Adhesive-Free Bonding of Monolithic Sapphire for Pressure Sensing in Extreme Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabry–Perot (FP) Cavity Fabrication from Sapphire Wafer
2.2. Pressure Sensing Test Experiment
3. Results and Discussion
3.1. Sensor Fabrication and Diaphragm Deflection
3.2. Fabry–Perot White-Light Interferometer and Sensor Interrogation
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kurtz, A.D.; Ned, A.A.; Goodman, S.; Epstein, A.H. Latest ruggedized high temperature piezoresistive transducers. In Proceedings of the NASA 2003 Propulsion Measurement Sensor Development Workshop, Huntsville, AL, USA, 13–15 May 2003. [Google Scholar]
- Ziermann, R.; Von Berg, J.; Obermeier, E.; Wischmeyer, F.; Niemann, E.; Möller, H.; Eickhoff, M.; Krötz, G. High temperature piezoresistive β-sic-on-soi pressure sensor with on chip sic thermistor. Mat. Sci. Eng. B 1999, 61, 576–578. [Google Scholar] [CrossRef]
- Eickhoff, M.; Möller, H.; Kroetz, G.; Berg, J.v.; Ziermann, R. A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on soi substrates. Sens. Actuators A Phys. 1999, 74, 56–59. [Google Scholar] [CrossRef]
- Zhu, Y.; Cooper, K.L.; Pickrell, G.R.; Wang, A. High-temperature fiber-tip pressure sensor. J. Lightw. Technol. 2006, 24, 861–869. [Google Scholar]
- Wang, A.; Gollapudi, S.; Murphy, K.A.; May, R.G.; Claus, R.O. Sapphire-fiber-based intrinsic fabry–perot interferometer. Opt. Lett. 1992, 17, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, W.J.; Russler, P.M.; Fielder, R.S. High-temperature high-bandwidth fiber optic mems pressure-sensor technology for turbine engine component testing. In Proceedings of the Environmental and Industrial Sensing, Boston, MA, USA, 14 February 2002; pp. 229–239. [Google Scholar]
- Pulliam, W.J.; Russler, P.M.; Mlcak, R.; Murphy, K.A.; Kozikowski, C.L. Micromachined sic fiber optic pressure sensors for high-temperature aerospace applications. In Proceedings of the Environmental and Industrial Sensing, Boston, MA, USA, 29 December 2000; pp. 21–31. [Google Scholar]
- Iyer, S.S. Silicon Wafer Bonding Technology for VLSI and Mems Applications (Emis Processing Series, 1). Available online: https://skl35cffj07.storage.googleapis.com/MDg1Mjk2MDM5NQ==07.pdf (accessed on 14 July 2002).
- Merberg, G.N.; Harrington, J.A. Optical and mechanical properties of single-crystal sapphire optical fibers. Appl. Opt. 1993, 32, 3201–3209. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pickrell, G.; Xu, J.; Wang, Y.; Zhang, Y.; Wang, A. Sapphire temperature sensor coal gasifier field test. In Proceedings of the Sensors for Harsh Environments, Philadelphia, PA, USA, 8 December 2004; pp. 27–37. [Google Scholar]
- Cooper, K.L.; Wang, A.; Pickrell, G.R. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 14 October 2006. [Google Scholar]
- Wang, A.; Wang, G.Z.; Gollapudi, S.; May, R.G.; Murphy, K.A.; Claus, R.O. Advances in sapphire optical fiber sensors. In Proceedings of the Fiber Optic Smart Structures and Skins V, Boston, MA, USA, 26 March 1993; pp. 56–66. [Google Scholar]
- Tong, L.; Shen, Y.; Chen, F.; Ye, L. Plastic bending of sapphire fibers for infrared sensing and power-delivery applications. Appl. Opt. 2000, 39, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, G.R. High-Temperature Alkali Corrosion Kinetics of Low-Expansion Ceramics. Available online: https://elibrary.ru/item.asp?id=5634942 (accessed on 31 December 1994).
- Peng, W.; Qi, B.; Pickrell, G.; Wang, A. Investigation on cubic zirconia-based pressure sensor for high temperature application. In Proceedings of the Sensors 2003, Toronto, ON, Canada, 5 April 2004; pp. 713–717. [Google Scholar]
- Peng, W.; Pickrell, G.R.; Wang, A. High-temperature fiber optic cubic-zirconia pressure sensor. Opt. Eng. 2005, 44, 124402. [Google Scholar] [CrossRef]
- Ferber, M.; Ogle, J.; Tennery, V.; Henson, T. Characterization of corrosion mechanisms occurring in a sintered sic exposed to basic coal slags. J. Am. Ceram. Soc. 1985, 68, 191–197. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, J. Adhesive-Free Bonding of Monolithic Sapphire for Pressure Sensing in Extreme Environments. Sensors 2018, 18, 2712. https://doi.org/10.3390/s18082712
Yi J. Adhesive-Free Bonding of Monolithic Sapphire for Pressure Sensing in Extreme Environments. Sensors. 2018; 18(8):2712. https://doi.org/10.3390/s18082712
Chicago/Turabian StyleYi, Jihaeng. 2018. "Adhesive-Free Bonding of Monolithic Sapphire for Pressure Sensing in Extreme Environments" Sensors 18, no. 8: 2712. https://doi.org/10.3390/s18082712
APA StyleYi, J. (2018). Adhesive-Free Bonding of Monolithic Sapphire for Pressure Sensing in Extreme Environments. Sensors, 18(8), 2712. https://doi.org/10.3390/s18082712