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Abstract: Passive indoor localization techniques can have many important applications. They are
nonintrusive and do not require users carrying measuring devices. Therefore, indoor localization
techniques are widely used in many critical areas, such as security, logistics, healthcare, etc. However,
because of the unpredictable indoor environment dynamics, the existing nonintrusive indoor
localization techniques can be quite inaccurate, which greatly limits their real-world applications.
To address those problems, in this work, we develop a channel state information (CSI) based indoor
localization technique. Unlike the existing methods, we employ both the intra-subcarrier statistics
features and the inter-subcarrier network features. Specifically, we make the following contributions:
(1) we design a novel passive indoor localization algorithm which combines the statistics and network
features; (2) we modify the visibility graph (VG) technique to build complex networks for the indoor
localization applications; and (3) we demonstrate the effectiveness of our technique using real-world
deployments. The experimental results show that our technique can achieve about 96% accuracy on
average and is more than 9% better than the state-of-the-art techniques.

Keywords: indoor localization; CSI; visibility graph

1. Introduction

Indoor localization is an important technique and can be used in numerous real-world
applications [1–3]. However, unlike outdoor positioning, indoor localization remains a very
challenging and largely unsolved problem. Being able to accurately determine indoor personal
positions is a nontrivial task. For example, the indoor environment can be complex, unpredictable,
and mingled with walking personals. Therefore, in this work, we propose a novel and accurate indoor
localization technique which combines the statistics based and network based CSI features.

Indoor localization is widely used in many wireless applications. The localization accuracy
and efficiency demand is ever increasing. The specific application scenarios of indoor location
techniques include object tracking, personnel localization, elderly care, somatosensory games [4],
etc. Under certain emergent conditions, such as fire rescue, an accurate, efficient and real-time
localization scheme can possibly save many lives. However, traditional indoor location techniques
employ a received signal strength indicator (RSSI) as the reference physical indicator to determine
locations [5,6]. The main problem of RSSI is its lack of stability and sensitivity. It can easily fluctuate
over time, resulting in low localization accuracy. Therefore, we use the more stable and accurate CSI as
the reference physical indicator [7–9].

However, there are still many challenges for the existing CSI based indoor localization methods.
One major problem is that in their models they typically do not consider the inter-subcarrier
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correlations. Most existing algorithms only utilize the amplitude and phase information of individual
subcarriers. However, the frequency correlations among neighboring subcarriers can also contain
important location related information. Therefore, we propose using the VG method [10] to model
the inter-subcarrier correlations. The VG technique can transform time or frequency series data
into a complex network. The connections of the network nodes are determined by the geometric
visual relations of adjacent sequential points. Through the construction of the corresponding complex
network, we can derive a CSI based network with subcarriers as the network nodes and the geometric
visibility as the edges. It can reflect the frequency correlations between adjacent subcarriers. Based on
the network, we extract corresponding network features for indoor localization.

To improve the localization accuracy, we propose a passive indoor location technique based on
both statistical and network CSI features. Our technique employs the fingerprint library and can
be divided into training and testing stages. During the offline training stage, the CSI information is
collected and pre-processed. Then, we construct the VG based complex network from the collected
30 sequential subcarriers. After that, both the network and statistical features are extracted and
processed by the appropriate machine learning techniques to form the fingerprint library. During the
online testing stage, the testing data are processed similarly. Then, machine learning algorithms are
used to classify and estimate indoor locations.

In general, in this work, we have made the following main contributions:

1. We propose a novel passive indoor localization algorithm, which combines both intra-subcarrier
statistics features and inter-subcarrier network features. It can greatly improve the localization
performance.

2. We develop a modified VG based method to process the frequency-series subcarrier data.
Our approach can explore the intra-subcarrier and inter-subcarrier correlations between adjacent
subcarriers.

3. We validate our theories and techniques in real-world deployments. The results confirm that our
technique can significantly outperform state-of-the-art indoor localization techniques and are
more robust as well.

The remaining parts of this article are organized as follows: Section 2 describes the related work;
Section 3 introduces the relevant theoretical knowledge; Section 4 presents our technique; Section 5
discusses the experimental setup and the analysis of the results; Section 6 summarizes the full text.

2. Related Work

The related work can be generalized into two categories, which are indoor localization techniques
and complex network techniques, respectively.

