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Abstract: High demand of semiconductor gas sensor works at low operating temperature to as low
as 100 ◦C has led to the fabrication of gas sensor based on TiO2 nanoparticles. A sensing film of gas
sensor was prepared by mixing the sensing material, TiO2 (P25) and glass powder, and B2O3 with
organic binder. The sensing film was annealed at temperature of 500 ◦C in 30 min. The morphological
and structural properties of the sensing film were characterized by field emission scanning electron
microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD).
The gas sensor was exposed to hydrogen with concentration of 100–1000 ppm and was tested at
different operating temperatures which are 100 ◦C, 200 ◦C, and 300 ◦C to find the optimum operating
temperature for producing the highest sensitivity. The gas sensor exhibited p-type conductivity based
on decreased current when exposed to hydrogen. The gas sensor showed capability in sensing low
concentration of hydrogen to as low as 100 ppm at 100 ◦C.
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1. Introduction

Detection of hydrogen in fuel cell, combustion engines and monitoring faults in transformer have
gained incredible interest from many researchers especially from gas sensing area. Hubert et al.
reported that 1400 publications have been published in gas sensing from 1975 until 2010 [1].
Hydrogen which is known as a colorless, odorless, tasteless, and flammable gas, cannot be detected
by human senses [2], thus its presence should be detected and analyzed. With a mixture of oxygen,
leakage of hydrogen can cause explosions and degradation of many types of steels [3]. Hydrogen can
also become flammable and explosive if the concentration is higher than 4% in air [4].

Different sensing technologies have been employed to detect hydrogen, such as catalyst,
thermal conductivity, electrochemical, resistance based, work function based, mechanical,
and optical [2]. Among them, electrochemical and resistance-based technologies are the most preferred
due to their ability to detect low hydrogen concentration and acceptable selectivity [2]. It has been
reported that effective sensing materials to sense hydrogen are based on palladium (Pd) [5–15] and
metal-oxide semiconductors (MOX) such as SnO2 [16–19], ZnO [20–23], TiO2 [24–30], WO3 [31],
and NiO [32] because of their capability to detect hydrogen with low concentration and ability to work
at room temperature. Palladium is high sensitive to hydrogen; however it also has drawbacks such as
hysteresis behavior in electrical resistance because of adsorption of hydrogen in the structure of Pd [5].
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Recently, a hydrogen gas sensor based on carbon-based materials such as carbon nanotubes [33–35],
graphene [36–39], and reduced graphene oxide (RGO) [40,41] has also attracted high attention because
it is highly sensitive to the changes in the chemical environments [42,43], and offers high performance,
label free chemical sensing [44].

TiO2 has been chosen in this work because it is known as a chemically stable, nontoxic,
biocompatible, inexpensive, wide band gap semiconducting material [45]. Due to being inexpensive,
hydrogen gas sensors based on TiO2 also can become affordable and safe hydrogen gas sensors [46].
Among the metal-oxide semiconductors, the TiO2 gas sensor has been reported to be able to work
under low operating temperatures, up to as low as room temperature [28,47,48], with fast response [29].
These criteria have made TiO2 a practical material for gas sensing applications.

In this paper, a TiO2 gas sensor was fabricated on the alumina substrate using screen-printed
method and was tested to different concentration of hydrogen from 100–1000 ppm at three different
operating temperatures: 100 ◦C, 200 ◦C, and 300 ◦C.

2. Materials and Methods

2.1. Preparation and Fabrication of Gas Sensor

Gas sensor used in this work consist of two layers, which are an interdigitated electrode (IDE) and
sensing film, as shown in Figure 1. The IDE used in this work was a silver-conductive paste (DGP80
TESM8020) provided by Sigma-Aldrich (Steinheim am Albuch, Germany) and the sensing material
used in this work was TiO2 (Aeroxide® P25) provided by Sigma-Aldrich (Steinheim am Albuch,
Germany). IDE and the sensing film were deposited on the alumina substrate using a screen printing
method. Initially, IDE was deposited as first layer on the alumina substrate, followed by annealing in
the furnace at temperature of 120 ◦C for 30 min. Air was used as a carrier gas in the furnace.

