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Abstract: Learning variable impedance control is a powerful method to improve the performance
of force control. However, current methods typically require too many interactions to achieve good
performance. Data-inefficiency has limited these methods to learn force-sensitive tasks in real systems.
In order to improve the sampling efficiency and decrease the required interactions during the learning
process, this paper develops a data-efficient learning variable impedance control method that enables
the industrial robots automatically learn to control the contact force in the unstructured environment.
To this end, a Gaussian process model is learned as a faithful proxy of the system, which is then used
to predict long-term state evolution for internal simulation, allowing for efficient strategy updates.
The effects of model bias are reduced effectively by incorporating model uncertainty into long-term
planning. Then the impedance profiles are regulated online according to the learned humanlike
impedance strategy. In this way, the flexibility and adaptivity of the system could be enhanced.
Both simulated and experimental tests have been performed on an industrial manipulator to verify
the performance of the proposed method.

Keywords: force control; variable impedance control; efficient learning; Gaussian processes;
industrial robot

1. Introduction

With the development of the modern robotics, compliance control is becoming an important
component for industrial robots. Control of contact force is crucial for successfully executing
operational tasks that involve physical contacts, such as grinding, deburring, or assembly. In the
structured environment, good performances could be achieved using classical force control methods [1].
However, it is difficult to control the contact force effectively in the unstructured environment.
Impedance control [2] provides a suitable control architecture for robots in both unconstrained and
constrained motions by establishing a suitable mass-spring-damper system.

Neuroscience studies have demonstrated how humans perform specific tasks by adapting muscle
stiffness [3]. Kieboom [4] studied the impedance regulation rule for bipedal locomotion and found that
variable impedance control can improve gait quality and reduce energy expenditure. The ability to
task-dependently change the impedance is one important aspect of biomechanical systems that leads to
its good performance. Recently, many researchers have explored the benefits of varying the impedance
during the task for robotics [5–9]. The basic idea is to adjust the impedance parameters according
to the force feedback. Humanlike adaptivity was achieved in [9] by adapting force and impedance,
providing an intuitive solution for human-robot interactions. Considering ensuring safe interaction,
Calinon [6] proposed a learning-based control strategy with variable stiffness to reproduce the skill
characteristics. Kronander [10] has demonstrated the stability of variable impedance control for the
control system. Variable impedance not only enables control of the dynamic relationship between
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contact forces and robot movements, but also enhances the flexibility of the control system. Generally,
the methods of specifying the varying impedance can be classified into three categories.

(1) Optimal control. The basic idea is to dynamically adjust the gains by the feedback information
using optimization techniques. They are usually robust to uncertain systems. Medina [11] proposed
a variable compliance control approach based on risk-sensitive optimal feedback control. This approach
has the benefits of high adaptability to uncertain and variable environment. The joint torque and the
joint stiffness are independently and optimally modulated using the optimal variable stiffness control
in [12]. Adaptive variable impedance control is proposed in [13], it stabilizes the system by adjusting
the gains online according to the force feedback. To guarantee stable execution of variable impedance
tasks, a tank-based approach to passive varying stiffness is proposed in [14].

(2) Imitation of human impedance. Humans have a perfect ability to complete a variety of
interaction tasks in various environments by adapting their biomechanical impedance characteristics.
These excellent abilities are developed over years of experience and stored in the central nervous
system [15]. For the purpose of imitating the human impedance modulation manner, some methods
have been proposed [6,8]. Toshi [16] discussed the impedance regulation law of the human hand
during dynamic-contact tasks and proposed a bio-mimetic impedance control for robot. Lee [17]
designed a variable stiffness control scheme imitating human control characteristics, and it achieved
force tracking by adjusting the target stiffness without estimating the environment stiffness. Yang [18]
introduced a coupling interface to naturally transfer human impedance adaptive skill to the robot
by demonstration. Kronander [19] and Li [20] addressed the problem of compliance adjusting in
a robot learning from demonstrations (RLfD), in which a robot could learn to adapt the stiffness
based on human–robot interaction. Yang [21] proposed a framework for learning and generalizing
humanlike variable impedance skills, combining the merits of the electromyographic (EMG) and
dynamic movement primitives (DMP) model. To enhance the control performance, the problem of
transferring human impedance behaviors to the robot has been studied in [22–24]. These methods
usually use the EMG device to collect the muscle activities information, based on which variation of
human limb impedance can be estimated.

(3) Reinforcement learning (RL). Reinforcement learning constitutes a significant aspect of the
artificial intelligence field with numerous applications ranging from medicine to robotics [25,26].
Researchers have recently focused on learning an appropriate modulation strategy by means of RL
to adjust the impedance characteristic of robot [7,27–29]. Du [30] proposed a variable admittance
control method based on fuzzy RL for human–robot interaction. It improves the positioning
accuracy and reduces the required energy by dynamically regulating the virtual damping. Li [31]
proposed an BLF-based adaptive impedance control framework for a human–robot cooperation task.
The impedance parameters were learned using the integral RL to get adaptive robot behaviors.

In summary, to derive an effective variable impedance controller, the first category and the second
category of methods usually need advanced engineering knowledge about the robot and the task,
as well as designing these parameters. Learning variable impedance control based on RL is a promising
and powerful method, which can get the proper task-specific control strategy automatically through
trial-and-error. RL algorithms can be broadly classified as two types: model-free and model-based.
In model-free RL, policy is found without even building a model of the dynamics, and the policy
parameters can be searched directly. However, for each sampled trajectory, it is necessary to interact
with the robot, which is time-consuming and expensive. In model-based RL, the algorithm explicitly
builds a transition model of the system, which is then used for internal simulations and predictions.
The (local) optimal policy is improved based on the evaluations of these internal simulations.
The model-based RL is more data-efficient than the model-free RL, but more computationally
intensive [32,33]. In order to extend to high-dimensional tasks conveniently and avoid the model-bias
of model-based RL algorithm, the existing learning variable impedance control methods are most
commonly based on a model-free RL algorithm. Buchli [5] proposed a novel variable impedance
control based on PI2, which is a model-free RL algorithm. It realized simultaneous regulation of
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motion trajectory and impedance gains using DMPs. This algorithm has been successfully extended
to high-dimensional robotic tasks such as opening door, picking up pens [34], box flipping task [35]
and sliding switch task for tendon-driven hand [36]. Stulp [29] further studied the applicability of
PI2 in stochastic force field, and it was able to find motor policies that qualitatively replicate human
movement. Considering the coupling between degrees of freedom (DoFs), Winter [37] developed
a C-PI2 algorithm based on PI2. Its learning speed was much higher than that of previous algorithms.

