLRT-CM) and the region
growing (RG) method. It can effectively construct an adaptive-neighborhood (AN) for every pixel as
SA matching patches.

2.1. PolSAR Images Statistic

For PolSAR images, the scattering matrix S usually can be used for describing the full polarmetric
information of a single target. In case of linear horizontal and vertical polarization base, S is expressed
as follows [1]:

S =

[
SHH SHV
SVH SVV

]
(1)

With the reciprocal condition, SHV = SVH , S is also represented by a complex Pauli basis vector

kpauli =
[

SHH+VV SHH−VV 2SHV

]T
/
√

2, where T denotes the matrix transpose [1]. And the
total power SPAN of kpauli is obtained as:

SPAN =
(

S2
HH+VV + S2

HH−VV + 4S2
HV

)
/2 (2)

For the distributed target, the polarimetric information should be expressed by the coherency
matrix as follows [1,35]:

T =
1
L ∑L

i=1 kpauli,ik∗Tpauli,i = kpauli,ik∗Tpauli,i (3)
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where * donates the conjugate, L is the number of looks, and 〈·〉 donates the spatial or
temporal operator.

Referring to Equation (3), let A = LT. The matrix A obeys the complex Wishart distribution,
A ε W(q, L, Σ) with Σ = E(T), and the probability density function can be expressed as [1,35]:

P(q,L,Σ)
T (A) =

|A|L−qexp
[
−Tr

(
Σ−1 A

)]
K(L, q)|Σ|L

(4)

where q is the dimension of the matrix A, Tr(·) denotes the trace of the matrix, and:

K(L, q) = π
q(q−1)

2

q

∑
j=1

Γ(L− j + 1) (5)

where Γ(·) is the gamma function.
We suppose that the matrices X and Y are independent and follow a complex Wishart distribution,

respectively, i.e., X ε W(q, n, Σ) and Y ε W(q, m, Σ). Then their summation result also follows a complex
Wishart distribution, i.e., X + Y ε W(q, n + m, Σ).

2.2. The Proposed PolLRT-CMRG Method for Constructing SA Matching Patches

In traditional nonlocal polarimetric filtering methods, square patches are used for matching and
finding homogeneous pixels, but this has unsatisfactory performance in textured areas and hence
has a very low filtering effect. These two SAPCA-BM3D and NLM-SAP filters in image denoising
concepts have successfully obtained SA matching patches and good performance on speckle reduction.
However, the PolSAR image is affected by strong speckle noise easily so that the above methods are
difficult to apply to PolSAR images. Currently, in PolSAR filtering concepts, it has been demonstrated
that the OW and RG methods can obtain local AN effectively, which have the potential of obtaining
the accurate SA patches [13,15,21,22]. Especially, the intensity-driven adaptive neighborhood (IDAN)
method based on RG method can obtain more flexible shape, and hence its result can preserve more
tiny and flexible structures than that of the OW. However, these methods only using SAR intensity
information seem to be unsatisfactory and unstable in complex scenes or affected by strong noise.
Therefore, we combine the PolLRT-CM and RG methods to build up an accurate SA matching patches
more robustly.

The test for equality of two complex Wishart matrices is firstly proposed in [36], which can be
called PolLRT-CM. Supposing X and Y independently follow a complex Wishart distribution, i.e.,
X ∈ W(q, n, ΣX) with Σ̂X = 1

n X and Y ∈ W(q, m, ΣY) with Σ̂Y = 1
m Y. For application, the number

of looks are usually equal for X and Y, i.e., n = m. The null hypothesis is H0 : ΣX = ΣY, and the
alternative is H1 : ΣX 6= ΣY.

According to the probability density function of the matrices X, Y and X + Y, the polarimetric
likelihood ratio test statistic can be expressed as:

Q =
22nq|X|n|Y|n

|X + Y|2n (6)

Meanwhile, we also take the logarithm as follows:

lnQ = n(2qln2 + ln|X|+ ln|Y| − 2ln|X + Y|) (7)

The approximate distribution function of lnQ can be computed as:

P(−2ρlnQ ≤ z) ∼= P
(

χ2
(

q2
)
≤ z
)
+ ω2

[
P
(

χ2
(

q2 + 4
)
≤ z
)
− P

(
χ2
(

q2
)
≤ z
)]

(8)
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where:

ρ = 1− 2q2 − 1
4nq

(9)

ω2 = − q2

4

(
1− 1

ρ

)2
+

7
96

q2(q2 − 1
)

n2ρ2 (10)

It is noticed that the complex Wishart matrices are more similar when lnQ is closer to 0.
The PolLRT-CM method can be thought of as the growing principle of RG in the proposed

PolLRT-CMRG method, which is more accurate and robust than the sigma test based on gamma
distribution [15,19,22]. In the proposed PolLRT-CMRG method, it needs to set the maximum size of
patches (MSP), the number of homogeneous pixels (NHP) in SA patches. The direct neighbors x′ of
the seed x can be the similar, if it meets the following aggregation test:

−2ρlnQx,x′ ≤ Thα, P(−2ρlnQ ≤ Thα) < 1− α → Homogeneous Pixels (11)

Based on the framework of the traditional RG method, we propose an iterative method to refine
the patches shape in Figure 2. It needs to set the initial threshold Thint, the maximum tolerable
threshold Thmax and the increased interval value ∆Th. Inherited from the framework of the traditional
RG method, the proposed PolLRT-CMRG method is shown in Figure 2.
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Figure 2. Flowchart of the proposed PolLRT-CMRG method for constructing SA matching patches.

