Portable System for Real-Time Detection of Stress Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the System
2.2. Experimental Procedure
2.3. Signal Processing
2.3.1. EEG
2.3.2. ECG
2.3.3. EMG
2.3.4. GSR
2.4. Statistical Analysis
2.5. Three-Level Stress Classification
3. Results
3.1. Time Evolution of Biosignal-Based Markers
3.2. Stress Level Detection
4. Discussion
4.1. Stress and Biosignals
4.2. Real-Time Detection of Stress Level
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012, 109, 5995–5999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Black, A.D.; Car, J.; Pagliari, C.; Anandan, C.; Cresswell, K.; Bokun, T.; McKinstry, B.; Procter, R.; Majeed, A.; Sheikh, A. The impact of ehealth on the quality and safety of health care: A systematic overview. PLoS Med. 2011, 8, e1000387. [Google Scholar] [CrossRef] [PubMed]
- Blaya, J.A.; Fraser, H.S.F.; Holt, B. E-health technologies show promise in developing countries. Health Aff. 2010, 29, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Barello, S.; Triberti, S.; Graffigna, G.; Libreri, C.; Serino, S.; Hibbard, J.; Riva, G. eHealth for patient engagement: A Systematic Review. Front. Psychol. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Muellmann, S.; Forberger, S.; Möllers, T.; Bröring, E.; Zeeb, H.; Pischke, C.R. Effectiveness of eHealth interventions for the promotion of physical activity in older adults: A systematic review. Prev. Med. 2018, 108, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Morland, L.A.; Greene, C.J.; Rosen, C.S.; Kuhn, E.; Hoffman, J.; Sloan, D.M. Telehealth and eHealth interventions for posttraumatic stress disorder. Curr. Opin. Psychol. 2017, 14, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.; Oppermann, R. Mobile health monitoring for the elderly: Designing for diversity. Pervasive Mob. Comput. 2009, 5, 478–495. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Silva, J.N.A. Use of smartphone technology in cardiology. Trends Cardiovasc. Med. 2016, 26, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.M.; Nowostawski, M.; Franz, E.A.; Purvis, M. Parkinson’s disease and essential tremor classification on mobile device. Pervasive Mob. Comput. 2014, 13, 1–12. [Google Scholar] [CrossRef]
- Lakshminarayan, K.; Westberg, S.; Northuis, C.; Fuller, C.C.; Ikramuddin, F.; Ezzeddine, M.; Scherber, J.; Speedie, S. A mHealth-based care model for improving hypertension control in stroke survivors: Pilot RCT. Contemp. Clin. Trials 2018, 70, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Han, H.; Du, J.; Zhao, M.; Hser, Y.I. A pilot study of a smartphone application supporting recovery from drug addiction. J. Subst. Abuse Treat. 2018, 88, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Picard, R.W. Affective Computing: From laughter to IEEE. IEEE Trans. Affect. Comput. 2010, 1, 11–17. [Google Scholar] [CrossRef]
- Dimitriev, D.A.; Saperova, E.V. Heart rate variability and blood pressure during mental stress. Ross Fiziol Zh Im I M Sechenova 2015, 101, 98–107. [Google Scholar] [PubMed]