2.1. Indoor Localization Techniques

Indoor localization is important for many mobile applications. Therefore, accurate and effective
indoor positioning has received widespread research interests. Previously, wireless indoor localization
techniques mainly rely upon RSSI [11–14], which can be inaccurate, unstable, and vulnerable to
multi-path effects. Therefore, CSI based techniques are becoming mainstream. Sen et al. [15,16]
propose PinLoc, which is based on the CSI fingerprint library. It can achieve meter level localization
accuracy. Wu et al. develop FILA, a fine-grained indoor localization technique [17]. Shaw et al. design
the Pilot algorithm [18]. Nasser et al. propose the MonoPHY technique [19]. Wu et al. propose
a passive indoor localization technique based on CSI and Naive Bayes classifier [20]. There are
problems and challenges for the existing CSI based localization techniques. The traditional CSI based
localization methods only utilize the statistical features extracted from the individual subcarrier and do
not consider the relationship between subcarriers. However, the relationship may contain important
position information. Thus, it is important to quantify the relationship of adjacent subcarriers.
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2.2. Complex Network Techniques

Complex network refers to a network with the properties of self organization, self similarity,
attractor, small world, and scale free degrees [21]. In real-world applications, many complex systems,
such as power grids, aeronautical networks, traffic networks, internet, and social networks, etc.,
can be modeled using complex networks [22–24]. Meanwhile, the visibility graph is an efficient
and thus widely used technique to construct complex networks from complex systems, e.g., CSI.
Lacasa et al. proposed the VG based technique to transform time series data into complex networks [10].
Gao et al. improve upon the original VG method and extract the network features for epileptic
classification [25,26]. Yan et al. utilize the VG technique to extract network features and distinguish
traffic states [27]. Zhu et al. employ multiple VG techniques to transform human sleep data into
complex networks and extract network features for sleep classification [28]. Thus, existing research
works demonstrate that using VG network to transform time series data into complex networks can
reveal the internal relationship of data and improve classification results. Therefore, we propose to
transform the time series CSI data into complex network.

3. Preliminaries

In this section, we describe the basic theories and properties of CSI and VG.

3.1. CSI and Localization

Compared with RSSI, CSI can provide more detailed and fine-grain subcarrier information.
The channel frequency response (CFR) of a typical wireless channel can be expressed using the
following equation:

Y = HX + N, (1)

where X is the transmitting signal vector, Y is the receiving signal vector, H is the channel state
matrix and N is the Gaussian white noises. Thus, the channel state H can be calculated using the
following equation:

Ĥ =
Y
X

, (2)

where Ĥ is the CFR in the frequency domain. The corresponding CSI information can be extracted from
a WiFi wireless adapter. For subcarrier k with central frequency fk, its CSI is defined as H( fk). The CSI
signature contains both amplitude and phase information, which is defined in the following equation:

H(a) = |H(a)|ejsin 6 H(a), (3)

where H(a) is the CSI for the ath subcarrier, |H(a)| is its amplitude, and 6 H(a) is its phase.
For multiple in multiple out (MIMO) systems with multiple receiving and transmitting antennas, CSI
of each subcarrier can be expressed as a p× q matrix, where p is the number of transmitting antennas
and q is the number of receiving antennas. Thus, for each data packet, we can derive a p× q× N
matrix, where N is the total number of subcarriers. In this work, the number of N is set to 30 [29].

The underlying reasoning for applying the CSI information in indoor localization applications is
that, when the personnel are in different locations, the signal paths and the corresponding multi-path
effects vary. Thus, we can observe different reactions and variations on the CSIs. To better identify the
human location, the CSI signature should be both stable in the same location and differentiable in the
different locations. This characteristics can be readily observed in Figure 1.
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(a) CSI amplitude in the same location. (b) CSI amplitude in different locations.

Figure 1. The CSI amplitude comparison.

3.2. VG Introduction

The VG method is widely used to transform time series data into complex networks [10].
Assuming there are three different points in the time series data space, which are denoted as a,
b, and c. The network can be constructed using the following equation:

yc < yb + (ya − yb)
tb − tc

tb − ta
, (4)

where y represents the value on the y-axis and t represents time. Thus, based on Equation (4), we can
derive an undirected complex network. A complex network construction example is shown in Figure 2.

Figure 2. A VG construction example for time series data.
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3.3. Machine Learning Algorithms

We introduce several widely used machine learning algorithms and implement them later.

3.3.1. Bayesian Network

Bayesian network (BNet) models the process of human cognitive reasoning. It utilizes a directed
acyclic graph (DAG) and its associated conditional probability tables to model the causal inference
relation of uncertain events. Each node in DAG represents a random variable, which can be directly
observed or hidden. Edges represent the conditional dependency between corresponding variables.
Each element in the conditional probability table represents the joint conditional probability between
the node and its precedents. By training the Bayesian network, the conditional probability table can be
filled and thus used for classification.

3.3.2. Support Vector Machine

Support vector machine (SVM) is a powerful and widely used machine learning technique.
The key is to find the boundary hyper plane among different categories, so that different types of
samples can be as far away from the boundary hyper plane as possible. Thus, SVM can exhibit an
excellent classification ability. Recent SVM techniques utilize various kernel functions, e.g., Gaussian
kernel function, to project the plane into a curved surface and greatly improve the performance and
application scenarios. SVM is typically resilient to attacks and noises.