In summary, the proposed PolLRT-CMRG method is an iterative process of gradual refinement.
For every pixel in PolSAR images, the proposed method is performed to obtain rather accurate SA
matching patches. Compared to the traditional IDAN filter, it takes the polarimetric information into
consideration and selects PolLRT-CM method as the growing principle of RG, which is beneficial for
the following step of homogeneous pixel selection, especially for the complex textured areas.

3. The Proposed ANLM Filtering for PolSAR Images

In our study, the proposed ANLM filter improves the unified framework for PolSAR images
denoising and has better speckle reduction and information preservation performance (e.g., textured
information and polarimetric characteristics) than the traditional nonlocal filters both in homogeneous
and textured areas. The SA matching patches acquired by the proposed PolLRT-CMRG method
mentioned in Section 2 can improve the ability of homogeneous pixel selection in textured areas more
than the traditional nonlocal mean filters with square patches. The optimal threshold selection of
Simi-Test can help to enhance the denoising effect in homogeneous areas and detail preservation in
textured areas, respectively. As shown in Figure 3 the proposed ANLM filter contains four main parts.
The details of each steps are explained in the following sections.
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3.1. Pre-Estimation of Polarimetric Coherency Matrices with Reconstruction and Prefiltering

The nonlocal estimation methods usually involve polarimetric coherency matrix operations, e.g.,
determination operation in the known polarimetric likelihood ratio test for similarity of two matching
patches (PolLRT-MP) [16,17,20]. However, it is worth noticing that when the number of look L is
smaller than the matrix dimension q, the polarimetric coherency matrix T is singular, i.e., |T| = 0
and it no longer follows the complex Wishart distribution. There exist some reconstruction methods
enforcing full rank, and one of the best ways is to rescale the off-diagonal elements due to the ability to
preserve full polarimetric information. The resulting coherency matrix T′ of the proposed rescaling
method can be obtained as follows:{

∀i = j, T′i,j = Ti,j

∀i 6= j, T′i,j = γTi,j, γ = 3
√

min(L/q, 1)
(12)

Due to the existence of strong speckle noise, low-contrast structures and characteristics are difficult
to distinguish from surrounding areas. It is necessary to introduce some prefiltering method to reduce
the estimation variance and improve the performance of similarity evaluation. In order to keep a
good tradeoff between variance reduction and information preservation, the more robust and simple
approach is needed to average some spatial samples, for example, it is performed by the Gaussian
convolution in [17].

3.2. The NLM Estimate with SA Patches Matching

There exist lots of different statistical tests for similarity pixel selection, including polarimetric
likelihood ratio tests, joint-likelihood criteria and geodesic distances, etc. One of the well-known
similarity pixels selection method is the PolLRT-MP one described in [16,17,20]. The proposed
PolLRT-MP method supposes that the coherency matrices of two matching patches satisfy the complex
Wishart distribution independently firstly. Then the joint distribution can be considered as the product
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of each coherency matrix distribution within the matching patches. Hence, by evaluating the equality
of corresponding pixels, the PolLRT-MP statistic can be expressed as:

H = ∏i∈W Qi (13)

where W is pixel sets within the matching patches. In the proposed ANLM filter, with the purpose
of selecting more similarity pixels in textured areas, we select SA matching patches based on
PolLRT-CMRG method mentioned in Section 2 as the W set. Then we can take the logarithm of
Equation (13) and get:

lnH = ∑i∈SA lnQi = ∑i∈SA n(2qln2 + ln|Xi|+ ln|Yi| − 2ln|Xi + Yi|) (14)

Likewise the two matching patches can be considered to be more similar when lnH is closer to 0.
To obtain the PolLRT-MP threshold, we need to obtain the distribution function of lnH. In practice,
we can select a homogeneous area, estimate the equivalent number of looks (ENL) and make statistics
of lnH from the homogeneous area or simulated data based on the ENL.