- Ranganathan, G.; Rangarajan, R.; Bindhu, V. Estimation of heart rate signals for mental stress assessment using neuro fuzzy technique. Appl. Soft Comput. 2012, 12, 1978–1984. [Google Scholar] [CrossRef]
- Chandiramani, S.; Cohorn, L.C.; Chandiramani, S. Heart rate changes during acute mental stress with closed loop stimulation: Report on two single-blinded, pacemaker studies. Pacing Clin. Electrophysiol. 2007, 30, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Regula, M.; Socha, V.; Kutilek, P.; Socha, L.; Hana, K.; Hanakova, L.; Szabo, S. Study of heart rate as the main stress indicator in aircraft pilots. In Proceedings of the 16th IEEE International Conference on Mechatronics—Mechatronika, Brno, Czech Republic, 3–5 December 2014; pp. 639–643. [Google Scholar]
- Sayette, M.A. Heart rate as an index of stress response in alcohol administration research: A critical review. Alcohol Clin. Exp. Res. 1993, 17, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Sioen, I.; Clays, E.; De Buyzere, M.; Ahrens, W.; Huybrechts, I.; Vanaelst, B.; De Henauw, S. Children’s heart rate variability as stress indicator: Association with reported stress and cortisol. Biol. Psychol. 2013, 94, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, U.; Kadefors, R.; Melin, B.; Palmerud, G.; Hassmén, P.; Engström, M.; Dohns, I.E. Psychophysiological stress and EMG activity of the trapezius muscle. Int. J. Behav. Med. 1994, 1, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Wijsman, J.; Grundlehner, B.; Penders, J.; Hermens, H. Trapezius muscle EMG as predictor of mental stress. ACM Trans. Embed. Comput. Syst. 2013, 12. [Google Scholar] [CrossRef]
- Larsson, S.E.; Larsson, R.; Zhang, Q.; Cai, H.; Åke Öberg, P. Effects of psychophysiological stress on trapezius muscles blood flow and electromyography during static load. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Schleifer, L.M.; Spalding, T.W.; Kerick, S.E.; Cram, J.R.; Ley, R.; Hatfield, B.D. Mental stress and trapezius muscle activation under psychomotor challenge: A focus on EMG gaps during computer work. Psychophysiology 2008, 45, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Papousek, I.; Weiss, E.M.; Schulter, G.; Fink, A.; Reiser, E.M.; Lackner, H.K. Prefrontal EEG alpha asymmetry changes while observing disaster happening to other people: Cardiac correlates and prediction of emotional impact. Biol. Psychol. 2014, 103, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Lee, J. Stress and EEG. In Convergence and Hybrid Information Technologies; Crisan, M., Ed.; IntechOpen: London, UK, 2010; pp. 413–426. [Google Scholar]
- Hu, B.; Peng, H.; Zhao, Q.; Hu, B.; Majoe, D.; Zheng, F.; Moore, P. Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress. IEEE Trans. Nanobiosci. 2015, 14, 553–561. [Google Scholar] [CrossRef]