3.3.3. Random Forest

Random forest (RF) is an ensemble machine learning algorithm for tasks like classification
and regression, etc. Its weak classifiers typically use the classification and regression tree. It first
generates a large quantity of decision trees by random selection, and then combines the results
of these decision trees to make the final classification decision. Random forest is widely used in
real-world applications. Since RF utilizes random sampling, it can minimize modeling variance and
have outstanding generalization ability. Therefore, RF is usually resilient to attacks and accurate
in general.

4. VG Based Indoor Localization Method

Our proposed technique includes three parts, which are VG network construction, network
feature extraction, and CSI fingerprint library. The flow of our method is presented in Figure 3.

4.1. VG Network Construction

The CSI signatures can be considered as frequency series data. Thus, to explore the correlations
between adjacent subcarriers, we propose using the VG technique to transfer frequency series CSI
signatures to complex networks. The CSI data contain both amplitude and phase information.
Specifically, assuming that there are three different subcarriers a, b, and c, we use the following
equation to derive the VG network for amplitude:

Ac < Ab + (Aa − Ab)
fb − fc

fb − fa
, (5)

where, for the ith subcarrier, Ai represents its amplitude and fi represents its frequency.
Similarly, the CSI phase information can also be used to construct the corresponding VG network

using the following equation:

Pc < Pb + (Pa − Pb)
fb − fc

fb − fa
, (6)

where Pi is the phase value for the ith subcarrier.
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Figure 3. The system flowchart.

Figure 4 shows an example of transforming 30 subcarriers into the VG based complex network.
In the figure, the x-axis is the subcarrier frequencies and the y-axis is the amplitude. By applying the
VG based network construction rule as presented in Equation (5), we can derive the corresponding
complex network.

Figure 4. The VG construction process for frequency series CSI data.

In general, we construct an undirected and acyclic network from frequency series CSI signature.
We first assign subcarrier indices as network nodes. Then, we apply the VG technique to establish the
connections between nodes. Thus, we can use existing network techniques to analyze the CSI data and
greatly increasing the number of features for classification.
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4.2. Network Feature Extraction

After the construction of CSI complex networks, we extract the network features. In this work,
we utilize the following features:

1. Degree deviation [25]

The degree deviation can be calculated using the following equation:

kstd =

(
∑N

i=1(ki − k̄)2

N − 1

) 1
2

,

k̄ =
1
N

N

∑
i=1

ki, (7)

where ki represents the number of nodes connecting to node i, kstd represents the degree deviation,
k̄ represents the average degree, and N is the total number of nodes in the network.

2. Degree assortativity coefficient [30]. The Degree assortativity coefficient feature can be extracted
using the following equation:

r =
M−1 ∑i jiki − [M−1 ∑i

1
2 (ji + ki)]

2

M−1 ∑i
1
2 (j2i + k2

i )− [M−1 ∑i
1
2 (ji + ki)]2

, (8)

where ji and ki is the degree of the two nodes connected by edge i and M is the total number
of edges.

3. Clustering coefficient entropy [25] The clustering coefficient entropy feature is extracted as follows:

Ci =
τi,∆

τi
; Pc,i =

Ci

∑N
i=1 Ci

,

Ec = −
N

∑
i=1

(PC,i)log(PC,i), (9)

where, for node i, Ci is its local clustering coefficient, τi,∆ is the total number of edges connecting
to all the neighboring nodes of i, τi is the the number of edges connecting to node i, PC,i is the
clustering coefficient probability, N is the total number of nodes in the network, and EC is the
clustering coefficient entropy.

4. Average weighted degree [31]. The average weighted degree feature can be extracted as follows:

wab =
1
M ∑

[
arctan

y(xb)− yxa

xb − xa

]
, (10)

where a and b are two separate nodes, x is the corresponding subcarrier frequency, y is amplitude
or phase, and M is the total number of edges.

4.3. Fingerprint Library Creation

4.3.1. Statistical Feature Extraction

The raw data of 30 subcarriers contain large amounts of noises and useless redundant signals and,
thus, usually cannot be used for classification directly. Otherwise, they can easily cause overfitting
and lead to inferior classification performance. Thus, it is common practice to generalize the statistical
features from the raw data. In this work, we calculate and utilize four statistical features, which are
standard deviation (STD), median absolute deviation (MAD), mean value (MEAN), and median value
(MEDIAN), respectively. We do not include the maximal and minimal traits in this work. Experimental
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results show that, by adding those two features, the classifiers become more vulnerable to overfitting
and tend to derive deteriorated results.