However, these methods usually require hundreds or thousands of rollouts to achieve satisfactory
performance, which is unexpected for a force control system. None of these works address the issue
of sampling efficiency. Improving data-efficiency is critical to learning to perform force-sensitive
tasks, such as operational tasks of fragile components, because too many physical interactions with
the environment during the learning process is usually infeasible. Alternatively, model-based RL is
a promising way to improve the sampling efficiency. Fast convergence towards an optimal strategy
could be guaranteed. Shadmehr [38] demonstrated that humans learn an internal model of the force
field and compensate for external perturbations. Franklin [39] presented a model which combines three
principles to learn stable, accurate, and efficient movements. It is able to accurately model empirical
data gathered in force field experiments. Koropouli [27] investigated the generalization problem of
force control policy. The force-motion mapping policy was learned from a set of demonstrated data to
endow robots with certain human-like adroitness. Mitrovic [28] proposed to learn both the dynamics
and the noise properties through supervised learning, using locally weighted projection regression.
This model was then used in a model-based stochastic optimal controller to control a one-dimensional
antagonistic actuator. It improved the accuracy performance significantly, but the analytical dynamic
model still had accuracy limitations. These methods did not solve the key problem of model bias well.

Therefore, in order to improve the sampling efficiency, we propose a data-efficient learning
variable impedance control method based on model-based RL that enables the industrial robots to
automatically learn to control the contact force in the unstructured environment. A probabilistic
Gaussian process (GP) model is approximated as a faithful proxy of the transition dynamics of
the system. Then the probabilistic model is used for internal system simulation to improve the
data-efficiency by predicting the long-term state evolution. This method reduces the effects of
model-bias effectively by incorporating model uncertainty into long-term planning. The impedance
profiles are regulated automatically according to the (sub)optimal impedance control strategy learned
by the model-based RL algorithm to track the desired contact force. Additionally, we present a way of
taking the penalty of control actions into account during planning to achieve the desired impedance
characteristics. The performances of the system are verified through simulations and experiments on
a six-DoF industrial manipulator. This system outperforms other learning variable impedance control
methods by at least one order of magnitude in terms of learning speed.

The main contributions of this paper can be summarized as follows: (1) A data-efficient learning
variable impedance control method is proposed to improve the sampling efficiency, which could
significantly reduce the required physical interactions with environment during force control learning
process. (2) The proposed method learns an impedance regulation strategy, based on which the
impedance profiles are regulated online in a real-time manner to track the desired contact force. In this
way, the flexibility and adaptivity of compliance control could be enhanced. (3) The impedance strategy
with humanlike impedance characteristics is learned automatically through continuous explorations.
There is no need to use additional sampling devices, such as EMG electrodes, to transfer human skills
to the robot through demonstrations.

2. System Model and Contact Force Observer

2.1. Interaction Model

When the robot interacts with the rigid environment, the robot could be presented by a second
order mass-spring-damper system, and the environment could be modeled as a spring-damping
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model with stiffness ke and damping be. The interaction model of the system is illustrated in Figure 1.
Figure 1d shows a contact force diagram when robot comes in contact with the environment. m, b, and
k denote the mass, damping, and stiffness of the robot end-effector, respectively. Let f be the contact
force applied by the robot to the environment once a contact between both is established.
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Figure 1. The interaction model of the system. (a) Without any contact between the robot and the
environment; (b) critical point when contact occurs; (c) stable contact with the environment; (d) contact
force diagram when robot comes in contact with the environment.

The contact process between the robot and the environment can be divided into three phases.
In the first phase, the robot is approaching toward the environment (Figure 1a). There is no contact
during this phase, and the contact force is zero (Figure 1d, t0 − t1). In the second phase, the robot is
in contact with the environment (Figure 1b). During this phase, the contact force increases rapidly
(Figure 1d, t1 − t2). Collision is inevitable, and the collision is transient and strongly nonlinear. In the
third phase, the robot contacts with the environment continuously (Figure 1c) and the contact force is
stabilized to the desired value (Figure 1d, t2 − t3).

High values of contact force are generally undesirable since they may stress both the robot and
the manipulated object. Therefore, the overshoot and the oscillation caused by the inevitable collision
should be suppressed effectively.

2.2. Contact Force Observer Based on Kalman Filter

The contact force is the quantity describing the state of interaction in the most complete fashion.
To this end, the availability of force measurements is expected to provide enhanced performance for
controlling interaction [1]. Recently, several methods have been proposed to make the force control
possible without dedicated sensors, such as virtual force sensor [40] and contact force estimation
methods based on motor signals [41,42]. However, to realize precise force control, industrial robots
are typically equipped with F/T sensors at the wrist to measure the contact force. The measurements
of force sensors do not correspond to the actual environmental interaction forces which usually
contain inertial force and gravity. Moreover, the raw signals sampled from the force sensor may be
corrupted by noise, especially in the industrial environment where equipped with large equipment.
The electromagnetic noise, vibration noise, electrostatic effect, and thermal noise are very strong and
complex. These disturbances seriously affect the measurement of the F/T sensor which will degrade
the quality of force control. Hence, a contact force observer based on the Kalman filter is designed to
estimate the actual contact force and moment applied at the contact point.

Figure 2 illustrates the contact force and moment applied at the end-effector. The center of mass
of the end-effector locates at C. E is the contact point between the end-effector and the environment.
The center of mass of the F/T sensor is S. As shown in Figure 2, the corresponding coordinate frames
with the principal axes are denoted by ΣC, ΣE, and ΣS, respectively. The world frame is denoted
by ΣW .
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Assume that the robot moves slowly during the tasks, the inertial effect could be negligible.
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and moments by the F/T sensor. m is the mass of the end-effector. gW is the gravitational acceleration.
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CE denotes the vector from C to E with respect to frame ΣC. rC
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Q, R are the corresponding covariance matrices which are assumed as diagonal matrices with constant
diagonal elements. The model (4) can be discretized resulting in the discrete-time linear system

xk = Axk−1 + wk−1,
yk = Hxk + DgW + vk,

(5)

where A =

[
I6×6 I6×6

06×6 I6×6

]
, H = H0, D = D0. The Kalman filter update consists of two steps:
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1. Predict the state estimate x̂−k|k−1 and the error covariance P−k|k−1 at time step k based on the results
from the previous time step k − 1:

x̂−k|k−1 = Ax̂k−1,
P−k|k−1 = APk−1 AT + Q.