- Brouwer, A.-M.; Neerincx, M.A.; Kallen, V.; van der Leer, L.; ten Brinke, M. EEG alpha asymmetry, heart rate variability and cortisol in response to Virtual Reality induced stress. J. Cyberther. Rehabil. 2011, 4, 27–40. [Google Scholar]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Stress Assessment by Prefrontal Relative Gamma. Front. Comput. Neurosci. 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Wineinger, N.E.; Patel, S.; Boeldt, D.L.; Mackellar, G.; Porter, V.; Redmond, J.T.; Muse, E.D.; Nicholson, L.; Chopra, D.; et al. Cardiovascular and nervous system changes during meditation. Front. Hum. Neurosci. 2015, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Greischar, L.L.; Rawlings, N.B.; Ricard, M.; Davidson, R.J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. USA 2004, 101, 16369–16373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.A.; Renedo-Criado, D.A.; Sanchez-Carrion, M.J.; Pelayo, F. Blue lighting accelerates post-stress relaxation: Results of a preliminary study. PLoS ONE 2017, 12, e0186399. [Google Scholar] [CrossRef] [PubMed]
- Sriramprakash, S.; Prasanna, V.D.; Murthy, O.V.R. Stress Detection in Working People. Procedia Comput. Sci. 2017, 115, 359–366. [Google Scholar] [CrossRef]
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A stress sensor based on galvanic skin response (GSR) controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Messina, G.; Valenzano, A.; Messina, A.; Salerno, M.; Marsala, G.; Bertozzi, G.; Daniele, A.; Monda, V.; Russo, R. Sports training and adaptive changes. Sport Sci. Health 2018, 1–4. [Google Scholar] [CrossRef]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120–7141. [Google Scholar] [CrossRef] [PubMed]
- Kikhia, B.; Stavropoulos, T.G.; Andreadis, S.; Karvonen, N.; Kompatsiaris, I.; Sävenstedt, S.; Pijl, M.; Melander, C. Utilizing a wristband sensor to measure the stress level for people with dementia. Sensors 2016, 16, 1989. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Yamabe, S.; Nakano, K.; Suda, Y. Biosignal analysis to assess mental stress in automatic driving of trucks: Palmar perspiration and masseter electromyography. Sensors 2015, 15, 5136–5150. [Google Scholar] [CrossRef] [PubMed]
- Ollander, S.; Godin, C.; Charbonnier, S. Feature and Sensor Selection for Detection of Driver Stress. In Proceedings of the 3rd International Conference on Physiological Computing Systems, Lisbon, Portugal, 27–28 July 2016; pp. 115–122. [Google Scholar]
- Keshan, N.; Parimi, P.V.; Bichindaritz, I. Machine learning for stress detection from ECG signals in automobile drivers. In Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2661–2669. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Morillas, C.; Pelayo, F. A Mobile Brain-Computer Interface for Clinical Applications: From the Lab to the Ubiquity. In Proceedings of the 7th International Work-Conference on the Interplay between Natural and Artificial Computation; Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., De la Paz López, F., Toledo Moreo, J., Adeli, H., Eds.; Springer International Publishing: Corunna, Spain, 2017; pp. 68–76. [Google Scholar] [CrossRef]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 2005, 30, 319–325. [Google Scholar] [PubMed]