The Simi-Test threshold and weight mapping are very important for nonlocal mean estimation.
Generally, for the pixel x and x′, the threshold parameter hα ∈ R+ of the PolLRT-MP method, is chosen
to control the probability for the null hypothesis which supposes the two patches is similar [16,37]:

lnHx,x′ ≥ hα, P(lnH ≥ hα) = α→ Similar Patches (15)

Then the mapping of weight from similarity ω(x, x′) can be done with the kernel exp(−lnH/hα).
It is worth noting that it enforces the weight to 1 if and only if the coherency matrices of the selected
pixel and center pixel are quite equal, i.e., lnH = 0. But it is unreasonable because for PolSAR filtering
the sum of two identical coherency matrices has no denoising effect acctually. Therefore, referring
to [17], we suggest the more effective and simple weight mapping kernel as follows:

ω
(

x, x′
)
=


1 i f x = x′

exp
(
−|lnHx,x′−c|

h

)
i f x 6= x′

(16)

where c = hα/2, h = hα/(2 ∗ k), k is the adjustment factor. The mapping definition ensures that
the weight located in both threshold boundary is low and that in the middle is high, which is more
consistent with the real condition.

After calculating the similarity lnHx,x′ and weight ω(x, x′) over all pixels x′ in a search windows
W around the central pixel x, the NLM estimate performs a weighted averaging to a weighted
maximum likelihood estimation:

TNLM(x) = ∑x′ ω(x, x′)T(x′)
∑x′ ω(x, x′)

(17)

It is noticed that T(x′) is the original coherency matrix, not the pre-estimation result T′(x′) in
Section 3.1, which can help to keep the original resolution of PolSAR images.

3.3. The NLRB Estimator from the Selected Homogeneous Pixels

The strong multilook operation, e.g., weighted averaging induced by nonlocal mean method
mentioned above, may affect the edge information and polarimetric characteristic of the strong point
target [13,15]. In order to reduce these effects, the linear minimum mean square estimator (LLMMSE)
is first proposed in [38]. Deledalle et al. [17] combined the nonlocal mean estimation and improved
LLMMSE method to suggest a more effective NLRB estimator, which is the best tradeoff between the
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nonlocal estimation and the original noisy coherency matrix. Therefore, the NLRB estimation in the
proposed ANLM filter can be expressed as:

TNLRB(x) = TNLM(x) + b(T(x)− TNLM(x)) (18)

where b is the weight factor. The b is close to 0, and the NLRB result means nonlocal mean estimation;
otherwise, that is close to 1, and it means the original noisy coherency matrix.

Compared to the LLMMSE, the NLRB estimator achieves a better bias-variance tradeoff, which
provides a lower bias and a higher variance. The following is the expression of the weight b:

b = max
j

[
max(0,

var(I j
NLM(x))− I j

NLM(x)2/L

var(I j
NLM(x))

)

]
(19)

where j denotes a given polarimetric channel, I j
NLM(·) is the intensity of j channel with NLM estimate,

L is the ENL, var(I j
NLM(·)) is the variance of I j

NLM(·) which is calculated in [17].

3.4. Optimal Selection of Multiple Estimations with Multiple Parameters

In the nonlocal denoising procedure, we need to set several parameters artificially, mainly
including the size of search window W, the scale of the pre-estimation s and the size of matching
patches P. In homogeneous areas, large search windows (e.g., 15 × 15) are preferred for having better
performance of speckle reduction. In textured areas, the size of matching patches needs to be small
(e.g., 3 × 3) for preserving more details. The pre-estimation in enough large scale can improve the
identification ability from homogeneous pixels. However, the Simi-Test threshold of PolLRT-MP is
also an important parameter for PolSAR filtering, because it is well known that a larger threshold is
preferred to reach the better effect of denoising in homogeneous area, and a smaller threshold is more
appropriate to be set for identifying homogeneous pixels effectively in textured areas. Obviously, it is
seen that the optimal threshold adaptation to local heterogeneous degree has the good potential of
enhancing speckle reduction and detail preservation.

Deledalle et al. [17] have put forward the ENLNLRB calculation method based on NL-SAR
estimate and it is a good indication of quality evaluation for PolSAR filtering. For the center pixel x,
the ENLNLRB can be computed as follows:

ENLNLRB(x) =
ENLNLM(x)

(1− b)2 +
(

b2 + 2b(1−b)
∑x′ ω(x,x′)

)
ENLNLM(x)

(20)

where ENLNLM(·) is the ENL calculated by the NLM method [17].
Referring to [17], we can set all parameters, including search window W, pre-estimation scale

s, the number of homogeneous pixels NHP in SA patches and Simi-Test threshold h, calculate the
estimation of NLRB and select the best estimation TANLM according to the largest ENLNLRB.

4. Experimental Results and Analysis of Simulated PolSAR Dataset

4.1. Data Sets Description and Experimental Settings

To demonstrate the effectiveness for the proposed ANLM method, we choose one simulated
PolSAR dataset for quantitative evaluation. We use the Monte Carlo simulation method described
in [1] for 80 × 50 3-look PolSAR images. The Pauli bias composite RGB images of the noise-free
and simulated PolSAR data are also depicted in Figure 4. The simulated scene contains some typical
structures, including strong point, linear edge, curved stripe and homogeneous areas.
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marked areas are used for the subsequent quantitative evaluation of the denoising performance.