4.3.2. Fingerprint Library

There are significant variations in derived feature magnitudes. Therefore, we normalize the
features using the Z-score method as follows:

Fnorm =
F− µ

σ
, (11)

where Fnorm is the normalized features, F is the original features, µ is the mean value, and σ is the
standard deviation. The normalized features, including both statistical and network ones, are combined
to create the final fingerprint library.

5. Experimental Results

5.1. Experiment Setup

The experiment platform includes two parts, which are access point (AP) and monitoring point
(MP), respectively. The CSI signature is extracted using a CSI-tool [29]. For the experiment, we
deploy two notebook equipped with Ubuntu 14.04 (Canonical, London, UK) and Intel 5300 network
adapter (Samsung, Suzhou, China). The adapter has three MIMO antennas and thus can form six link
pairs in theory. However, in the real-world environment, we can only extract three link pairs stably.
Thus, we choose link pair 1-1, 1-2, and 1-3 in this work. The machine learning algorithms are run on a
ASUS FH5900V computer (Shanghai, China) equipped with Intel i7-6700HQ CPU and 8 G memory.

During the experiment, the testing participator is standing on the different locations in the room.
The AP sends 100 data packets per second and lasts for 10 s. Therefore, at each location, we collect
1000 samples. There are two different testing environments as shown in Figure 5. Figure 5a shows
the inside view of testing environment 1, which is a small and noisy conference room. Figure 5b is its
vertical view and the room size is approximately 5× 6 m2. Figure 5c shows the inside view of testing
environment 2, which is an empty and quiet class room. Figure 5b is its vertical view and the room
size is approximately 6× 8 m2.

For both environments, the distance between each data collection point is around 1 m, i.e.,
the localization resolution is set to be 1 m. In testing environment 1, the MP is placed at 1.2 m high,
while the AP is placed at 0.5 m high. Their distance is 2.5 m. In testing environment 2, both AP and
MP are placed at 0.5 m high with a distance of 7 m. At each location, we randomly select 600 samples
as the training set, and the rest form the testing set.

5.2. Data Pre-Processing

The data pre-processing includes amplitude and phase extraction, abnormality processing,
and data smoothing.
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(a) Inside view of testing environment 1. (b) Vertical view of testing environment 1.

(c) Inside view of testing environment 2. (d) Vertical view of testing environment 2.

Figure 5. The experiment environments.

5.2.1. Amplitude and Phase Extraction

The CSI amplitude information is stable and easy to extract. Thus, it is the most widely used
feature in indoor localization applications. However, the phase information contains significant
noise and synchronization problems. Thus, the original phase information must be linearized [32].
The linearization process is shown as follows:

φ̄i = φ̃i − aki − b = φi −
φn − φ1

kn − k1
ki −

1
n

n

∑
j=1

φj, (12)

where φ̃ is the measured phase, φi is the actual phase, and ki is the index of the corresponding subcarrier.

5.2.2. Abnormality Processing

Abnormal data have a great impact on training and testing performances. To remove the abnormal
data points, we use the Pauta criterion, which is shown in the following equation:

VF
i =

{
meanF |Vn

i −meanF| > 3stdF,

0, else,
(13)

where, for the ith sample and Fth subcarrier, V is the CSI value, mean is the mean value and std is the
standard deviation.

5.2.3. Data Smoothing

Even after removing the outliers, there are still significant short-term fluctuations among adjacent
samples. To remove the unwanted noise fluctuations, we use the moving average filter to process the
data [33]. The method is shown in the following equation:

¯CSIi
n =

1
m
(CSIi

n + CSIi
n−1 + ... + CSIi

n−m+1), (14)
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where m is the size of the sliding window, n is the index of the data packets, and i is the index of the
subcarriers. There is a trade-off between sliding window size, i.e., data smoothness, and signal integrity.
Figure 6 shows an example of data smoothing. The red lines are the original data, while the blue
lines are the smoothed one. The data fluctuations are significantly suppressed. After data smoothing,
the data are classified using machine learning techniques.

Figure 6. The data smoothing results.

5.3. Result Analysis

In this section, we evaluate the performance of our techniques.

5.3.1. Performance Comparison

In this work, we compare the performance of the following techniques:

1. Confidence: the state-of-the-art CSI based localization method [20], which uses the mean and
standard deviation features extracted from CSI amplitude.

2. Statistics: a technique similar to the confidence method but employs four amplitude features and
four phase features.

3. VG: a localization technique using only VG network features.
4. Combined: our technique which utilizes both VG and statistics features.