(6)

2. Correct the predictions x̂k based on the measurements yk:

x̂k = x̂−k|k−1 + Kk(yk − Hx̂−k|k−1),

Kk = P−k|k−1HT(HP−k|k−1H + R)−1,

Pk = (I − Kk H)P−k|k−1,

(7)

where Kk is the Kalman gain, Pk is the updated error covariance. In practice, the covariance
matrices Q and R can automatically be calibrated based on the offline experimental data [41].
It should be mentioned that the larger the weights of Q are chosen, the more the observer will
rely on the measurements. Larger diagonal elements in Q result in faster response time of the
corresponding estimates, but this also results in increased noise amplification. An implementation
example of the contact force observer is shown in Figure 3.
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3. Position-Based Impedance Control for Force Control

One possible approach to achieve compliant behavior for robotics is the classical impedance
control [2], which sometimes is also called force-based impedance control. In typical implementations,
the controller has the positions as inputs and gives the motor torques as outputs. Force-based
impedance control has been widely studied [44]. However, most commercial industrial robots
emphasize the accuracy of trajectory following, and do not provide joint torque or motor current
interfaces for users. Therefore, force-based impedance control is impossible on these robots.

Alternatively, another possible approach, which is typically suited for industrial robots, is the
concept of admittance control [45], sometimes also called position-based impedance control. It maps
from generalized forces to generalized positions. This control structure consists of an inner position
control loop and an outer indirect force control loop. In constrained motion, the contact force measured
by the F/T sensor modifies the desired trajectory in the outer impedance controller loop resulting in the
compliant desired trajectory, which is to be tracked by the inner position controller. The position-based
impedance control schematic for force control is shown in Figure 4. Xd, Xc, and Xm denote the reference
position trajectory, the commanded position trajectory which is sent to the robot, and the measured
position trajectory, respectively. Assuming good tracking performance of the inner position controller
for slow motions, the commanded trajectory is equal to the measured trajectory, i.e., Xm = Xc.
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Typically, the impedance model is chosen as a linear second order system

Md(
..
Xc −

..
Xd) + Bd(

.
Xc −

.
Xd) + Kd(Xc − Xd) = Fe − Fd, (8)

where Md, Bd, and Kd are, respectively, the target inertial, damping, and stiffness matrices. Fd is the
desired contact force. Fe is the actual contact force. The transfer-function of the impedance model is

H(s) =
E(s)

∆F(s)
=

1
Mds2 + Bds + Kd

, (9)

where ∆F = Fe − Fd denotes the force tracking error. E = Xc − Xd is the desired position increment,
and it is used to modify the reference position trajectory Xd to produce the commanded trajectory
Xc = Xd + E, which is then tracked by the servo driver system.

To compute the desired position increment, discretize (9) using bilinear transformation

H(z) = H(s)
∣∣∣s= 2

T
z−1
z+1

=
T2(z + 1)2

ω1z2 + ω2z + ω3
, (10)

ω1 = 4Md + 2BdT + KdT2,
ω2 = −8Md + 2KdT2,
ω3 = 4Md − 2BdT + KdT2.

(11)

Here, T is the control cycle. The desired position increment at time n is derived as

E(n) = ω−1
1

{
T2[∆F(n) + 2∆F(n− 1) + ∆F(n− 2)] −ω2δX(n− 1)−ω3δX(n− 2)

}
. (12)

The environment is assumed to be a spring-damping model with stiffness Ke and damping Be.
Xe is the location of the environment. The contact force between the robot and the environment is then
simplified as

Fe = Be(
.

Xc −
.

Xe) + Ke(Xc − Xe). (13)

Replacing Xd in (8) with the initial environment location Xe, and substituting (13) into (8), the new
impedance equation is then converted to

Md(
..
Xc −

..
Xe) + (Bd + Be)(

.
Xc −

.
Xe) + (Kd + Ke)(Xc − Xe) = Fd. (14)

Due to the fact that it is difficult to obtain accurate environment information. Therefore, if the
environment stiffness Ke and damping Be change, the dynamic characteristics of the system will change
consequently. To guarantee the dynamic performance, the impedance parameters [Md, Bd, Kd] should
be adjusted correspondingly.
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4. Data-Efficient Learning Variable Impedance Control with Model-Based RL

Generally, too many physical interactions with the environment are infeasible for learning to
execute force-sensitive tasks. In order to reduce the required interactions with the environment during
force control learning process, a learning variable impedance control approach with model-based RL
algorithm is proposed in the following to learn the impedance regulation strategy.

4.1. Scheme of the Data-Efficient Learning Variable Impedance Control

The scheme of the method is illustrated in Figure 5. Fd is the desired value of contact force,
F is the actual contact force estimated by the force observer, and ∆F is the force tracking error.
The desired position increment of the end-effector E is calculated using the variable impedance
controller. Xd is the desired reference trajectory. The desired joints positions qd are calculated by
adopting inverse kinematics according to the commanded trajectory Xc. The actual Cartesian position
of the end-effector X could be achieved using the measured joints positions q by means of forward
kinematics. The joints are controlled by the joint motion controller of the industrial robot. KE and BE
denote the unknown stiffness and damping of the environment, respectively.

The transition dynamics of the system is approximated by the GP model which is trained using
the collected data. Then the learning algorithm is used to learn the (sub)optimal impedance control
strategy π while predicting the system evolution using the GP model. Instead of the motion trajectory,
the proposed method learns an impedance regulation strategy, based on which the impedance profiles
are regulated online in a real-time manner to control the contact force. In this way, the dynamic
relationship between contact force and robot movement could be controlled in a continuous manner.
Moreover, the flexibility and adaptivity for compliance control could be enhanced. Positive definite
impedance parameters could ensure the asymptotic stability of the original desired dynamics,
but it is not recommended to modify the target inertia matrix because it is easy to cause the system to
instability [45]. To simplify the calculation, the target inertial matrix is chosen as Md = I. Consequently,
the target stiffness Kd and the damping Bd are the parameters that should be tuned in variable
impedance control. Based on the learned impedance strategy, the impedance parameters u = [Kd Bd]

are calculated according to the states of the contact force and the position of the end-effector, which are
then transferred to the variable impedance controller.
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The learning process of variable impedance strategy consists of seven main steps:

1. Initializing the strategy parameters stochastically, applying the random impedance parameters to
the system and recording the sampled data.

2. Training the system transition dynamics, i.e., the GP model, using all historical data.
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3. Inferring and predicting the long-term evolution of the states according to the GP model.
4. Evaluating the total expected cost Jπ(θ) in T steps, and calculating the gradients of the cost

dJπ(θ)/dθ with respect to the strategy parameters θ.
5. Learning the optimal strategy π∗ ← π(θ) using the gradient-based policy search algorithm.
6. Applying the impedance strategy to the system, then executing a force tracking task using the

learned variable impedance strategy and recording the sampled data simultaneously.
7. Repeating steps (2)–(6) until the performance of force control is satisfactory.