In order to deposit TiO2 on the alumina substrate, TiO2 powder was prepared as a paste.
Firstly, 90 wt % of TiO2 powder was mixed with 10 wt % of glass powder, boron oxide (B2O3),
using m-xylene as a medium in an ultrasonic bath for 90 min. Then, it was dried in an oven and
was ground in a mortar. The purpose of glass powder is to hold the nanoparticles of TiO2 on the
substrate and to ensure good adhesion between TiO2 and the alumina substrate. B2O3 was chosen as
the glass powder in this work because it has a low melting point of 450 ◦C. This method have been
presented in [49,50]. Organic binder was prepared by mixing m-xylene, linseed oil, and α-terpineol.
The paste was prepared by mixing the TiO2-B2O3 with organic binder until homogeneous paste was
obtained. Then, TiO2-B2O3 paste was deposited on the top of IDE and it was annealed in the furnace
at temperature of 500 ◦C for 30 min. The fabricated gas sensor is shown in Figure 2. The size of the
sensing film was 4.2 × 4.2 mm, while the size of the IDE was 9.25 × 4.2 mm. The IDE was fully covered
by TiO2-B2O3 paste in order to increase the sensitivity of the gas sensor. Black color on the sensing film
of gas sensor might be caused by diffusion of silver (IDE) into the TiO2 (Figure 2). It was reported that
the silver diffused into TiO2 at a temperature of 400 ◦C [51].
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Figure 2. Fabricated TiO2-B2O3 gas sensor on alumina substrate using a screen-printing method.

2.2. Characterization Method of TiO2-B2O3

Characterizations of TiO2-B2O3 were made using a thermogravimetric analyzer (TGA),
field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX),
and X-ray diffraction (XRD). Thermal analysis of TiO2-B2O3 paste was tested using TGA (Brand:
Mettler Toledo (Greifensee, Switzerland, Model: TGA/DSC 1 HT)) with heating rate 10 ◦C/min and
air as the carrier for the temperature range: 25–1000 ◦C. The surface morphology of the thick films was
analyzed using FESEM (Model: Nova Nanosem 230 (Thermo Fisher Scientific, Oregon City, OR, USA),
and element composition was examined by EDX inside the FESEM. XRD (Brand: Philips (Almelo,
The Netherlands), Model: PW 3040/60 MPD X’pert High Pro Panalytical) studies were carried out
for powder and thick film over a 2θ range from 20◦ to 80◦. The scanning time for TiO2 (P25) and
TiO2-B2O3 powder were 5 min, and one hour for TiO2-B2O3 thick films.

2.3. Gas Response Measurement

Gas sensing measurements were performed in gas chamber with different ppm levels of hydrogen
from 100–1000 ppm. As a carrier gas, 500 sccm nitrogen was used. Experimental setup of gas chamber is
shown in Figure 3. Gas chamber was obtained from Linkam Scientific (Tadworth, UK, Model: HFS600).
The gas chamber was connected to the mass flow controller, temperature controller, and Kiethley
487 Picoammeter/Voltage source. Three different operating temperatures were tested on gas sensor
which are 100 ◦C, 200 ◦C, and 300 ◦C to find the optimum operating temperature that can produce
highest sensitivity to hydrogen. For measurement, 10 V voltage source was applied to the IDE of gas
sensor and current was observed as the response of gas sensor.
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3. Results and Discussion

3.1. Characterization of TiO2-B2O3 Using TGA, FESEM, EDX and XRD

TGA analysis was performed to determine the thermal behavior of the TiO2-B2O3 paste and to
find an optimum calcination temperature. Figure 4 shows total mass loss of TiO2-B2O3 paste over
a temperature range of 25 to 1000 ◦C. At 400 ◦C, mass loss was measured approximately 49.61%,
which indicated that the organic binder was not fully evaporated at this temperature. It became
decreased again when temperature reached at 500 ◦C which approximately 25.12%. Composition ratio
of TiO2-B2O3 powder and organic binder used in this work was 30:70. It can be seen that the organic
binder was fully evaporated at temperature of 500 ◦C. Therefore, this temperature has been chosen as
the annealing temperature for the sensing film.
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Figure 4. Thermal Behavior of TiO2-B2O3 paste using thermogravimetric analysis (TGA).