We compare the classification accuracy at two different environments and the results are shown
in Figure 7. In the figure, the x-axis is the three machine learning based classification algorithms and
the y-axis is the classification accuracy. Among the four compared algorithms, both VG and Combine
are our proposed techniques. In both environments, the Statistics method outperforms the Confidence
method for all of the three classification methods. This implies that using only the mean and standard
deviation features is insufficient to capture the CSI signal spatial variations. Moreover, the combined
method constantly gives the best performance, which demonstrates that the network features are truly
correlated to the CSI spatial variations. In other words, different indoor locations have an impact on
the adjacent subcarrier correlations.
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In general, by using the SVM technique, we can achieve the best performance in both
environments. For the noisy environment 1, the Confidence method has 80.1% accuracy; the VG
only method is 87.2%; the Statistical method is 91.7%; and the Combined method can achieve 92.0%
accuracy. Our technique is significantly better in noisy environments, which has 11.9% improvement
compared with the state-of-the-art Confidence method. However, the performance improvement is
less significant in environment 2. For the best SVM algorithm, our combined method achieves 95.7%
accuracy, which has about 8.9% improvement compared with the Confidence method, but only 2.8%
compared with the Statistics method. It is possible that the VG network features and statistics features
overlap with each other and cause over-fitting.

(a) Classification results on environment 1. (b) Classification results on environment 2.

Figure 7. The comparison results.

5.3.2. Performance Analysis

To better illustrate and explain the performance of our combined technique, we plot the confusion
matrices of the VG, Statistics, and Combined methods under the complex environment 1, as shown in
Figure 8. In the figure, the y-axis is the indices of actual locations and the x-axis is the classification
result frequencies. The orthogonal line represents the correctly classified results and the color intensities
represent the frequencies.

Figure 8a,b show the corresponding confusion matrices of VG and Statistics methods, respectively.
As illustrated in the figure, the misclassification locations for the VG and Statistics methods are mostly
different. The annotated areas in Figure 8a,b show the corresponding misclassified locations. They are
in different diagonal positions, while implying that, whenever one technique misclassifies, the other
one may derive the correct result. Therefore, by combining the two different classes of features,
the classification results of the combined technique can be significantly improved. For example,
Figure 8a shows that location 20 is frequently misclassified as locations 3 and 6. Figure 8b shows
that location 20 is frequently misclassified as locations 6, 11, 12, and 13. However, as shown in
Figure 8c, by combining the features, location 20 is rarely misclassified except for few cases. It is clear
evidence that the network features, which represent the inter-subcarrier correlations, are different
from the statistics features generalized from individual subcarrier and hence can help improve the
localization performance.
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(a) VG. (b) Statistics.

(c) Combined.

Figure 8. The confusion matrices of different methods.

It should be noted that, although our technique improves significantly, there are still some
misclassifications. The reason is as follows.

1. The CSI signatures contain significant noises. Because of environment variations and multi-path
effects, the CSI signals are usually unpredictable and fluctuating, which can greatly affect the
localization accuracy. For example, in many scenarios, we observe that the CSI signatures of a
person standing in certain locations in the middle are very close to the signatures where one
stands in the corner. In that case, those two locations are indistinguishable for any CSI based
techniques. Therefore, there are always possibilities for misclassifications.

2. The feature selection methods can also cause misclassifications. In this work, we do not use raw
CSI data directly. Instead, we extract features from them. Features can filter out the noises and
simplify the calculation. However, it is also possible to omit useful information. Our technique is
based on two feature sets, which are Statistical and VG features. They stand for the intra and inter
correlations of subcarriers, respectively. It is demonstrated in Figure 7 that both feature sets can
cause misclassifications. Therefore, for the locations where both feature sets predict incorrectly
simultaneously, our technique also misclassifies.
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To further analyze the classification results, we compare the false negative (FN) rate and false
positive (FP) rate of our combined technique under different environments. Figure 9 shows the
comparison results. For the best machine learning algorithm (SVM), the FN rates are constantly below
3% and the FP rates are below 1%. The performances of our algorithms are outstanding. Moreover,
for both environments, the FP rate is significantly lower than the FN rate. It is a desirable result since,
in most applications, the FP rate is much more important than the FN rate.

(a) (b)

Figure 9. The FN/FP ratios on different environments.

5.3.3. Parameter Selection

We first discuss the selection of amplitude and phase parameter of the CSI signal. We compare the
performance of our Combined technique using three different types of CSI data, which are amplitude,
phase, and both, respectively. The comparison results are shown in Figure 10, where the x-axis
is the three machine learning algorithms and the y-axis is the classification accuracy. The figure
demonstrates that, by combining the amplitude and phase information, we can observe a universal
improvement. The reason is that the amplitude and phase information represents different aspects of
CSI characteristics.

Then, we discuss the impact of training and testing set sizes on algorithm performances. Figure 11
shows the evaluation results at the noisy testing environment 1. Our technique is significantly better
than the Confidence method. As the size of the training set grows, the performances improve slightly.
Moreover, it is possible that the machine learning based classifiers become overfitted. In that case,
the classification performance may even drop slightly, as shown in Figure 11b. Considering the
trade-off between training time and classifier performance, we employ 6:4 as the ratio to split the
training and testing sets.
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(a) (b)

Figure 10. The amplitude/phase selection on classification accuracy.

