Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Data Acquisition
2.1. Description of the Study Area
2.2. Data Collection and Preparation
2.2.1. Land Subsidence Inventory
2.2.2. Land Subsidence Conditioning Factors
3. Methodology
3.1. Background of Machine Learning Algorithms
3.1.1. Bayesian Logistic Regression (BLR)
3.1.2. Support Vector Machine (SVM)
3.1.3. Logistic Model Tree (LMT)
3.1.4. Alternate Decision Tree (ADTree)
3.2. Factor Selection Using Least Square Support Vector Machine (LSSVM)
3.3. Evaluation and Comparison of Algorithms
3.3.1. Statistical Index Based Evaluation
3.3.2. Receiver Operating Characteristic Curve
3.3.3. Statistical Tests of Models
4. Results and Discussion
4.1. Selection Process of Effective Conditioning Factors on Land Subsidence
4.2. Model Results, Validation and Comparison
4.3. Development of Land Subsidence Susceptibility Mapping, Verification and Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Machowski, R.; Rzetala, M.A.; Rzetala, M.; Solarski, M. Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Marfai, M.A.; King, L. Monitoring land subsidence in semarang, indonesia. Environ. Geol. 2007, 53, 651–659. [Google Scholar] [CrossRef]
- Chai, J.-C.; Shen, S.-L.; Zhu, H.-H.; Zhang, X.-L. Land subsidence due to groundwater drawdown in shanghai. Geotechnique 2004, 54, 143–147. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through a-dinsar techniques in the ravenna area (Italy). GISci. Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-J.; Ahn, S.-C.; Choi, J.-K.; Lee, S. Sensitivity analysis for the gis-based mapping of the ground subsidence hazard near abandoned underground coal mines. Environ. Earth Sci. 2011, 64, 347–358. [Google Scholar] [CrossRef]
- Lee, S.; Park, I.; Choi, J.-K. Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environ. Manag. 2012, 49, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Younger, P.L.; Wolkersdorfer, C. Mining impacts on the fresh water environment: Technical and managerial guidelines for catchment scale management. Mine Water Environ. 2004, 23, s2–s80. [Google Scholar]
- Park, I.; Lee, J.; Saro, L. Ensemble of ground subsidence hazard maps using fuzzy logic. Cent. Eur. J. Geosci. 2014, 6, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Choi, J.; Lee, M.J.; Lee, S. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Comput. Geosci. 2012, 48, 228–238. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central mexico detected by alos insar time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence trends of volturno river coastal plain (northern campania, southern italy) inferred by sar interferometry data. Geosciences 2018, 8, 8. [Google Scholar] [CrossRef]
- Lee, J. Geology of korea. In Geological Society of Korea; Sigma Press: Seoul, Korea, 1999. [Google Scholar]
- Zheng, M.; Fukuyama, K.; Sanga-Ngoie, K. Application of insar and gis techniques to ground subsidence assessment in the nobi plain, Central Japan. Sensors 2013, 14, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-D.; Lee, S.; Oh, H.-J.; Choi, J.-K.; Won, J.-S. Assessment of ground subsidence hazard near an abandoned underground coal mine using gis. Environ. Geol. 2006, 50, 1183–1191. [Google Scholar] [CrossRef]
- Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land subsidence susceptibility mapping at kinta valley (malaysia) using the evidential belief function model in gis. Nat. Hazards 2014, 73, 1019–1042. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, J.; Wang, J.; Chen, Z.; Wang, D.; Xu, S. Risk assessment of land subsidence at tianjin coastal area in china. Environ. Earth Sci. 2009, 59, 269. [Google Scholar] [CrossRef]
- Oh, H.-J.; Lee, S. Assessment of ground subsidence using gis and the weights-of-evidence model. Eng. Geol. 2010, 115, 36–48. [Google Scholar] [CrossRef]
- Zhi-xiang, T.; Pei-xian, L.; Li-li, Y.; Ka-zhong, D. Study of the method to calculate subsidence coefficient based on SVM. Proced. Earth Planet. Sci. 2009, 1, 970–976. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Cui, Z.-D.; Wang, J.-X.; Yan, L.-P.; Yan, X.-X. Application of grey theory-based model to prediction of land subsidence due to engineering environment in shanghai. Environ. Geol. 2008, 55, 583–593. [Google Scholar] [CrossRef]
- Choi, J.-K.; Kim, K.-D.; Lee, S.; Won, J.-S. Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in taebaek city, Korea. Environ. Earth Sci. 2010, 59, 1009–1022. [Google Scholar] [CrossRef]
- Coal Industry Promotion Board (CIPB). Fundamental investigation report of the stability test for hwajeon. Coal Ind. Promot. Board Seoul 1996, 96, 1–549. [Google Scholar]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Kanevski, M.; Maignan, M. Analysis and Modelling of Spatial Environmental Data; EPFL Press: Lausanne, Switzerland, 2004; Volume 6501. [Google Scholar]