The morphology of the TiO2-B2O3 nanoparticles (NP) structure at a temperature of 500 ◦C is
shown in Figure 5. It can be seen that the nanoparticles of TiO2 was clearly seen at 200k magnification.
Field emission scanning electron microscopy (FESEM) images shown the uniformity of nanostructures
due to the homogeneity of prepared paste. Average diameter of nanoparticles was observed to be in
40–70 nm. The EDX result showed that peak of Ti was detected at temperature of 500 ◦C as shown
in Figure 6. These results confirmed that TiO2 was crystalline at this temperature. Thus, it has been
chosen as the sensing film of the gas sensor, and will be tested with hydrogen exposure in gas chamber.

Figure 7 shows the XRD pattern of TiO2 (P25) and TiO2-B2O3 without heat treatment. XRD
analyses were examined using X’Pert HighScore software. From XRD spectra, it can be seen that both
figures (TiO2 and TiO2-B2O3) consisted of rutile and anatase phases. It can be observed that pure
titanium had a peak at 2θ = 25.35◦ (Figures 7 and 8). According to literature, this peak was attributed
to the anatase (101) TiO2 phase. Whereas, a high peak of rutile phase (110) was located at 2θ = 27.49◦

(Figures 7 and 8). It was reported that crystallinity of TiO2 was decreased with the addition of boron
content [52]. This work also showed that the intensity of TiO2 was decreased when added with B2O3.
It can also be seen that the peak of anatase (101) in TiO2-B2O3 was lower than peak of anatase (101) in
TiO2 at 2θ = 25.35◦. Meanwhile, a small peak of B2O3 was observed at 2θ = 36.04◦ in TiO2-B2O3. This
phase also contributed to the rutile phase (101).
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Figure 8 shows XRD pattern of TiO2-B2O3 thick film at T = 500 ◦C. It can be seen that, XRD
pattern of anatase and rutile phases in TiO2-B2O3 thick film was similar as XRD pattern in Figure 7.
Whereas, B2O3 peaks were also detected in thick film at 2θ = 27.76◦, 36.04◦, 48.37◦ and 54.58◦. It was
also observed that peaks of B2O3 were detected at similar location of anatase (2θ = 48.37◦) and rutile
phases (2θ = 27.76◦, 36.04◦ and 54.58◦). This analysis also indicated that the XRD pattern of TiO2 was
not affected by the presence of B2O3.
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3.2. Electrical Characteristics of TiO2-B2O3 Gas Sensor

Electrical characteristics of the TiO2-B2O3 gas sensor that annealed at 500 ◦C were studied.
Figure 9 shows the resistance of TiO2-B2O3 gas sensor at the operating temperatures: 100 ◦C, 200 ◦C,
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and 300 ◦C. The graph showed that resistance was approximately 8.36 TΩ at 100 ◦C. This caused
the range of current to be below than 1 pA. The resistance was dropped sharply at a temperature
of 200 ◦C and 300 ◦C, where the values were approximately 39.59 GΩ and 33.74 MΩ respectively.
This phenomenon can be caused by the conversion of silver (electrode) to metallic silver at operating
temperatures of 200 ◦C and 300 ◦C, where it was decomposed into silver and oxygen [53]. This metallic
silver has decreased the resistivity of the gas sensor and improved the conductivity of the gas sensor.
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3.3. Performance of TiO2-B2O3 Gas Sensor at Different Operating Temperatures