For illustrating the performance of the proposed ANLM method on PolSAR image datasets, we
perform comparisons with the refined Lee filter, IDAN filter, pretest filter and NL-SAR filter. According
to the authors’ suggestions, the refined Lee filter have 7 × 7 edge-aligned neighborhood, the IDAN
filter has an adaptive neighborhood of maximum size 50, pretest filter uses 15 × 15 search window
and 3 × 3 matching patches. In the NL-SAR filter, the sets W of search window sizes, P of matching
patch sizes, and S are setting as the default, and the maximum size of search window Wmax is 15 × 15.
The range of the multiple parameters in the proposed ANLM filter can be set as follows:

(1) W = {3 × 3, 7 × 7, 11 × 11, 15 × 15}
(2) S = {0, 1, 2}
(3) MSP = {5 × 5}, NHP = {5, 9, 13, 17}, Th = {Th0.01: ∆Th: Th0.99}, ∆Th = (Th0.99 − Th0.01)/10
(4)
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(e.g., 3 × 3) for preserving more details. The pre-estimation in enough large scale can improve the 
identification ability from homogeneous pixels. However, the Simi-Test threshold of PolLRT-MP is 
also an important parameter for PolSAR filtering, because it is well known that a larger threshold is 
preferred to reach the better effect of denoising in homogeneous area, and a smaller threshold is more 
appropriate to be set for identifying homogeneous pixels effectively in textured areas. Obviously, it 
is seen that the optimal threshold adaptation to local heterogeneous degree has the good potential of 
enhancing speckle reduction and detail preservation. 

Deledalle et al. [17] have put forward the ܮܰܧேோ  calculation method based on NL-SAR 
estimate and it is a good indication of quality evaluation for PolSAR filtering. For the center pixel x, 
the ܮܰܧேோ can be computed as follows: ܮܰܧேோ(ݔ) = 1)(ݔ)ேெܮܰܧ − ܾ)ଶ + ൬ܾଶ + 2ܾ(1 − ܾ)∑ ,ݔ)߱ ᇱ)௫ᇲݔ ൰  (20) (ݔ)ேெܮܰܧ

where ܮܰܧேெ(∙) is the ܮܰܧ calculated by the NLM method [17]. 
Referring to [17], we can set all parameters, including search window ܹ, pre-estimation scale ݏ, the number of homogeneous pixels ܰܲܪ in SA patches and Simi-Test threshold ℎ, calculate the 

estimation of NLRB and select the best estimation ܶேெ according to the largest ܮܰܧேோ. 

4. Experimental Results and Analysis of Simulated PolSAR Dataset 

4.1. Data Sets Description and Experimental Settings 

To demonstrate the effectiveness for the proposed ANLM method, we choose one simulated 
PolSAR dataset for quantitative evaluation. We use the Monte Carlo simulation method described in 
[1] for 80 × 50 3-look PolSAR images. The Pauli bias composite RGB images of the noise-free and 
simulated PolSAR data are also depicted in Figure 4. The simulated scene contains some typical 
structures, including strong point, linear edge, curved stripe and homogeneous areas. 

For illustrating the performance of the proposed ANLM method on PolSAR image datasets, we 
perform comparisons with the refined Lee filter, IDAN filter, pretest filter and NL-SAR filter. 
According to the authors’ suggestions, the refined Lee filter have 7 × 7 edge-aligned neighborhood, 
the IDAN filter has an adaptive neighborhood of maximum size 50, pretest filter uses 15 × 15 search 
window and 3 × 3 matching patches. In the NL-SAR filter, the sets ॾ of search window sizes, ℙ 
of matching patch sizes, and ॺ are setting as the default, and the maximum size of search window ܹ௫ is 15 × 15. The range of the multiple parameters in the proposed ANLM filter can be set as 
follows: 

(1) ॾ = {3 × 3, 7 × 7, 11 × 11, 15 × 15} 
(2) ॺ = {0, 1, 2} 
(3) MSP = {5 × 5}, ℕℍℙ = {5, 9, 13, 17}, ܶℎ = {ܶℎ.ଵ: ∆ܶℎ: ܶℎ.ଽଽ}, ∆ܶℎ = (ܶℎ.ଽଽ − ܶℎ.ଵ)/10 
(4) ঈ = {ℎ.ଽଽ: ∆ℎ: ℎ.ଵ}, ∆ℎ = (ℎ.ଵ − ℎ.ଽଽ)/4, k = 2 

where ℕℍℙ and ঈ are the sets of homogeneous pixel number and Simi-Test threshold, respectively. 
∣∣). Therefore, considering the parameter adaptation of

Simi-Test threshold, the algorithmic complexity of the proposed ANLM filter is higher than that of
the NL-SAR and the pretest filters. To illustrate the effectiveness of the proposed ANLM more clearly,
we also add one more experiment only using the SA matching patches, which sets the single Simi-Test
threshold to be h0.50 straightforwardly.
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4.2. Quantitative Evaluation on Speckle Reduction and Detail Preservation