4.2. Variable Impedance Strategy

The impedance control strategy is defined as π : x 7→ u = π(x, θ) , where the inputs of the strategy
are the observed states of the robot x = [X F] ∈ RD, the outputs of the strategy are target stiffness Kd
and damping Bd which can be written as matrix u = [Kd Bd] ∈ RF, and θ are the strategy parameters
that to be learned. Here, the GP controller is chosen as the control strategy

πt = π(xt, θ) =
n

∑
i=1

βπ,ik(xπ , xt) = βT
πK(Xπ , xt), (15)

βπ = (Kπ(Xπ , Xπ) + σ2
ε,π I)

−1
yπ , (16)

k(xπ , xt) = σ2
f ,π exp(−1

2
(xπi − xt)

TΛ−1(xπi − xt)), (17)

where xt is the test input. Xπ = [xπ1, . . . , xπn] are the training inputs, and they are the centers
of the Gaussian basis functions. n is the number of the basis functions. yπ is the training targets,
which are initialized to values close to zero. K is the covariance matrix with entries Kij = k

(
xi, xj

)
.

Λ = diag
(
l2
1 , . . . , l2

D
)

is the length-scale matrix where li is the characteristic length-scale of each input
dimension, σ2

f ,π is the signal variance, which is fixed to one here, σ2
ε,π is the measurement noise variance,

and θ =
[

Xπ , yπ , l1, . . . , lD, σ2
f ,π , σ2

ε,π

]
is the hyper-parameters of the controller. Using the GP controller,

more advanced nonlinear tasks could be performed thanks for its flexibility and smoothing effect.
Obviously, the GP controller is functionally equivalent to a regularized RBF network if σ2

f ,π = 1 and

σ2
ε,π 6= 0. The impedance parameters are calculated in real-time according to the impedance strategy π

and the states xt. The relationship between the impedance parameters and the control strategy can be
written as

[ Kd Bd ] = u = π(xt, θ) = βT
πK(Xπ , xt). (18)

In practical systems, the physical limits of the impedance parameters should be considered.
The preliminary strategy π should be squashed coherently through a bounded and differentiable
saturation function. The saturation function has to be on a finite interval, such that a maximum and
minimum are obtained for finite function inputs. Furthermore, the function should be monotonically
increasing. The derivative and second derivative of the saturation function have to be zero at the
boundary points to require stationary points at these boundaries. Specifically, consider the third-order
Fourier series expansion of a trapezoidal wave κ(x) = [9 sin(x) + sin(3x)]/8, which is normalized to
the interval [−1, 1]. Given the boundary conditions, the saturation function is defined as

S(πt) = umin + umax + umax
9 sin πt + sin(3πt)

8
. (19)

If the function is considered on the domain [3π/2, 2π], the function is monotonically increasing,
and the control signal u is squashed to the interval [umin umin + umax].
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4.3. Probabilistic Gaussian Process Model

Transition models have a large impact on the performance of model-based RL, since the learned
strategy inherently relies on the quality of the learned forward model, which essentially serves as
a simulator of the system. The transition models that have been employed for model-based RL can be
classified into two main categories [25]: the deterministic models and the stochastic models. Despite
the intensive computation, the state-of-the-art approach for learning the transition models is the
GP model [46], because it is capable of modeling a wide spread of nonlinear systems by explicitly
incorporating model uncertainty into long-term planning, which is a key problem in model-based
learning. In addition, the GP model shows good convergence properties which are necessary for
implementation of the algorithm. A GP model can be thought as a probabilistic distribution over
possible functions, and it is completely specified by a mean function m(·) and a positive semi-definite
covariance function k(·, ·), also called a kernel.

Here, we consider the unknown function that describes the system dynamics

xt = f (xt−1, ut−1),
yt = xt + εt,

(20)

with continuous state inputs x ∈ RD, control inputs u ∈ RF, training targets y ∈ RE, unknown
transition dynamics f , and i.i.d. system noise ε ∼ N

(
0, σ2

ε

)
. In order to take the model uncertainties

into account during prediction and planning, the proposed approach does not make a certainty
equivalence assumption on the learned model. Instead, it learns a probabilistic GP model and infers the
posterior distribution over plausible function f from the observations. For computation convenience,
we consider a prior mean m ≡ 0 and the squared exponential kernel

f (x) ∼ GP(m(x), k(x, x′)), (21)

k(x, x′) = α2 exp
(
−1

2
(x− x′)TΛ−1(x− x′)

)
+ σ2

ε I, (22)

where α2 is the variance of the latent function f , the weighting matrix Λ = diag
([

l2
1 , . . . l2

D
])

depends
on the different characteristic length-scale li of each input dimension. Given N training inputs
X = [x1, . . . xN ] and corresponding training targets y = [y1, . . . yN ]

T , the GP hyper-parameters[
Λ α2 σ2

ε

]
could be learned using evidence maximization algorithm [46].

Given a deterministic test input x∗, the posterior prediction p( f∗|x∗) of the function value
f∗ = f (x∗) is Gaussian distributed

p( f∗|x∗) ∼ N (µ∗, ∑
∗
), (23)

µ∗ = m(x∗) + k(x∗, X)(K + σ2
ε I)
−1

(y−m(X)) = m(x∗) + k(x∗, X)β, (24)

∑
∗
= k(x∗, x∗)− k(x∗, X)(K + σ2

ε I)
−1

k(X, x∗), (25)

where β =
(
K + σ2

ε I
)−1

(y−m(X)), and K = k(X, X) is the kernel matrix.
In our force control learning system, the function of the GP model is defined as

f : RD+F → RE , (xt−1, ut−1) 7−→ ∆t = xt − xt−1 + δt , where x̂t−1 = (xt−1, ut−1) is the training input
tuples. Take the state increments ∆t = xt − xt−1 + δt as training targets, where δt ∼ N (0, Σε) is i.i.d.
measurement noise. Since the state differences vary less than the absolute values, the underlying
function that describes these differences varies less. Therefore, it implies that the learning process is
easier and that less data is needed to find an accurate model. Moreover, when the predictions leave the
training set, the prediction will not fall back to zero but remain constant.
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4.4. Approximate Prediction for Strategy Evaluation

For the sake of reducing the required physical interactions with the robots while getting
an effective control strategy, the effective utilization of sampled data must be increased. To this end,
the learned probabilistic GP model is used as the faithfully dynamics of the system, which is then used
for internal simulations and predictions about how the real system would behave. The (sub)optimal
strategy is improved based on the evaluations of these internal virtual trials. Thus, the data-efficiency
is improved.