Figure 10 shows the response of TiO2-B2O3 gas sensors at operating temperatures: 100 ◦C,
200 ◦C and 300 ◦C. It can be seen that in Figure 10a, the measurement was quite sensitive to noise
when the experiment was carried out at 100 ◦C. It was observed that the response was not as smooth
as the response in Figure 10b,c. This environment occurred because the measured current was
very low, which is below than 1 pA. As the operating temperature increased, the observed current
started to increase and showed high response to hydrogen. From experiments have been conducted,
TiO2-B2O3 gas sensor able to sense low concentration of hydrogen as low as 100 ppm at 100 ◦C.
However, it also has been observed that the TiO2-B2O3 gas sensor was unable to operate at room
temperature. Response showed that the observed current was decreased when exposed to hydrogen
and it was increased when exposed to the nitrogen. It also means that resistance of TiO2-B2O3 increased
when exposed to the hydrogen and decreased when exposed to the nitrogen. This behavior indicated
that TiO2-B2O3 gas sensor is a p-type gas sensor based on its response. P-type responses might be
caused by diffusion of silver into TiO2. Sheini and Rohani [51] have compared the sensing mechanism
of TiO2 to reducing gas before and after silver diffusion into TiO2 and found that sensing mechanism
of gas sensor has been changed to p-type when silver diffused into TiO2. The sensitivity of p-type gas
sensor can be calculated as follows [54]:

S =
RH2

RN

where RH2 is resistance in hydrogen flow and RN is initial resistance in nitrogen flow.
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Comparison of sensor response at different operating temperature is shown in Figure 11. The gas
sensor responded well to hydrogen. It also found that the responses values were unable to return
to the original value, which is 1. This indicated that the responses were not fully recovered when
nitrogen was flowed to the gas chamber. It can be seen that the value of sensor response was very
low at an operating temperature of 100 ◦C compared to the operating temperature at 200 ◦C and
300 ◦C. The highest peak of sensor response was achieved at an operating temperature of 300 ◦C.
The sensitivity was increased when the operating temperature was higher. The sensitivity of 100 ppm
of H2 was the lowest at an operating temperature 200 ◦C due to the sensor response being the lowest
at this temperature (Figure 10). Among three different temperatures, highest sensitivity was obtained
at an operating temperature of 300 ◦C and the sensitivity values were 2.30, 7.28, and 9.68 at 100 ppm,
500 ppm, and 1000 ppm respectively. From observation, it can be concluded that resistance was
decreased when temperature was increased. These indicated that flow of current will become higher
as temperature increased, where more electrons can pass through the gas sensor and increase the
conductivity. Overall, it can improve the sensitivity of the gas sensor.
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In term of stability and repeatability properties of TiO2-B2O3 gas sensor, the same sample has been
exposed to hydrogen at optimal operating temperature, which is at 300 ◦C. The cycle time of hydrogen
and nitrogen was increased to 1200 s for this measurement. The sensor response of TiO2-B2O3 gas
sensor is shown in Figure 12. It can be seen that the gas sensor was unable to recover well when
exposed to hydrogen even though the cycle time has been increased to two-fold from the previous
measurement. However, this measurement has shown the gas sensor has repeatability properties
without large drift, based on its similar behavior when exposed to hydrogen. In terms of stability
properties, the gas sensor can be considered to have good stability, since the sensitivity reduced to
61.16% after six months. Sensitivity decreases with time have also been reported in [55,56].
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4. Conclusions

A TiO2-B2O3 gas sensor that calcined at 500 ◦C has shown good performance to low concentrations
of hydrogen, as low as 100 ppm at different operating temperatures. The gas sensor also showed an
ability to perform at low operating temperatures, to as low as 100 ◦C. Responses showed that the
TiO2-B2O3 gas sensor behaved as a p-type gas sensor, based on decreased currents when exposed to
hydrogen. Results showed that highest sensitivity was achieved at an operating temperature of 300 ◦C
with sensitivity values at 1.44, 4.60, and 8.90 for 100 ppm, 500 ppm, and 1000 ppm respectively.
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