The simulated PolSAR images are processed by the aforementioned filters, and the corresponding
filtering results are shown in Figure 5. Strong point targets and curved edges are blurred, and some
false lines appear in the refined Lee filtered image. The IDAN filter is based on a pixel-wise approach to
reconstruct the AN and preserves most basic structure details, but due to the limited denoising ability,
there obviously exists residual speckle noise. The pretest nonlocal filter can suppress the speckle noise
better, especially on the homogeneous areas, but due to the lack of a bias-reduction step, there exists
some bias introduction around the strong point targets, and most edges are blurred strongly, especially
curved ones.
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(f) The proposed ANLM with optimal threshold.

Compared to the pretest filter, the NL-SAR filter based on an NLRB estimate has better information
preservation performance for edges and speckle reduction for homogeneous areas. However, based on
matching with regular patches, the speckles are still visible on the straight and curved edges. From the
filtered result in Figure 5e, the ANLM filter with single threshold significantly improves the denoising
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performance on the curved edge, and it is even much better than the IDAN filter. After considering the
optimal threshold selection of Simi-Test, the proposed ANLM filter with optimal threshold can offer a
more efficient reduction of noise in both the homogeneous and the textured areas. Also, the filtered
details are clearer than that of NL-SAR method. Obviously, the proposed ANLM filter with optimal
threshold shows the best speckle reduction performance.

To evaluate the error of the different filters quantitatively, we measure the filtering precision by
the root mean square error (RMSE) between the real and filtered coherency matrices [39]:

RMSET =

(
1

MNq2 ∑i

∣∣∣∣T(xi)− T̂ (xi)
∣∣∣∣2

F

)1/2
(21)

where xi denotes the pixel index i in 2-D image, the matrix operator
∣∣∣∣·∣∣∣∣F denotes the Frobenius norm,

T(xi) and T̂(xi) are the estimated and real coherency matrix, respectively.
Figure 6 shows the point-wise filtered CM RMSE for different filtering methods. The pretest

filter has the lowest error in homogeneous areas, especially in the upper right hand portion of the
image. On the contrary, the points and edges are blurred and their surrounding errors are higher
due to the strong multilook operation. From the results of the first four filters, there remain too many
errors left on the curved edges, which shows the limitation of these filters on complex textured areas.
The NL-SAR filter also has limited performance of speckle reduction in the stripe areas even though
using the adaptive selection of the best parameters, including the scale of pre-estimate, the size of
matching patch and search window. Compared with other filters, the filtered result of the ANLM with
single threshold shows the SA matching patches has better potential of speckle reduction in complex
textured areas. By means of the optimal threshold selection adaptively, the errors of the ANLM with
optimal threshold are also reduced obviously in both the homogeneous and textured areas.

Then, for providing a quantitative analysis of the results further, Table 1 shows the standard
deviations between the real and filtered CM on different filtering methods. We make many quantities
indicators for different kinds of area shown in Figure 4, including RMSE, RMSEstripe, RMSEedge1,
RMSEedge2 and RMSEregion1 for evaluating the denoising performance of the whole scene, stripe,
straight edge in the upper right, curved edge on two sides of stripe and region 1 around point targets,
respectively. It is seen from the RMSE result that the ANLM method proposed in this paper leads to
the best speckle reduction performance compared to that of other filters. The refined Lee filter leads
to a low RMSEedge2 value of straight edge, but a high RMSEregion1 around point targets. The IDAN
filter has a low error value of RMSEstripe, RMSEedge1, RMSEedge2, and RMSEregion1. Due to the over
smoothing effect, the pretest filter has a low overall error value, but most details are blurred. Based on
the square patches matching and NLRB estimate, the NL-SAR has the highest errors in the textured
areas. The main reason is that it simply keeps the original pixel value for preserving the textured
information and spatial resolution in the textured areas. The proposed ANLM filter has the lowest
error value of all quality indications. It shows that the SA patches matching decreases the speckle
noise in the textured areas effectively and the adaptive selection of the optimal Simi-Test threshold is
also applied successfully.

Table 1. The standard deviations between the filtered and real CM on different filtering methods.

Quality
Indication Simulated Refined Lee IDAN Pretest NL-SAR

ANLM with
Single

Threshold

ANLM with
Optimal

Threshold

RMSE 2.70 1.98 1.97 1.84 2.07 1.93 1.79
RMSEstripe 4.25 2.28 2.22 2.28 3.02 2.08 1.62
RMSEedge1 3.28 2.12 2.22 2.27 2.66 1.72 1.38
RMSEedge2 2.78 1.52 2.15 1.29 2.10 1.52 1.23
RMSEregion1 0.43 1.76 0.20 0.23 0.30 0.17 0.16
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filter. (b) IDAN filter. (c) Pretest filter. (d) NL-SAR filter. (e) The proposed ANLM with single threshold
h0.50. (f) The proposed ANLM with optimal threshold.