- Kirschbaum, C.; Pirke, K.-M.; Hellhammer, D.H. The “Trier Social Stress Test”—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Dedovic, K.; D’Aguiar, C.; Pruessner, J.C. What stress does to your brain: A review of neuroimaging studies. Can. J. Psychiatry 2009, 54, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Zschucke, E.; Renneberg, B.; Dimeo, F.; Wüstenberg, T.; Ströhle, A. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback. Psychoneuroendocrinology 2015, 51, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Nagano-Saito, A.; Dagher, A.; Booij, L.; Gravel, P.; Welfeld, K.; Casey, K.F.; Leyton, M.; Benkelfat, C. Stress-induced dopamine release in human medial prefrontal cortex—18F-fallypride/PET study in healthy volunteers. Synapse 2013, 67, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Bali, A.; Jaggi, A.S. Clinical experimental stress studies: Methods and assessment. Rev. Neurosci. 2015, 26, 555–579. [Google Scholar] [CrossRef] [PubMed]
- Bichindaritz, I.; Breen, C.; Cole, E.; Keshan, N.; Parimi, P. Feature Selection and Machine Learning Based Multilevel Stress Detection from ECG Signals. In Innovation in Medicine and Healthcare 2017; Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 202–213. [Google Scholar]
- Lopez-Gordo, M.A.; Pelayo, F. A Binary Phase-Shift Keying Receiver for the Detection of Attention to Human Speech. Int. J. Neural Syst. 2013, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Detection of Attention in Multi-Talker Scenarios: A Fuzzy Approach. Expert Syst. Appl. 2016, 64, 261–268. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Pelayo, F.; Fernandez, E.; Padilla, P. Phase-shift keying of EEG signals: Application to detect attention in multitalker scenarios. Signal Process. 2015, 117, 165–173. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez Morillo, D.; Pelayo Valle, F. Dry EEG electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Bin Queyam, A. A Novel Method of Stress Detection Using Physiological Measurements of Automobile Drivers. Int. J. Electron. Eng. 2013, 5, 13–20. [Google Scholar]
- Alić, B.; Sejdinović, D.; Gurbeta, L.; Badnjevic, A. Classification of stress recognition using Artificial Neural Network. In Proceedings of the 2016 5th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 12–16 June 2016; pp. 297–300. [Google Scholar]
Pair | PCC | CI Low | CI Up |
---|---|---|---|
RG, HR | 0.7296 | 0.6909 | 0.7642 |
RG, TA | 0.5753 | 0.5206 | 0.6253 |
RG, SC | 0.3293 | 0.2579 | 0.3972 |
HR, TA | 0.8338 | 0.8083 | 0.8561 |
HR, SC | 0.6327 | 0.5834 | 0.6773 |
TA, SC | 0.4632 | 0.3995 | 0.5224 |
Participant | RG | HR | TA | SC |
---|---|---|---|---|
1 | 72 ± 7 | 74 ± 6 | 31 ± 7 | 49 ± 7 |
2 | 61 ± 7 | 57 ± 7 | 28 ± 7 | 69 ± 7 |
3 | 61 ± 7 | 45 ± 7 | 29 ± 7 | 84 ± 5 |
4 | 51 ± 7 | 60 ± 7 | 61 ± 7 | 51 ± 7 |
5 | 28 ± 7 | 93 ± 4 | 22 ± 6 | 69 ± 7 |
6 | 44 ± 7 | 94 ± 3 | 45 ± 7 | 61 ± 7 |
7 | 47 ± 7 | 82 ± 6 | 66 ± 7 | 60 ± 7 |
8 | 33 ± 7 | 77 ± 6 | 21 ± 6 | 61 ± 7 |
9 | 67 ± 7 | 77 ± 6 | 52 ± 7 | 18 ± 6 |