To evaluate the strategy, the long-term predictions of state p(x1), . . . , p(xT) should be computed
iteratively from the initial state distribution p(x0) by cascading one-step predictions [47]. Since the
GP model can map the Gaussian-distributed states space to the targets space, the uncertainties of the
inputs can pass through the model, and the uncertainties of the model are taken into account in the
long-term planning. A conceptual illustration of long-term predictions of state evolution [48] is shown
in Figure 6.Sensors 2018, 18, x FOR PEER REVIEW  11 of 26 
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The one-step prediction of the states can be summarized as

p(xt−1)→ p(ut−1)→ p(xt−1, ut−1)→ p(∆t)→ p(xt). (26)

As ut−1 = π(xt−1) is a function of state xt−1 and p(xt−1) is known, the calculation of p(xt)

requires a joint distribution p(x̂t−1) = p(xt−1, ut−1). First, we calculate the predictive control signal
p(ut−1) and subsequently the cross-covariance cov[xt−1, ut−1]. Then, p(xt−1, ut−1) is approximated by
a Gaussian distribution [47]

p(x̂t−1) = p(xt−1, ut−1) = N (µ̂t−1, ˆ∑t−1) = N
([

µxt−1

µut−1

]
,

[
∑xt−1 ∑xt−1,ut−1

∑T
xt−1,ut−1 ∑ut−1

])
. (27)

The distribution of the training targets ∆t are predicted as

p(∆t) =
∫

p( f (x̂t−1)|x̂t−1)p(x̂t−1)dx̂t−1 , (28)

where the posterior predictive distribution of the transition dynamics p( f (x̂t−1)|x̂t−1) could be
calculated using the Formulas (23)–(25). Using moment matching [49], p(∆t) could be approximated as
a Gaussian distribution N (µ∆, Σ∆). Then, a Gaussian approximation to the desired state distribution
p(xt) is given as

p(xt|µ̂t−1, ˆ∑t−1) ∼ N (µt, ∑
t
), (29)

µt = µt−1 + µ∆, (30)

∑
t
= ∑

t−1
+∑

∆
+cov[xt−1, ∆t] + cov[∆t, xt−1], (31)

cov[xt−1, ∆t] = cov[xt−1, ut−1]
−1

∑
u

cov[ut−1, ∆t]. (32)
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4.5. Gradient-Based Strategy Learning

The goal of the learning algorithm is to find the strategy parameters that minimize the total
expected costs θ∗ = arg minJπ(θ). The search direction can be selected using the gradient information.
The total expected cost Jπ(θ) in T steps is calculated according to the state evolution

Jπ(θ) =
T

∑
t=0

E[c(xt)], x0 ∼ N (µ0, ∑
0
), (33)

E[ct] =
∫

ctN (xt|µt, ∑
t
)dxt. (34)

where c(xt) is the instantaneous cost at time t, and E[c(xt)] is the expected values of the instantaneous
cost with respect to the predictive state distributions.

The cost function in RL usually penalizes the Euclidean distance from the current state to the target
state, without considering other prior knowledge. However, in order to make robots with the ability of
compliance, the control gains should not be high for practical interaction tasks. Generally, high gains
will result in instability in stiff contact situations due to the inherent manipulator compliance, especially
for an admittance-type force controller. In addition, low gains lead to several desirable properties
of the system, such as compliant behavior (safety and/or robustness), lowered energy consumption,
and less wear and tear. This is similar to the impedance regulation rules of humans. Humans learn
a task-specific impedance regulation strategy that combines the advantages of high stiffness and
compliance. The general rule of thumb thus seems to be “be compliant when possible; stiffen up only
when the task requires it”. In other words, impedance increasing ensures tracking accuracy while
impedance decreasing ensures safety.

To make the robots with these impedance characteristics, we present a way of taking the penalty
of control actions into account during planning. The instantaneous cost function is defined

ct = cb(xt) + ce(ut), (35)

cb(xt) = 1− exp(− 1
2σ2

c
d(xt, xtarget)

2) ∈ [0, 1], (36)

ce(ut) = ce(π(xt)) = ζ · (ut/umax)
2. (37)

Here, cb(xt) is the cost caused by the state error, denoted by a quadratic binary saturating function,
which saturates at unity for large deviations to the desired target state. d(·) is the Euclidean distance
between the current state xt to the target state xtarget and σc is the width of the cost function. ce(ut) is
the cost caused by the control actions, i.e., the mean squared penalty of impedance gains. The suitable
impedance gains could be reduced by punishing the control actions. ζ is the action penalty coefficient.
ut is the current control signal, and umax is the maximum control signal amplitude.

The gradients of Jπ(θ) with respect to the strategy parameters θ are given by

dJπ(θ)

dθ
=

d∑T
t=0 E[c(xt)]

dθ
=

T

∑
t=0

dE[c(xt)]

dθ
. (38)

The expected immediate cost E[c(xt)] requires averaging with respect to the state distribution
p(xt) ∼ N (µt, Σt), where µt and Σt are the mean and the covariance of p(xt), respectively.
The derivative in Equation (38) can be written as

dE[c(xt)]

dθ
=

dE[c(xt)]

dp(xt)

dp(xt)

dθ
=

∂E[c(xt)]

∂µt

dµt

dθ
+

∂E[c(xt)]

∂ ∑t

d ∑t
dθ

. (39)

Given c(xt), the item ∂E[c(xt)]/∂µt and ∂E[c(xt)]/∂Σt could be calculated analytically.
Then we will focus on the calculation of dµt/dθ and dΣt/dθ. Due to the computation sequence
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of (26), we know that the predicted mean µt and the covariance Σt are functionally dependent on
p(xt−1) ∼ N (µt−1, Σt−1) and the strategy parameters θ through µt−1. We thus obtain

dµt

dθ
=

∂µt

∂p(xt−1)

dp(xt−1)

dθ
+

∂µt

∂θ
=

∂µt

∂µt−1

dµt−1

dθ
+

∂µt

∂ ∑t−1

d ∑t−1
dθ

+
∂µt

∂θ
, (40)

d ∑t
dθ

=
∂ ∑t

∂p(xt−1)

dp(xt−1)

dθ
+

∂ ∑t
∂θ

=
∂ ∑t

∂µt−1

dµt−1

dθ
+

∂ ∑t
∂ ∑t−1

d ∑t−1
dθ

+
∂ ∑t
∂θ

, (41)

∂µt

∂θ
=

∂µ∆

∂p(ut−1)

∂p(ut−1)

∂θ
=

∂µ∆

∂µu

∂µu

∂θ
+

∂µ∆

∂ ∑u

∂ ∑u
∂θ

, (42)

∂ ∑t
∂θ

=
∂ ∑∆

∂p(ut−1)

∂p(ut−1)

∂θ
=

∂ ∑∆
∂µu

∂µu

∂θ
+

∂ ∑∆
∂ ∑u

∂ ∑u
∂θ

. (43)

By repeated application of the chain-rule, the Equations (39)–(43) can be computed analytically.
We omit further lengthy details here and refer to [47] for more information. Then the non-convex
gradient-based optimization algorithm—e.g., conjugate gradient—can be applied to find the strategy
parameters θ∗ that minimize Jπ(θ).