5. Experimental Results and Analysis of Real PolSAR Dataset

Two classical datasets of real PolSAR images with low and high spatial resolution are used for
further analyzing the effectiveness of the proposed ANLM filter as follows. It is also compared to the
refined Lee filter, the IDAN filter, the pretest filter and NL-SAR filter. The corresponding parameters
setting of these filters are the same as that of the previous simulation experiment.

5.1. Performance Evaluation Based on Low Spatial Resolution SAR580-Convair Data

The first dataset is the SAR580-Convair C-band PolSAR multilook image whose resolution is
6.4 m in azimuth and 10 m in range, respectively. The original Pauli RGB composite image is shown in
Figure 7a. The estimated ENL is 5.0 using the matrix trace moments (TM) [40], which is also based on
the complex Wishart distribution.
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proposed ANLM filter.

Figure 7 shows the results of different filters for visual inspection. Even though the refined Lee
filter (see Figure 7b) preserves most strong points and edges, these details have been blurred and
the scallop effect appears in the homogeneous areas due to the edge-aligned windows. Figure 7c
shows the result of the IDAN filter. We can see that many tiny details are smoothed and the speckle
noise is visible in some areas for the IDAN filter. The pretest nonlocal filter shows the good speckle
suppression ability in the homogeneous areas, but most textured structures have been smoothed or
removed obviously, especially in the dashed boxes in Figure 7d. From Figure 7e,f, it can be seen that
both the NL-SAR and the proposed ANLM filters exhibit similar and good performance in both speckle
reduction and detail preservation.

To analyze the denoising performance further, Figure 8 gives the enlarged images of the marked
region 2 shown in Figure 7a. It is observed that the textured information of the NL-SAR and the
proposed ANLM filters look much clearer than that of the other filters. However, there are still some
speckle noises left on the edge and stripe marked by dashed box in Figure 8e after NL-SAR filter,
and it just tends to keep the pixel value of original PolSAR image in textured areas. Compared with
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the NL-SAR filter, it is seen that the edge and stripe details are much clearer and speckle noise is not
left visually with the proposed ANLM filter. Therefore, it has the potential of speckle reduction in
textured areas.
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It is necessary to evaluate whether the PolSAR filters affect the characteristics between polarimetric
channels. The complex correlation just can measure the performance of preserving polarimetric
information, and it can be expressed [14]:

ρi,j =
E
(

SiS∗j
)

√
E
(
|Si|2

)
E
(∣∣Sj

∣∣2) (22)

where i and j resprent two polarimetric channels.
We select the homogeneous region 4 marked in Figure 7a and estimate all possible complex

correlations of the original and filtered images shown in Table 2, including ρhh+vv,hh−vv, ρhh+vv,hv
and ρhh−vv,hv. If the complex correlation of the filtered images is close to that of the original images,
the corresponding filter has the good performance of information preservation. The pretest filter
makes the original polarimetric characteristics far away from the original characteristics due to the
strong multilook operation; on the contrary, other filters, including the refined Lee, IDAN, NL-SAR
and ANLM filters, is based on the LLMMSE or NLRB estimate to keep the better tradeoff between the
nonlocal estimate and the original images.

The following is the further analysis between the proposed ANLM filter and the NL-SAR filter.
Both the two filters are based on the ENLNLRB of NLRB estimate to select the optimal parameter
adaptively. The higher the ENLNLRB, the better the speckle suppression. Therefore, we choose the
quality indication ENLNLRB to evaluate the suppression effect of speckle noise for NL-SAR and ANLM
filters. The ENLNLRB maps of NL-SAR and ANLM filters and its difference are shown in Figure 9.
We can see that the proposed ANLM filter has higher ENLNLRB value than that of the NL-SAR filter on
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the whole. Table 3 presents the average ENLNLRB value obtained from the full scene and the marked
regions 2–4 in Figure 7a to evaluate the denoising capability quantitatively. From the results of the
regions 2 and 3, the filtering performance of the proposed ANLM filter in textured areas has been
improved greatly. Also it is seen from the results of region 4 that it has the better speckle reduction
effect on homogeneous areas.

Table 2. Quantitative comparison of different filters by all possible complex correlations on the marked
region 4 in Figure 7a.

Complex
Correlation Original Refined Lee IDAN Pretest NL-SAR ANLM∣∣ρhh+vv,hh−vv

∣∣ 0.126 0.130 0.126 0.141 0.132 0.128
arg
(
ρhh+vv,hh−vv

)
0.188 0.171 0.188 0.239 0.213 0.224∣∣ρhh+vv,hv

∣∣ 0.036 0.033 0.036 0.034 0.033 0.034
arg
(
ρhh+vv,hv

)
2.961 2.735 2.961 2.582 2.680 2.613∣∣ρhh−vv,hvv

∣∣ 0.019 0.013 0.019 0.012 0.012 0.013
arg
(
ρhh−vv,hv

)
−2.146 −2.271 −2.146 −2.434 −2.036 −2.220
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Table 3. Quantitative comparison of the NL-SAR and the ANLM filters by average ENLNLRB on the
full scene and the marked regions 2–4 in Figure 7a.