(a) BNet (b) SVM (c) RF

Figure 11. The impact of training and testing sizes.

Table 1 shows the classification accuracy and the corresponding training time. The SVM method
has the best performance and moderate training time. Meanwhile, the Bayes net approach requires the
least training time. Therefore, there is a trade-off between algorithm performance and the time taken
to obtain each model. The specific machine learning technique should be determined by considering
all the requirements.

Finally, we evaluate the influences of noise disturbance, e.g., presence of other persons, on
algorithm performances. We add two more testing environments, which are environments 3 and 4,
respectively. Figure 12 shows the details of these two environments. On testing environment 3, besides
the testing personal, an additional person sits idly nearby. On testing environment 4, an additional
person walks randomly inside the room. Figure 13 presents the corresponding experimental results.
The results show that our technique is very robust compared with the existing methods. Especially
in environment 4, the Confidence method is affected significantly by the walking person. Even for
the SVM method, the classification accuracy drops below 65%, while, for our combined methods,
the accuracy is still about 90%. Therefore, the experimental results demonstrate that the idly seated
person does not have a significant impact on CSI based classification techniques. The human activity,
on the other hand, can have significant impact. However, by considering both intra-subcarrier statistical
features and inter-subcarrier network features, our Combined technique shows great resilience for
such disturbance. Figure 14 shows the performance improvements compared with the Confidence
method. The noisiest testing environment 4 records the greatest improvements. In general, there is a
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trade-off between noises and classification accuracy. However, by considering both intra and inter
subcarrier correlations, our algorithm is demonstrated to be very noise resilient.

Table 1. Performance and training time for machine learning algorithms.

Environment
BNet SVM RF

Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s)

Env1 85.21 0.56 93.28 1.79 90.70 4.92
Env2 84.74 1.15 95.90 3.21 95.74 8.84

(a) Environment 3 (b) Environment 4

Figure 12. The impact of human interferences.

(a) (b)

Figure 13. The impact of human interferences.
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Figure 14. The overall improvements compared with the state-of-the-art technique.

6. Conclusions

In this work, we propose a CSI based indoor localization technique which utilizes both the
intra-subcarrier statistics and inter-subcarrier network features. We employ the VG method to
transform the CSI amplitude and phase information into complex networks and extract the network
features accordingly. Then, we combine the network features with traditional statistics features
and use three widely use machine learning algorithms to determine the specific indoor locations.
The experimental results show that our technique can achieve 96% classification accuracy, which is
about a 9% improvement compared with the state-of-the-art CSI method. Moreover, it is demonstrated
that our techniques are more robust to the environment noises and disturbances.

Author Contributions: Conceptualization, Z.W. and Y.X.; Data curation, L.J. and Z.J.; Formal analysis,
L.J. and Z.J.; Funding acquisition, Z.W. and Y.X.; Investigation, L.J. and Q.X.; Methodology, Z.W. and Y.X.;
Project administration, Z.W.; Resources, B.C.; Supervision, Z.W. and Y.X.; Validation, Q.X.; Visualization, K.L.;
Writing—Original draft, L.J.; Writing—Review and editing, Y.X.

Funding: This work is partially supported by the National Natural Science Foundation of China (61502423,
61572439) and the Zhejiang Natural Science Foundation (LY18F030021, LY18F010025, LY14F050004).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kemper, J.; Linde, H. Challenges of passive infrared indoor localization. In Proceedings of the 2008
5th Workshop on IEEE Positioning Navigation and Communication, Hannover, Germany, 27 March 2008;
IEEE: Piscataway, NJ, USA, 2008; pp. 63–70.

2. Liu, Y.; Yang, Z. Location, Localization, and Localizability: Location-Awareness Technology for Wireless Networks;
Springer: Berlin, Germany, 2011.

3. Gonçalves, R.; Reis, J.; Santana, E.; Carvalho, N.B.; Pinho, P.; Roselli, L. Smart floor: Indoor navigation based
on RFID. In Proceedings of the 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 15–16 May 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 103–106.

4. Li, X.; Li, S.; Zhang, D.; Xiong, J.; Wang, Y.; Mei, H. Dynamic-MUSIC: Accurate device-free indoor
localization. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Heidelberg, Germany, 12–16 September 2016; pp. 196–207.

