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Abstract: Vehicle control systems such as ESC (electronic stability control), MDPS (motor-driven
power steering), and ECS (electronically controlled suspension) improve vehicle stability, driver
comfort, and safety. Vehicle control systems such as ACC (adaptive cruise control), LKA (lane-keeping
assistance), and AEB (autonomous emergency braking) have also been actively studied in recent
years as functions that assist drivers to a higher level. These DASs (driver assistance systems) are
implemented using vehicle sensors that observe vehicle status and send signals to the ECU (electronic
control unit). Therefore, the failure of each system sensor affects the function of the system, which not
only causes discomfort to the driver but also increases the risk of accidents. In this paper, we propose
a new method to detect and isolate faults in a vehicle control system. The proposed method calculates
the constraints and residuals of 12 systems by applying the model-based fault diagnosis method to
the sensor of the chassis system. To solve the inaccuracy in detecting and isolating sensor failure,
we applied residual sensitivity to a threshold that determines whether faults occur. Moreover,
we applied a sensitivity analysis to the parameters semi-correlation table to derive a fault isolation
table. To validate the FDI (fault detection and isolation) algorithm developed in this study, fault
signals were injected and verified in the HILS (hardware-in-the-loop simulation) environment using
an RCP (rapid control prototyping) device.

Keywords: road vehicle; fault diagnosis; fault detection and isolation; sensitivity analysis;
model-in-the-loop; hardware-in-the-loop

1. Introduction

The vehicle control system improves the performance of the braking, steering, and suspension.
ESC (electronic stability control), which is a vehicle chassis control system, is used to maintain the
driving stability in consideration of the driving situation of the driver, the vehicle condition, and the
road conditions [1,2]. The steering system MDPS (motor-driven power steering) receives the steering
input of the driver and provides assistant torque to the support steering [3,4]. The ECS (electronically
controlled suspension) system can also maintain the stability and ride comfort by varying the height
of the vehicle body depending on the road surface condition and the driving conditions [5–7].

An advanced driving assistance system (ADAS), which is more advanced than the traditional
driving assistance system (DAS), is a system that assists drivers with advanced systems, and is the
subject of many current research projects. Recently, parking assistance systems (PAS) have also been
developed to accurately identify obstacles and to park a car automatically using sensor fusion [8].
Autonomous emergency braking (AEB) has also been developed to cope with emergencies that are
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difficult for drivers to handle [9]. Adaptive cruise control (ACC) was first proposed in the 1960s
to assist drivers and, more recently, to take into account not only convenience and safety but also
fuel economy to make optimal driving possible [10]. Further studies have undertaken research into
lane-keeping assistance systems (LKAS) which recognize lanes through sensors and prevent lane
departure [11–13].

Therefore, sensors in intelligent vehicles that use sensors to control cars and in autonomous
vehicles that run without driver input are essential. However, contingency plans are also needed if
these sensors fail. A car that operates based on sensor signals can pose a fatal threat to a car, driver,
and even pedestrians when a sensor fails. For this reason, diagnosing sensor failures is an important
task for researchers who develop smart cars.

The fault diagnosis method can be classified into a hardware redundancy method and an analytical
redundancy method [14–17]. The hardware redundancy method in Figure 1a uses two or more sensors
and actuators to ensure that stable fault diagnosis and normal operation are possible and have high
reliability. However, this method has a disadvantage in that cost and space for duplication are required.
Therefore, an analytical redundancy method in Figure 1b using mathematical relations between signals
that overcome these problems has been proposed and studied. These methods of preparing for failure
by creating an analytical redundancy make it possible to diagnose failure with algorithms without
investing in space and cost, and thus enabling the commercialization of smart cars.
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Figure 1. Hardware and analytical redundancy scheme. (a) Hardware redundancy scheme;
(b) analytical redundancy scheme.