5. Simulations and Experiments

To verify the proposed force control learning system based on variable impedance control,
a series of simulation and experiment studies on the Reinovo REBot-V-6R-650 industrial robot
(Shenzhen Reinovo Technology CO., LTD, Shenzhen, China) are conducted and presented in this
section. Reinovo REBot-V-6R-650 is a six-DoF industrial manipulator with a six-axis Bioforcen F/T
sensor (Anhui Biofrcen Intelligent Technology CO., LTD, Hefei, China) mounted at the wrist. The F/T
sensor is used to percept the contact force of the end-effector. The sensing range of the F/T sensor is
±625 N Fx, Fy,±1250 N Fz,±25 Nm Tx, Ty, and±12.5 Nm Tz with the total accuracy less than≤ 1% F.S.

5.1. Simulation Study

We first evaluated our system through a simulation of force control using MATLAB (R2015b
Version 8.6) Simulink. The block diagram of simulation is shown in Figure 7. In the simulation setup,
a stiff contact plane is placed under the end-effector of the robot. The stiffness and damping of the
plane are set 5000 N/m and 1 Ns/m, respectively. The robot’s base is located at [0, 0, 0] m while the
original position of the plane OP is located at [0.2,−0.5, 0.15] m. The plane’s length, width, and height
are 0.9, 1, and 0.2 m, respectively. The robot should automatically learn to control the contact force to
the desired value.
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In the simulation, the episode length is set as T = 1 s. The control period of the impedance
controller is 0.01 s, and the calculation period of the learning algorithm is 0.01 s. The number of
total learning iterations, excluding the random initialization, is N = 20. The training inputs of the
learning algorithm are the position and contact force of the end-effector x =

[
X, Y, Z, Fx, Fy, Fz

]
∈ R6.

The training targets of the learning algorithm are the desired position and the desired contact force
y =

[
Xd, Yd, Zd, Fdx, Fdy, Fdz

]
= [0.41, 0, 0.2265, 0, 0, 15] ∈ R6. The desired position is the initial

position of the end-effector in Cartesian space. The desired contact force in z-axis direction is 15 N.
If the steady state error of contact force |Fz − Fzd| ≤ 1 N and the overshoot is less than 3 N, the task is
successful; otherwise, it is failed. The target state in cost function is xtarget = [0.41, 0, 0.2265, 0, 0, 15].
The strategy outputs are the impedance parameters u = [Kd Bd]. The number of the GP controller
is n = 10. The ranges of the impedance parameters are set as Kd ∈ [0.1 25] and Bd ∈ [50 1000].
The action penalty coefficient of the cost function is ζ = 0.03. The measurement noise of the
joint position, joint velocities and the contact force are set as δ ∼ N

(
0, 0.012) respectively. In the

initial trial, the impedance parameters are initialized to stochastic variables that are subject to
N (u0|0.1umax, 0.1umax) .

5.2. Simulation Results

Figure 8 shows the simulation results of the force control learning system. The block marks in
Figure 8a indicate whether the task is successful or not. The light blue dash-dotted line represents the
cumulative cost during the explorations. Figure 9 details the learning process of the total 20 learning
iterations. Figure 10 shows the joint trajectories after 4, 5, 10, 15, and 20 updates. Note that N = 0
denotes the initial trial, and the whole learning process is implemented automatically.

In the initial trial, the robot moves down slowly to search the contact plane and the end-effector
begins to contact the plane at T = 0.7 s. Due to the large overshoot of the contact force, the task is
failed until the fifth learning iteration. After the fifth learning iteration, the end-effector contacts the
plane at T = 0.34 s, which is faster than the initial trial. The contact force reaches to the desired value
rapidly with a little overshoot. The learning algorithm optimizes the control strategy continuously to
reduce the cumulative cost. After seven iterations, the strategy’s performance is stable, and the contact
force reaches the desired value quickly without overshoot by adjusting the impedance parameters
dynamically. The optimal strategy is learned after 20 iterations, and its cumulative cost is the smallest.
The end-effector can contact the plane at T = 0.3 s.
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Reinovo robot.

Figure 11 shows the evolutions of force control and impedance profiles. The state evolutions
predicted by the GP model can be represented by the blue dotted line and the blue shade, which denote
the mean and the 95% confidence interval of the state prediction respectively. The historical sampled
data are constantly enriched with the increase of interaction time, and the learned GP model is
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optimized and stabilized gradually. When a good GP model is learned, it can be used as a faithful
proxy of the real system (Figure 11b–d).Sensors 2018, 18, x FOR PEER REVIEW  16 of 26 
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As shown in Figure 11d, the process of impedance regulation can be divided into three phases:
(1) the phase before contacting the plane; (2) the phase of coming into contact with the plane; and (3) the
stable phase of contact with the plane. When the end-effector contact the environment, the manipulator
is suddenly converted from free space motion to constrained space motion, and the collision is
inevitable. The stiffness of the environment increases suddenly. Consequently, the stiffness of the
controller declines rapidly to make the system ‘soft’ to ensure safety. Meanwhile, the damping
continues to increase to make the system ‘stiff’ to suppress the impact of environmental disturbance.

Throughout the simulation, only five interactions (5 s of interaction time) are required to learn to
complete the force tracking task successfully. Besides, the impedance characteristics of the learned
strategy are similar to that of humans for force tracking. The simulation results verify the effectiveness
and the efficiency of the proposed system.

5.3. Experimental Study

The hardware architecture of the system is shown in Figure 12. The test platform consists of
six parts, an industrial manipulator, servo driver, Galil-DMC-2163 motion controller, Bioforcen F/T
sensor, an industrial PC, and a workstation. All parts communicate with others through the switch.
The motion controller communicates with the industrial PC through TCP/IP protocol running at
100 Hz. The sensor communicates with the industrial PC via Ethernet interface through TCP/IP and
samples the data at 1 kHz. The specific implementation diagram of the algorithm is shown in Figure 13.
The motion control of the robot is executed using Visual Studio 2010 on the industrial PC. The learning
algorithm is implemented by MATLAB on the workstation. The workstation communicates with the
industrial PC through UDP protocol.
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Figure 13. Implementation diagram of the algorithm.