5. Wu, Z.; Fu, K.; Jedari, E.; Shuvra, S.R.; Rashidzadeh, R.; Saif, M. A Fast and Resource Efficient Method for
Indoor Positioning Using Received Signal Strength. IEEE Trans. Veh. Technol. 2016, 65, 9747–9758. [CrossRef]

6. Mazuelas, S.; Bahillo, A.; Lorenzo, R.M.; Fernandez, P.; Lago, F.A.; Garcia, E.; Blas, J.; Abril, E.J. Robust
Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks. IEEE J. Sel. Top.
Signal Process. 2009, 3, 821–831. [CrossRef]

http://dx.doi.org/10.1109/TVT.2016.2530761
http://dx.doi.org/10.1109/JSTSP.2009.2029191


Sensors 2018, 18, 2549 17 of 18

7. Chapre, Y.; Ignjatovic, A.; Seneviratne, A.; Jha, S. CSI-MIMO: Indoor Wi-Fi fingerprinting system. In Proceedings
of the 2014 Local Computer Networks, Edmonton, AB, Canada, 8–11 September 2014; pp. 202–209.

8. Wu, K.; Xiao, J.; Yi, Y.; Chen, D.; Luo, X.; Ni, L.M. CSI-Based Indoor Localization. IEEE Trans. Parallel
Distrib. Syst. 2013, 24, 1300–1309. [CrossRef]

9. Li, F.; Al-Qaness, M.A.A.; Zhang, Y.; Zhao, B.; Luan, X. A Robust and Device-Free System for the Recognition
and Classification of Elderly Activities. Sensors 2016, 16, 2043. [CrossRef] [PubMed]

10. Lacasa, L.; Luque, B.; Ballesteros, F. From time series to complex networks: the visibility graph. Proc. Natl.
Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef] [PubMed]

11. Zanca, G.; Zorzi, F.; Zanella, A.; Zorzi, M. Experimental comparison of RSSI-based localization algorithms
for indoor wireless sensor networks. In Proceedings of the 2008 Workshop on Real-World Wireless Sensor
Networks, Glasgow, UK, 1–4 April 2008; pp. 1–5.

12. Paul, A.S.; Wan, E.A. RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers.
IEEE J. Sel. Top. Signal Process. 2009, 3, 860–873. [CrossRef]

13. Ahn, H.S.; Yu, W. Environmental-Adaptive RSSI-Based Indoor Localization. IEEE Trans. Autom. Sci. Eng.
2009, 6, 626–633.

14. El-Din, R.A.Z.; Rizk, M. Accurate indoor localization based on RSSI with adaptive environmental parameters
in wireless sensor networks. In Proceedings of the First International Conference on Innovative Engineering
Systems, Alexandria, Egypt, 7–9 December 2012; pp. 177–183.

15. Sen, S.; Radunovic, B.; Choudhury, R.R.; Minka, T. Precise indoor localization using PHY information.
In Proceedings of the 2011 International Conference on Mobile Systems, Applications, and Services,
Washington, DC, USA, 28 June–1 July 2011; pp. 413–414.

16. Sen, S.; Choudhury, R.R.; Minka, T. You are facing the Mona Lisa: Spot localization using PHY layer
information. In Proceedings of the 2012 International Conference on Mobile Systems, Applications, and
Services, Lake District, UK, 26–29 Jun 2012; pp. 183–196.

17. Wu, K.; Xiao, J.; Yi, Y.; Gao, M.; Ni, L. FILA: Fine-grained indoor localization. Proc. IEEE INFOCOM 2012,
131, 2210–2218.

18. Xiao, J.; Wu, K.; Yi, Y.; Wang, L.; Ni, L.M. Pilot: Passive Device-Free Indoor Localization Using Channel
State Information. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing
Systems, Philadelphia, PA, USA, 8–11 July 2013; pp. 236–245.

19. Abdel-Nasser, H.; Samir, R.; Sabek, I.; Youssef, M. MonoPHY: Mono-Stream-based Device-free WLAN
Localization via Physical Layer Information. In Proceedings of the 2013 IEEE Wireless Communications and
Networking Conference (WCNC 2013), Shanghai, China, 7–10 April 2013; pp. 4546–4551.

20. Wu, Z.; Xu, Q.; Li, J.; Fu, C.; Xuan, Q.; Xiang, Y. Passive Indoor Localization Based on CSI and Naive Bayes
Classification. IEEE Trans. Syst. Man Cybern. Syst. 2017, PP, 1–12. [CrossRef]

21. Xuan, Q.; Zhou, M.; Zhang, Z.Y.; Fu, C.; Xiang, Y.; Wu, Z.; Filkov, V. Modern Food Foraging Patterns:
Geography and Cuisine Choices of Restaurant Patrons on Yelp. IEEE Trans. Comput. Soc. Syst. 2018, 5, 508–517.
[CrossRef]

22. Fu, C.; Zhao, M.; Fan, L.; Chen, X.; Chen, J.; Wu, Z.; Xia, Y.; Xuan, Q. Link Weight Prediction Using
Supervised Learning Methods and Its Application to Yelp Layered Network. IEEE Trans. Knowl. Data Eng.
2018. [CrossRef]