- Thomas, L. The geology and shaft sinking at jangseong anthracite mine, Gangweon-do, republic of Korea. J. Korea Inst. Min. Geol. 1977, 10, 93–96. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- El-Naqa, A. Application of RMR and Q geomechanical classification systems along the proposed mujib tunnel route, central Jordan. Bull. Eng. Geol. Environ. 2001, 60, 257–269. [Google Scholar] [CrossRef]
- Ghosh, J.K.; Delampady, M.; Samanta, T. An Introduction to Bayesian Analysis: Theory and Methods; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Avali, V.R.; Cooper, G.F.; Gopalakrishnan, V. Application of bayesian logistic regression to mining biomedical data. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2014; p. 266. [Google Scholar]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Pham, B.T.; Bin Ahmad, B.; Tien Bui, D. A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int. 2018, 1–44, 1–44. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Xie, X.; Hong, H.; Van Trung, N.; Bui, D.T.; Wang, G.; Li, X. Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different Kernel functions. Environ. Earth Sci. 2016, 75, 1344. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in china. Bull. Eng. Geol. Environ. 2017, 77, 647–664. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995. [Google Scholar]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the golestan province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, maxent, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Kabir, E.; Siuly; Zhang, Y. Epileptic seizure detection from eeg signals using logistic model trees. Brain Inform. 2016, 3, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, E.M.; Ibrikci, T. Effective automated prediction of vertebral column pathologies based on logistic model tree with smote preprocessing. J. Med. Syst. 2014, 38, 50. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [Google Scholar] [CrossRef]
- Wu, X.; Ren, F.; Niu, R. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the three gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Oh, S. Alternating decision tree algorithm for assessing protein interaction reliability. Vietnam J. Comput. Sci. 2014, 1, 169–178. [Google Scholar] [CrossRef]
- Bhowmick, S.; Eijkhout, V.; Freund, Y.; Fuentes, E.; Keyes, D. Application of alternating decision trees in selecting sparse linear solvers. In Software Automatic Tuning: From Concepts to State-of-the-Art Results; Naono, K., Teranishi, K., Cavazos, J., Suda, R., Eds.; Springer: New York, NY, USA, 2010; pp. 153–173. [Google Scholar]
- Liu, K.-Y.; Lin, J.; Zhou, X.; Wong, S.T.C. Boosting alternating decision trees modeling of disease trait information. BMC Genet. 2005, 6, S132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Kononenko, I. Estimating attributes: Analysis and extensions of relief. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar]
- Quinlan, J.R. Combining instance-based and model-based learning. In Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, USA, 27–29 July 1993; pp. 236–243. [Google Scholar]
- Suykens, J.A.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B.; Müller, K.-R. The connection between regularization operators and support vector kernels. Neural Netw. 1998, 11, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Dholakia, M.; Prakash, I.; Pham, H.V. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech. Geol. Eng. 2016, 34, 1807–1824. [Google Scholar] [CrossRef]
- Chen, W.; Shirzadi, A.; Shahabi, H.; Ahmad, B.B.; Zhang, S.; Hong, H.; Zhang, N. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve bayes tree classifiers for a landslide susceptibility assessment in langao county, china. Geomat. Nat. Hazards Risk 2017, 1–23, 1–23. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using gis-based statistical models and remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Liu, J.; Zhu, A.-X.; Shahabi, H.; Pham, B.T.; Chen, W.; Pradhan, B.; Bui, D.T. A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the wuning area (China). Environ. Earth Sci. 2017, 76, 652. [Google Scholar] [CrossRef]
- Martínez-Álvarez, F.; Reyes, J.; Morales-Esteban, A.; Rubio-Escudero, C. Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the iberian peninsula. Knowl.-Based Syst. 2013, 50, 198–210. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Chen, W.; Xie, X.; Peng, J.; Wang, J.; Duan, Z.; Hong, H. Gis-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, naïve-bayes tree, and alternating decision tree models. Geomat. Nat. Hazards Risk 2017, 8, 950–973. [Google Scholar] [CrossRef]
- Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142. [Google Scholar]