Method Full Scene Region 2 Region 3 Region 4

NL-SAR 35.0003 18.3173 52.7748 140.2214
ANLM 48.5872 31.6729 80.3525 172.6150

5.2. Performance Evaluation Based on High Spatial Resolution ESAR Data

The second dataset is the DLR (German Aerospace Centre) ESAR L-band PolSAR data taken
over the Oberpfaffenhofen test site in Germany in 1999, whose original resolution is 1.5 m in the
range and azimuth directions, respectively. For equalizing the resolution of azimuth and ground
range directions, we also make a two-look processing in azimuth. A region of 500 × 800 pixels is
selected for the following experimental analysis. This PolSAR image has a very high spatial resolution
and too many kinds of complex structures, including strong point targets, edges, lines, stripe and
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homogeneous areas. Therefore, it is difficult to keep a good balance between denoising and detail
restoration for filters, which is suitable for filtering performance evaluation. The estimated ENL is
1.4 using the TM estimator.

Figure 10 shows the visual assessment of the original data and filtered results by the above five
filters. For the refined Lee filtered result shown in Figure 10b, the scallop effect in homogeneous area is
obvious and some details are blurred. The IDAN filtered result (see Figure 10c) preserves most of the
details, but the speckle noise in homogeneous area is visible. The pretest nonlocal filter (see Figure 10d)
has a good performance in speckle noise reduction; however, the point targets are spreading obviously,
especially in the dashed boxes in Figure 10d. From Figure 10e,f, it can be seen that both the NL-SAR
and the proposed ANLM filters have similar and good performance in most areas.Sensors 2018, 18, x FOR PEER REVIEW  16 of 21 

 

 

 

Figure 10. Denoising results of different filtering methods using ESAR L-band data. (a) Original data. 
(b) Refined Lee filter. (c) IDAN filter. (d) Pretest filter. (e) NL-SAR filter. (f) The proposed ANLM 
filter. 

Likewise, we select the enlarged image on the marked region 5 in Figure 10a to compare the 
denoising performance of different filters in Figure 11. Region 5 has too many kinds of surface 
features and the textured information is rather complex. It can be observed that the refined Lee 
filtered image has many false lines, the IDAN filtered image smoothes out many tiny details, and the 
pretest filtered image has lost most of the textured information. In the textured areas, the NL-SAR 
filter based on the square patches matching has low filtering effect, as it tends to keep the pixel value 
of original PolSAR data and has lost the filtering ability in fact for the textured areas. Especially, the 
yellow box image marked in Figure 11a of the NL-SAR filtered result and the original Pauli RGB 
image are very similar.  

Figure 10. Denoising results of different filtering methods using ESAR L-band data. (a) Original data.
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Likewise, we select the enlarged image on the marked region 5 in Figure 10a to compare the
denoising performance of different filters in Figure 11. Region 5 has too many kinds of surface features
and the textured information is rather complex. It can be observed that the refined Lee filtered image
has many false lines, the IDAN filtered image smoothes out many tiny details, and the pretest filtered
image has lost most of the textured information. In the textured areas, the NL-SAR filter based on the
square patches matching has low filtering effect, as it tends to keep the pixel value of original PolSAR
data and has lost the filtering ability in fact for the textured areas. Especially, the yellow box image
marked in Figure 11a of the NL-SAR filtered result and the original Pauli RGB image are very similar.Sensors 2018, 18, x FOR PEER REVIEW  17 of 21 
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This means that there is lots of speckle noise left after the NL-SAR filtering. Figure 11f shows the
proposed ANLM filtered result. The edge in the enlarged image shown in Figure 11f is very clear and
the noise around the image is well suppressed. Therefore, in textured areas, the ANLM filter can not
only suppress the speckle noise greatly, but also preserve most of textured information well.