To imitate the nonlinear variable characteristics of the circumstance during the force tracking
task, a combination of spring and rope is taken as the unstructured contact environment. As shown in
Figure 14, the experimental setup mainly consists of a spring dynamometer attached to the tool at the
end-effector and a rope of unknown length tied to the spring with the other end fixed on the table.
The contact force is controlled by stretching the rope and the spring. Here, the specifications of the
rope are unknown, and the rope is in a natural state of relaxation. The measurement range, length, and
diameter of the spring dynamometer are 30 Kg, 0.185 m, and 29 mm, respectively. The exact values of
the stiffness and damping of the springs are unknown to the system. In the experiments, the episode
length (i.e., the prediction horizon) is T = 3 s. Other settings are consistent with those of simulations
in Section 5.1.
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5.4. Experimental Results

The experimental results are shown in Figure 15. Figure 16 details main iterations of the learning
process. From the experimental results, we can see that in the initial trial, the manipulator moves
slowly and the rope begins to be stretched at T = 2.5 s to increase the contact force. The contact force
reaches 10.5 N at the end of the test, which implies that the task failed. In the second trial, the rope
and the spring can be stretched at T = 1.5 s, which is faster than that of the first trial, and the contact
force reaches the desired values rapidly, but the task failed because the overshoot is greater than 3 N.
Only two learning iterations are needed to complete the task successfully. After 17 iterations, the
cumulative cost is the smallest and the force control performance is also the best. The rope can be
stretched at T = 1 s, and the overshoot is suppressed effectively.Sensors 2018, 18, x FOR PEER REVIEW  18 of 26 
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(b) The performances of force control during learning process, including a total 20 learning iterations
throughout the experiment.
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Figure 16. Main iterations of the learning process. (a) Contact force; (b) Cartesian stiffness schedules;
(c) Cartesian damping schedules.

Figure 17 shows the evolutions of force control and impedance profiles. The bottom row shows
the stretching process of the combination of the rope and the spring. The joint trajectories and Cartesian
trajectories during the 20th experiment iteration are shown in Figure 18. The trajectories of other
iterations are similar to those of the 20th iteration. The stretching process of the combination can be
divided into four phases, just as the shaded areas shown. Table 1 summarizes the key states of the four
phases. The corresponding subscripts of Fz, Kdz, and Bdz are shown in Figure 17d while the subscripts
of position (P) and velocity (V) are shown in Figure 18c,d.
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Table 1. Key states of the four phases during the 20th iteration.

Subscript T/s P/m V/m·s−1 Fz/N Kdz/N·m−1 Bdz/Ns·m−1

0 0.00 0.2265 0.0000 0.393 6.246 588.97
1 1.28 0.2642 0.0327 0.326 8.468 653.99
2 1.48 0.2701 0.0292 6.095 5.888 673.83
3 2.00 0.2744 0.0010 14.625 2.469 601.93
4 3.00 0.2745 0.0000 14.874 2.379 598.53

The four phases of impedance regulation are corresponded to the force control process
mentioned above:

1. T0 − T1: Phase before stretching the rope. The manipulator moves freely in the free space.
To tighten the rope quickly, the movement of the end-effector increases as the impedance increase.
The contact force is zero in this phase.

2. T1 − T2: Phase of stretching the rope. When the rope is stretched, the manipulator is suddenly
converted from free space motion to constrained space motion. The stiffness of the environment
increases suddenly, and this can be seen as a disturbance of environment. Consequently,
the stiffness of the controller declines rapidly to make the system ‘soft’ to ensure safety.
Meanwhile, the damping continues to increase to make the system ‘stiff’ to suppress the
impact of environmental disturbance and avoid oscillation. On the whole, the system achieves
an appropriate strategy by weighting ‘soft’ and ‘stiff’. In this phase, the contact force increases
rapidly until the rope is tightened.

3. T2−T3: Phase of stretching the spring. The spring begins to be stretched after the rope is tightened.
Although the environment changes suddenly, the controller does not select the strategy as Phase
2; it makes the system ‘soft’ by gradually reducing the stiffness and damping to suppress the
disturbances. In this way, the contact force increases slowly to avoid overshoot when approaching
the desired value.

4. T3 − T4: Stable phase of stretching the spring. The manipulator contacts with the environment
continuously and the contact force is stabilized to the desired value. In this phase, the stiffness
and damping of the controller are kept at minimum so that the system maintains the ability
of compliance.

There are total 20 learning iterations throughout the experiment. In the early stage of learning,
the uncertainties of the GP model are large due to the lack of collected data. With the increase of
interaction time, the learned GP model can be improved gradually. After two learning iterations,
which means that only 6 s of interaction time is required, a sufficient dynamic model and strategy can
be learned to complete the force tracking task successfully. The experimental results above verify that
the proposed force control learning system is data-efficient. It is mainly because the system explicitly
establishes the transition dynamics that are used for internal virtual simulations and predictions, and
the optimal strategy is improved by evaluations. In this way, more efficient information could be
extracted from the sampled data.

5.5. Comparative Experiments

5.5.1. Environmental Adaptability

The results above have verified that the learned strategy could adjust the impedance profiles
to adapt to the environmental change in the episodic case. However, what happens if the whole
contact environment changes? In order to verify the environmental adaptability of the proposed
learning variable impedance control method, we use another different spring dynamometer to build
the unstructured contact environment. The measurement range, length, and diameter of the second
spring dynamometer are 15 Kg, 0.155 m, and 20 mm, respectively. It implies that the stiffness and
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location of the environment are all changed. Other experimental setups are consistent with the
Section 5.3. The initial strategy for the second environment is the learned (sub)optimal strategy for the
first spring (N = 17 in Section 5.4). The results are illustrated in Figure 19.Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 
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From the experimental results, we can see that in the initial application of the control strategy,
even though the impedance profile is regulated online according to the learned strategy, the task
is failed. This is mainly because the whole environment is changed a lot, the strategy learned for
the previous environment is not suitable for current environment. However, as the learning process
continues to optimize, the learned (sub)optimal strategy could adapt to the new environment and
successfully complete the task after two learning iterations. Therefore, the proposed method could
adapt to new environments, taking advantage of its learning ability.

5.5.2. Comparison of Force Control Performance

Variable impedance control can regulate the task-specific impedance parameters at different
phases to complete the task more effectively, which is the characteristic that the constant impedance
control is not equipped. Next, the proposed learning variable impedance control is compared with the
constant impedance control and the adaptive impedance control [13] to verify the effectiveness of force
control. The stiffness of the constant impedance controller is set as Kd = 10 while the stiffness of the
adaptive impedance controller is set as Kd = 0 [13]. The damping of the controller could be adjusted
manually or automatically. Experimental comparison results are illustrated in Figure 20.
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In order to quantitatively compare the performances, we use four indicators to quantify the
performances. The first indictor is the time Tf ree when the force begins to increase, i.e., the movement
time of the robot in free space. The second indicator is the accumulated cost Jπ(θ) which is defined in
Equation (33). Note that the accumulated cost includes two parts: the cost caused by the error to the
target state (Equation (36)) and the cost caused by the control gains (Equation (37)). The third one is
the root-mean-square error (RMSE) of the contact force
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RMSE =

√
∑H

t=1 (Fz(t)− Fzd)
2

H
, (44)

where Fz(t) is the actual contact force in Z-axis direction, and Fzd is the desired contact force. H is the
total number of the samples during the episode.