- Bui, D.T.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using gis. J. Hydrol. 2016, 540, 317–330. [Google Scholar]
- Yao, X.; Tham, L.; Dai, F. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of hong kong, china. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for koyulhisar, turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Landslide susceptibility mapping along road corridors in the indian himalayas using bayesian logistic regression models. Geomorphology 2012, 179, 116–125. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in sado island of japan: Part ii. Gis-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Bui, D.T.; Ho, T.-C.; Pradhan, B.; Pham, B.-T.; Nhu, V.-H.; Revhaug, I. Gis-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with adaboost, bagging, and multiboost ensemble frameworks. Environ. Earth Sci. 2016, 75, 1101. [Google Scholar]
Land Subsidence Factors | Classes | GIS Data Type | Scale |
---|---|---|---|
Slope angle (°) | (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–40; (5) >40 | GRID | 1 m × 1 m |
Distance to drift (m) | (1) 0–2; (2) 2–8; (3) 8–19; (4) 19–50; (5) >50 | Line | 1:5000 |
Drift density (m/m2) | (1) 0–0.002; (2) 0.002–0.0448; (3) 0.0448–0.120; (4) 0.120–0.299; (5) 0.299–0.952 | Polygon | 1:5000 |
Geology | (1) Gobangsan Group; (2) Sadong Group | Polygon | 1:50,000 |
Distance to lineament (m) | (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–60; (5) >60 | Line | 1:5000 |
Lineament density (m/m2) | (1) 0–0.001; (2) 0.001–0.029; (3) 0.029–0.0435; (4) 0.0435–0.052; (5) 0.052–0.109 | Polygon | 1:5000 |
Land use | (1) Mixed forest land; (2) Deciduous forest; (3) Mixed barren land; (4) Commercial area; (5) Coniferous forest; (6) Other grasses; (7) Transportation; (8) Natural grasses; (9) Field | Polygon | 1:50,000 |
RMR | (1) 0.00366–1.26; (2) 1.26–1.54; (3) 1.54–1.93; (4) 1.93–2.79; (5) 2.79–4 | Polygon | 1:5000 |
BLR | SVM | LMT | ADTree | |||||
---|---|---|---|---|---|---|---|---|
T | V | T | V | T | V | T | V | |
TP | 16 | 5 | 16 | 4 | 15 | 5 | 14 | 4 |
TN | 15 | 6 | 14 | 6 | 14 | 5 | 15 | 5 |
FP | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 2 |
FN | 1 | 2 | 3 | 3 | 2 | 2 | 3 | 3 |
SST | 0.941 | 0.714 | 0.842 | 0.571 | 0.882 | 0.714 | 0.824 | 0.571 |
SPC | 0.882 | 0.857 | 0.875 | 0.857 | 0.824 | 0.714 | 0.882 | 0.714 |
ACC | 0.912 | 0.786 | 0.857 | 0.714 | 0.853 | 0.714 | 0.853 | 0.643 |
Kappa | 0.822 | 0.571 | 0.764 | 0.571 | 0.764 | 0.428 | 0.764 | 0.428 |
RMSE | 0.297 | 0.426 | 0.323 | 0.430 | 0.335 | 0.432 | 0.363 | 0.462 |
Algorithm | Parameters |
---|---|
BLR | Hyper parameter value range, R: 0.01–3.16; Specific hyper parameter value, 0.27; The maximum number of iterations to perform, 1000; The number of folds in the internal cross-validation or pruning, 2; The random number seed, 1; the threshold for classification, 0.5. |
LMT | The minimum number of instances at which a node is considered for splitting, 15; a fixed number of iterations for LogitBoost, −1. |
SVM | Build logistic model, False; C, 0.1; epsilon, 1.0 × 10−12; filter type, normalized training data; kernel function, polykernel; number of folds, −1; random seed, 1; tolerance parameter, 0.001. |
ADT | Number of boosting iteration, 10; random seed, 0; search path, expand all paths |
No. | Pair Wise Comparison | Number of Positive Differences | Number of Negative Differences | z-Value | p-Value | Significance |
---|---|---|---|---|---|---|
1 | BLR vs. SVM | 27 | 7 | −4.078 | 0.000 | Yes |
2 | BLR vs. LMT | 24 | 10 | −2.522 | 0.012 | Yes |
3 | BLR vs. ADTree | 28 | 4 | −4.469 | 0.000 | Yes |
4 | SVM vs. LMT | 27 | 7 | −4.043 | 0.000 | Yes |
5 | SVM vs. ADTree | 33 | 1 | −5.069 | 0.000 | Yes |
6 | LMT vs. ADTree | 33 | 1 | −5.003 | 0.000 | Yes |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Pradhan, B.; Chen, W.; Khosravi, K.; Panahi, M.; Bin Ahmad, B.; Saro, L. Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors 2018, 18, 2464. https://doi.org/10.3390/s18082464
Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi K, Panahi M, Bin Ahmad B, Saro L. Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors. 2018; 18(8):2464. https://doi.org/10.3390/s18082464
Chicago/Turabian StyleTien Bui, Dieu, Himan Shahabi, Ataollah Shirzadi, Kamran Chapi, Biswajeet Pradhan, Wei Chen, Khabat Khosravi, Mahdi Panahi, Baharin Bin Ahmad, and Lee Saro. 2018. "Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms" Sensors 18, no. 8: 2464. https://doi.org/10.3390/s18082464
APA StyleTien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Pradhan, B., Chen, W., Khosravi, K., Panahi, M., Bin Ahmad, B., & Saro, L. (2018). Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 18(8), 2464. https://doi.org/10.3390/s18082464