One of the most important applications of PolSAR images is the terrain classification. Therefore,
the classification result is also a good way to evaluate the preservation performance of textured and
polarimetric information. In this paper, a widely used unsupervised H/α−Wishart classification
method is selected for experiments [2]. Specifically, the number of pixels switching classes is 10%,
the maximum number of iterations is 10, and the window size is 1× 1 for verifying the validity of filters.
Figure 10 shows H/α−Wishart classification results of different filters. The study area mainly contains
grass, tree, vehicle and road. The optical Google Earth image acquired in 2001 is used for the reference
image shown in Figure 12a. The refined Lee and pretest filters smooth too many details and line
structures, for example, most of the road marked by the dashed ellipse in Figure 12b,d are obviously
mistaken as grass or trees. The IDAN filtered results preserve more detail information, but some tiny
details (e.g., roads) marked by the dashed ellipses in Figure 12c are lost. Though the NL-SAR filter
preserves the most of details, its classification result presents the phenomenon of spatial discontinuity,
especially for the vehicle and grass marked by the dashed ellipse in Figure 12e. Because the NL-SAR
filter is based on the square patches matching and hence it is very difficult to find homogenous pixels
from textured areas. Figure 12f shows the classification result by the proposed ANLM filter. The results
show that the SA patch matching has good performance in distinguishing fours kinds of terrains, and
the classification results preserve most of detail information and is distributed continuously in space.
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Figure 12. H/α−Wishart classification results of different filters. (a) Optical image. (b) Refined Lee
filter. (c) IDAN filter. (d) Pretest filter. (e) NL-SAR filter. (f) The proposed ANLM filter.

Moreover, compared with the NL-SAR filter, it is necessary to highlight the advantage of the
proposed ANLM filter by the ENLNLRB. Figure 13 shows the ENLNLRB maps produced by the NL-SAR
and the ANLM filters and their difference. On the whole, the ENLNLRB value of the proposed ANLM
filter is much higher than that of the NL-SAR filter, and it means the proposed ANLM filter has much
better performance in speckle suppression. Figure 14 also shows the enlarged ENLNLRB map of the
NL-SAR and the ANLM filters and its difference on the marked region 5 in Figure 10a. Obviously,
the proposed ANLM filter presents better capability of denoising in textured areas due to SA patches
matching. Table 4 presents the average ENLNLRB value obtained from the full scene and the marked
regions 5–8 in Figure 10a to evaluate the denoising capability quantitatively. From the result of the
full scene, the proposed ANLM filter has improved the filtering performance of the unified nonlocal
framework greatly introduced in [17]. In addition, it is observed from the results of the regions 6–8
that the speckle reduction effect on homogeneous areas of the proposed ANLM filter is also much
better than that of the NL-SAR filter.
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6. Conclusions 
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effectiveness of the ANLM filter on speckle reduction and detail preservation. The proposed filter 
can be applied to both low and high spatial resolution PolSAR images well. It is worth noticing that 
compared to other nonlocal filters for PolSAR images, the proposed ANLM filter has solved the 
problem of low filtering effect in textured areas while preserving the details. 

Author Contributions: P.S. conceived the idea, performed the experiments, wrote and revised the paper; C.W. 
contributed some ideas, analyzed the experimental results and revised the paper; H.G. and J.Z. contributed 
discussions for the results. 

Funding: The work was supported by the National Natural Science Foundation of China (Nos. 41671356, 
41531068 and 41371335), the Natural Science Foundation of Hunan Province, China (No. 2016JJ2141). 

Acknowledgments: The experimental datasets are downloaded from the ESA website: 
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets. The programs about the ANLM filter can be 
downloaded from the website: https://github.com/wchch1010/ANLM_filter_PolSAR. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 
2009. 

2. Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised classification 
using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 
4, 2178–2180. 

3. Antropov, O.; Rauste, Y.; Astola, H.; Praks, J.; Häme, T.; Hallikainen, M.T. Land Cover and Soil Type 
Mapping From Spaceborne PolSAR Data at L-Band With Probabilistic Neural Network. IEEE Trans. Geosci. 

Figure 14. Enlarged ENLNLRB map on marked region 5. (a) NL-SAR filter. (b) ANLM filter. (c) The
ENLNLRB difference between ANLM and NL-SAR filters.

Table 4. Quantitative comparison of NL-SAR and ANLM filters by average ENLNLRB on full scene
and marked regions 5–8 in Figure 10a.

Method Full Scene Region 5 Region 6 Region 7 Region 8

NL-SAR 35.7548 15.5849 37.0379 80.9794 90.0223
ANLM 67.0987 34.1219 74.5117 129.3978 150.0078

6. Conclusions

In this paper, an adaptive nonlocal mean filter (ANLM) for polarimetric SAR image data has
been proposed based on shape-adaptive (SA) patches matching and optimal Simi-Test threshold
selection. The proposed PolLRT-CMRG method combine the PolLRT-CM and RG methods, and obtains
more homogeneous pixels in textured areas effectively for every pixel as SA patches. In addition,
the Simi-Test threshold is an adaptive parameter to local structure based on the ENLNLRB value of
the NLRB estimate, which can enhance the filtering effect both in homogeneous and textured areas.
The simulated, the low spatial resolution SAR580-Convair and the high spatial resolution ESAR PolSAR
datasets are selected for experiment. The experimental results have demonstrated the effectiveness of
the ANLM filter on speckle reduction and detail preservation. The proposed filter can be applied to
both low and high spatial resolution PolSAR images well. It is worth noticing that compared to other
nonlocal filters for PolSAR images, the proposed ANLM filter has solved the problem of low filtering
effect in textured areas while preserving the details.
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