An energy indicator is defined to indicate the accumulated consumed energy during the
control process

Ey =
H

∑
t=1

6

∑
i=1

1
2

mi
.
θ

2
i (t), (45)

where mi is the mass of the ith joint and
.
θi is the angular velocity of the ith joint. Actually, the masses of

the joints are unknown accurately. Without loss of generality, the masses can be approximately set as
[m1, m2, m3, m4, m5, m6] = [1, 1, 1, 0.5, 0.3, 0.1].

Table 2 reveals the performance indicators of the three impedance controllers. Compared with
the constant/adaptive impedance control, the learning variable impedance control has the minimum
indicator values, which indicates that the proposed system is effective. Obviously, the performance
of the adaptive impedance control is better than the constant one, but still worse than the optimal
impedance strategy learned by the proposed learning variable impedance control.

Table 2. Performance indicators.

Mode Name Tfree/s Cost RMSE Ey
(
×103) Overshoot

Constant
Impedance control

Bd = 450 1.70 43.29 11.29 5.51 No

Bd = 400 1.50 41.09 10.83 5.85 Yes

Adaptive
Impedance control Bd-Adj 1.50 37.23 11.09 5.38 No

Learning variable
Impedance control

N = 20 1.25 39.71 10.19 2.33 No

N = 17 1.00 33.64 9.23 2.08 No

5.5.3. Learning Speed

In order to further illustrate the efficiency of the proposed method, we compared the learning
speed with state-of-the-art learning variable impedance control method, C-PI2, through the via-gain
task [37]. The cost function of C-PI2 is chosen as rt = w1δ(t− 0.4)‖K1 − KP

t ‖ with w1 = 1× 108

K1 = 15. The cost function of our method is chosen as the Equation (35) with xtarget = 15, ζ = 0.03.
The cost curve of learning process is shown in Figure 21a. Similar to other studies [37], to indicate
the data-efficiency of the method, we take the required rollouts to get the satisfactory strategy as the
indicator of the learning speed. The results show that C-PI2 converges after about 92 rollouts, whereas
our method needs only 4 rollouts.
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Current learning variable impedance control methods usually require hundreds or thousands
of rollouts to get a stable strategy. For tasks that are sensitive to the contact force, too many physical
interactions with the environment during the learning process are often infeasible. Improving the
efficiency of learning method is critical. Figure 21b shows the comparison of learning speed with other
learning variable impedance control methods. From the results of [4,37,50], we can see that, to get
a stable strategy, PI2 needs more than 1000 rollouts, whereas PSO requires 360 rollouts. The efficiency
of PoWER is almost the same as that of C-PI2, which requires 200 and 120 rollouts, respectively.
The learning speed of C-PI2 is much higher than that of previous methods but is still slower than our
method. Our method outperforms other learning variable impedance control methods by at least one
order of magnitude.

6. Discussion

According to the definition of the cost function (35)–(37), we can learn that decreasing the distance
between xt and xtarget and keeping the impedance parameters ut at a low level will be beneficial for
minimizing the accumulated cost. Consequently, small damping parameters will make the robot move
quickly to contact with the environment to reduce the distance between xt and xtarget. Unfortunately,
small damping could reduce the positioning accuracy of the robot and thus make the system with poor
ability to suppress disturbances. On the contrary, large damping could improve the system’s ability of
suppressing disturbances and reduce the speed of motion. It will lead to task failure if the impedance
parameters cannot be regulated to suppress the overshoot. Hence, the learning algorithm must make
a tradeoff between rapidity and stability to achieve the proper control strategy. By regulating the target
stiffness and damping independently at different phases, the robot achieves rapid contact with the
environment while the overshoot is effectively suppressed.

The impedance characteristics of the learned strategy are similar to the strategy that employed
by humans for force tracking. Reduce the impedance by muscle relaxation to make the system ‘soft’
when it needs to guarantee safety, while increase the impedance by muscle contraction to makes the
system ‘stiff’ when it needs to guarantee fast-tracking or to suppress disturbances. When the contact
environment is stable, the arm is kept in a compliant state by muscle relaxation to minimize the energy
consumption. Our system learns the optimal impedance strategy automatically through continuous
explorations. This is different from the methods of imitating human impedance behavior, such as [18]
and [24], which usually need additional device—e.g., EMG electrodes—to transfer human skills to the
robots by demonstration.

The proposed learning variable impedance control method emphasizes the data-efficiency,
i.e., sample efficiency, by learning a GP model for the system. This is critical for learning to perform
force-sensitive tasks. Note that only the application of the strategy requires physical interacting with
the robot; internal simulations and strategy learning only use the learned GP model. Although a fast
converging controller is found, the proposed method still has the computation intensive limitation.
The computational time for each rollout on a workstation computer with an Intel(R) Core(TM) i7-6700 K
CPU@4.00 GHz is detailed in Figure 22.
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Obviously, between the trials the method requires approximately 9 min to find the (sub)optimal
strategy. With the increase of sample data set, the computational time is increasing gradually, because
the kernel matrices need to be stored and inverted repeatedly. The most demanding computations are
the predictive distribution and the derivatives for prediction using the GP model.

7. Conclusions and Future Works

In this paper, we presented a data-efficient learning variable impedance control method that
enables the industrial robots automatically learn to control the contact force in the unstructured
environment. The goal was to improve the sampling efficiency and reduce the required physical
interactions during learning process. To do so, a GP model was learned as the faithful dynamics of
the system, which is then used for internal simulations to improve the data-efficiency by predicting
the long-term state evolution. This method learned an impedance regulation strategy, based on
which the impedance profiles were regulated online to track the desired contact force. In this way,
the flexibility and adaptivity of the system were enhanced. It is worth noting that the optimal
impedance control strategy, which is equipped with the similar impedance characteristics of humans,
is automatically learned through several iterations. There is no need to transfer human skills to the
robot with additional sampling devices. The effectiveness and data-efficiency of the system were
verified through simulations and experiments on the six-DoF Reinovo industrial robot. The learning
speed of this system outperforms other learning variable impedance control methods by at least one
order of magnitude.

Currently, the described work only focuses on the efficient learning of force control. In the
future work, we will extend this system to learn to complete more complex tasks that are sensitive
to contact force, such as assembly tasks of fragile components. Furthermore, parallel and online
implementation of this method to improve computational efficiency would be a meaningful and
interesting research direction.
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