10 | 33 ± 7 | 62 ± 7 | 62 ± 7 | 76 ± 6 |
Mean ± Std | 50 ± 15 | 72 ± 16 | 42 ± 18 | 60 ± 18 |
Participant | RG, HR | RG, TA | RG, SC | HR, TA | HR, SC | TA, SC |
---|---|---|---|---|---|---|
1 | 76 ± 6 | 83 ± 6 | 69 ± 7 | 86 ± 5 | 71 ± 7 | 64 ± 7 |
2 | 73 ± 6 | 82 ± 6 | 73 ± 6 | 61 ± 7 | 70 ± 7 | 78 ± 6 |
3 | 77 ± 6 | 60 ± 7 | 81 ± 6 | 52 ± 7 | 92 ± 4 | 90 ± 4 |
4 | 59 ± 7 | 64 ± 7 | 72 ± 7 | 70 ± 7 | 68 ± 7 | 87 ± 5 |
5 | 92 ± 4 | 46 ± 7 | 54 ± 7 | 93 ± 4 | 84 ± 5 | 76 ± 6 |
6 | 94 ± 3 | 69 ± 7 | 64 ± 7 | 93 ± 4 | 96 ± 3 | 71 ± 7 |
7 | 84 ± 5 | 66 ± 7 | 64 ± 7 | 86 ± 5 | 86 ± 5 | 66 ± 7 |
8 | 74 ± 6 | 48 ± 7 | 61 ± 7 | 76 ± 6 | 71 ± 7 | 64 ± 7 |
9 | 82 ± 6 | 72 ± 7 | 64 ± 7 | 78 ± 6 | 73 ± 6 | 49 ± 7 |
10 | 67 ± 7 | 54 ± 7 | 67 ± 7 | 73 ± 6 | 77 ± 6 | 81 ± 6 |
Mean ± Std | 78 ± 11 | 64 ± 13 | 67 ± 7 | 77 ± 14 | 79 ± 10 | 73 ± 12 |
Participant | RG, HR, TA | RG, HR, SC | RG, TA, SC | HR, TA, SC | RG, HR, TA, SC |
---|---|---|---|---|---|
1 | 91 ± 4 | 79 ± 6 | 84 ± 5 | 92 ± 4 | 92 ± 4 |
2 | 82 ± 6 | 78 ± 6 | 83 ± 6 | 75 ± 6 | 82 ± 6 |
3 | 77 ± 6 | 93 ± 4 | 82 ± 6 | 92 ± 4 | 93 ± 4 |
4 | 68 ± 7 | 69 ± 7 | 78 ± 6 | 82 ± 6 | 83 ± 6 |
5 | 93 ± 4 | 84 ± 5 | 73 ± 7 | 84 ± 5 | 84 ± 5 |
6 | 93 ± 4 | 97 ± 3 | 72 ± 7 | 98 ± 2 | 98 ± 2 |
7 | 86 ± 5 | 87 ± 5 | 67 ± 7 | 89 ± 4 | 90 ± 4 |
8 | 74 ± 6 | 75 ± 6 | 64 ± 7 | 71 ± 7 | 74 ± 6 |
9 | 81 ± 6 | 80 ± 6 | 67 ± 7 | 76 ± 6 | 81 ± 6 |
10 | 72 ± 7 | 77 ± 6 | 79 ± 6 | 79 ± 6 | 78 ± 6 |
Mean ± Std | 82 ± 9 | 82 ± 8 | 75 ± 7 | 84 ± 9 | 86 ± 8 |
Participant | RG, HR, TA | RG, HR, SC | RG, TA, SC | HR, TA, SC | RG, HR, TA, SC |
---|---|---|---|---|---|
1 | 33 ± 7 | 33 ± 7 | 36 ± 7 | 33 ± 7 | 33 ± 7 |
2 | 67 ± 7 | 37 ± 7 | 58 ± 7 | 64 ± 7 | 65 ± 7 |
3 | 33 ± 7 | 41 ± 7 | 36 ± 7 | 33 ± 7 | 36 ± 7 |
4 | 47 ± 7 | 36 ± 7 | 33 ± 7 | 49 ± 7 | 34 ± 7 |
5 | 66 ± 7 | 41 ± 7 | 37 ± 7 | 64 ± 7 | 38 ± 7 |
6 | 36 ± 7 | 34 ± 7 | 33 ± 7 | 34 ± 7 | 34 ± 7 |
7 | 33 ± 7 | 33 ± 7 | 39 ± 7 | 33 ± 7 | 33 ± 7 |
8 | 34 ± 7 | 53 ± 7 | 51 ± 7 | 54 ± 7 | 54 ± 7 |
9 | 41 ± 7 | 60 ± 7 | 56 ± 7 | 51 ± 7 | 66 ± 7 |
10 | 48 ± 7 | 48 ± 7 | 48 ± 7 | 36 ± 7 | 42 ± 7 |
Mean ± Std | 44 ± 13 | 42 ± 9 | 43 ± 10 | 45 ± 13 | 44 ± 13 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minguillon, J.; Perez, E.; Lopez-Gordo, M.A.; Pelayo, F.; Sanchez-Carrion, M.J. Portable System for Real-Time Detection of Stress Level. Sensors 2018, 18, 2504. https://doi.org/10.3390/s18082504
Minguillon J, Perez E, Lopez-Gordo MA, Pelayo F, Sanchez-Carrion MJ. Portable System for Real-Time Detection of Stress Level. Sensors. 2018; 18(8):2504. https://doi.org/10.3390/s18082504
Chicago/Turabian StyleMinguillon, Jesus, Eduardo Perez, Miguel Angel Lopez-Gordo, Francisco Pelayo, and Maria Jose Sanchez-Carrion. 2018. "Portable System for Real-Time Detection of Stress Level" Sensors 18, no. 8: 2504. https://doi.org/10.3390/s18082504
APA StyleMinguillon, J., Perez, E., Lopez-Gordo, M. A., Pelayo, F., & Sanchez-Carrion, M. J. (2018). Portable System for Real-Time Detection of Stress Level. Sensors, 18(8), 2504. https://doi.org/10.3390/s18082504