23. Hu, H.X.; Wen, G.; Yu, W.; Xuan, Q.; Chen, G. Swarming Behavior of Multiple Euler-Lagrange Systems With
Cooperation-Competition Interactions: An Auxiliary System Approach. IEEE Trans. Neural Netw. Learn. Syst.
2018, PP, 1–12. [CrossRef] [PubMed]

24. Xuan, Q.; Zhang, Z.Y.; Fu, C.; Hu, H.X.; Filkov, V. Social Synchrony on Complex Networks. IEEE Trans. Cybern.
2018, 48, 1420–1431. [CrossRef] [PubMed]

25. Gao, Z.K.; Cai, Q.; Yang, Y.X.; Dong, N.; Zhang, S.S. Visibility Graph from Adaptive Optimal Kernel
Time-Frequency Representation for Classification of Epileptiform EEG. Int. J. Neural Syst. 2017, 27, 1750005.
[CrossRef] [PubMed]

26. Gao, Z.K.; Cai, Q.; Yang, Y.X.; Dang, W.D. Time-dependent limited penetrable visibility graph analysis of
nonstationary time series. Phys. A Stat. Mech. Appl. 2017, 476, 43–48. [CrossRef]

27. Yan, Y.; Zhang, S.; Tang, J.; Wang, X. Understanding characteristics in multivariate traffic flow time series
from complex network structure. Phys. A Stat. Mech. Appl. 2017, 477, 149–160. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2012.214
http://dx.doi.org/10.3390/s16122043
http://www.ncbi.nlm.nih.gov/pubmed/27916948
http://dx.doi.org/10.1073/pnas.0709247105
http://www.ncbi.nlm.nih.gov/pubmed/18362361
http://dx.doi.org/10.1109/JSTSP.2009.2032309
http://dx.doi.org/10.1109/TSMC.2017.2679725
http://dx.doi.org/10.1109/TCSS.2018.2819659
http://dx.doi.org/10.1109/TKDE.2018.2801854
http://dx.doi.org/10.1109/TNNLS.2018.2811743
http://www.ncbi.nlm.nih.gov/pubmed/29994100
http://dx.doi.org/10.1109/TCYB.2017.2696998
http://www.ncbi.nlm.nih.gov/pubmed/28500015
http://dx.doi.org/10.1142/S0129065717500058
http://www.ncbi.nlm.nih.gov/pubmed/27832712
http://dx.doi.org/10.1016/j.physa.2017.02.038
http://dx.doi.org/10.1016/j.physa.2017.02.040


Sensors 2018, 18, 2549 18 of 18

28. Zhu, G.; Li, Y.; Wen, P.P. Analysis and classification of sleep stages based on difference visibility graphs from
a single-channel EEG signal. IEEE J. Biomed. Health Inform. 2014, 18, 1813–1821. [CrossRef] [PubMed]

29. Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool release: Gathering 802.11 n traces with channel state
information. In ACM SIGCOMM Computer Communication Review; ACM Digital Library: New York, NY,
USA, 2011; Volume 41, p. 53.

30. Newman, M.E. Mixing patterns in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2003, 67, 026126.
[CrossRef] [PubMed]

31. Supriya, S.; Siuly, S.; Wang, H.; Cao, J.; Zhang, Y. Weighted Visibility Graph With Complex Network Features
in the Detection of Epilepsy. IEEE Access 2016, 4, 6554–6566. [CrossRef]

32. Wu, C.; Yang, Z.; Zhou, Z.; Qian, K. PhaseU: Real-time LOS identification with WiFi. In Proceedings of the
2015 Computer Communications, Hong Kong, China, 26 April–1 May 2015; pp. 2038–2046.

33. Han, C.; Wu, K.; Wang, Y.; Ni, L.M. WiFall: Device-free fall detection by wireless networks. In Proceedings
of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada,
27 April–2 May 2014; pp. 271–279.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JBHI.2014.2303991
http://www.ncbi.nlm.nih.gov/pubmed/25375678
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://www.ncbi.nlm.nih.gov/pubmed/12636767
http://dx.doi.org/10.1109/ACCESS.2016.2612242
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Indoor Localization Techniques
	Complex Network Techniques

	Preliminaries 
	CSI and Localization
	VG Introduction
	Machine Learning Algorithms
	Bayesian Network
	Support Vector Machine
	Random Forest


	VG Based Indoor Localization Method
	VG Network Construction
	Network Feature Extraction
	Fingerprint Library Creation
	Statistical Feature Extraction
	Fingerprint Library


	Experimental Results
	Experiment Setup
	Data Pre-Processing
	Amplitude and Phase Extraction
	Abnormality Processing
	Data Smoothing

	Result Analysis
	Performance Comparison
	Performance Analysis
	Parameter Selection


	Conclusions
	References