However, there are limitations to performing fault diagnosis with multiple residuals. This is
because there is a difference between a mathematical model that is considered for diagnosing faults and
a real car. Researchers in past studies have called this model uncertainty. In other words, when many
residuals are applied, there are model uncertainties of different sizes and types in each of the residuals.
Model uncertainty can have a fatal impact on each of the analytical redundancies. For this reason, it is
difficult to detect and isolate a fault using multiple residuals. In previous studies, developers have set
arbitrary limits to account for this model uncertainty. However, the analytical method of fault-finding
with dynamic models is problematic for model uncertainty. Therefore, an adaptive thread using the
frequency of input expressions has also been studied and widely used [18].
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Recently, a study was conducted on an observer using real-time fuzzy calculations to diagnose
faults using neural networks [19]. Moreover, with the significant improvement in computational
power and efficiency of computers, research was conducted to detect and classify faults using machine
learning [20]. A further study suggested failure diagnosis using a new method, Gaussian Mixer
Modeling, to apply model-based fault-finding for nonlinear systems [21]. In contrast, a randomized
failure detection method was also proposed using a generalized canonical correlation analysis without
the use of a Gaussian model [22]. Another groundbreaking study was also conducted to diagnose
faults on systems without sensors using only dynamic models [23]. However, research has yet to be
conducted on systems where the accurate determination and separation of failures are critical, with
many types of sensors operating simultaneously, as is the case in automobiles.

This paper is based on a study first reported in the Korean Journal of Transaction of KSAE [24]. In this
paper, we propose a new method of fault diagnosis, sensitivity-based fault detection, and isolation.
Section 2 introduces and describes the sensitivity-based fault method. In Section 3, estimation is
performed based on vehicle dynamics to diagnose faults on sensors in the vehicle and verified using
Carsim, a vehicle dynamics simulator. As a next step, the residual is calculated using the proven
estimation and sensor values. In Section 4, the calculated residual expression is used to calculate the
sensitivity to the fault signal. In Section 5, we verify the sensitivity-based FDI (fault detection and
isolation) algorithm introduced in Section 2. For verification, we inject the failure of each sensor into
the simulation environment based on HILS (hardware-in-the-loop simulation) and examine the results.

2. Fault Detection and Isolation Algorithm

2.1. Residual Generation, Threshold Review

The method for generating the residual is shown in Figure 2. It shows how to use the output error
method and polynomial error method using the input and output models of the system.

r = yp − ym (Output error) (1)

r = Am(s)yp − Bm(s)u (Polynomial error) (2)

If the model is correct, the residual would be zero for normal conditions, and it would be non-zero
when a failure exists. However, there is the model uncertainty due to the system, which is estimated
by the model. To solve this model uncertainty, the existing model-based fault diagnosis is based on the
following fault detection conditions.

r(∆) > TH∆ (Fault detection condition) (3)

r(∆) ≤ TH∆ (No Fault detection condition) (4)

Unlike Equations (3) and (4), which are set threshold targets based on the residual, the new
condition is calculated to the fault signal expressed in Equation (5).
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2.2. Sensitivity Applied Fault Detection and Isolation

f (t) > TH f (5)

where f represents the fault signal and TH f indicates the maximum allowable range of the fault. In this
case, we can rearrange the threshold value based on the residual value, which is the actual result of the
algorithm for detecting the fault. Therefore, the fault signal can be expressed as a combination of the
residual sensitivity of the fault signal and the residual of the fault signal, as shown in Equations (6)
and (7).

r( f (t)) =
∂r
∂ f

f (t) (6)

f (t) =
∂r
∂ f

r( f (t)) > TH f (7)

Therefore, the fault detection condition can be defined by Equation (8) and, finally, the fault
detection condition of Equation (9) can be derived for the threshold considering model uncertainty [24].

r( f (t)) >
∂r
∂ f

TH f (8)

r(∆, f (t)) > TH∆ +
∂r
∂ f

TH f (9)

In previous fault diagnosis studies, the concept of fault detectability has been presented as in
Figure 3 [19]. In this paper, the detectability of the fault is considered using residual sensitivity. For the
fault isolation, the sensitivity of each residual equation is analyzed, and the fault isolation table is also
derived from the analysis of residual equations for the fault detectability.
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Finally, the model-based residual value and fault detection condition are calculated in real time for
fault diagnosis. These were applied to the fault detection and isolation algorithm as shown in Figure 4.
This algorithm compares the residual with a threshold value and generates a fault flag, indicating
that the corresponding residual is abnormal. Considering residual sensitivity as detectability, we can
separate faults using these flags.
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3. Vehicle Dynamics-Based Residual Generation and Simulation

We used constraints based on vehicle dynamics to diagnose faults in sensors used in automobiles.
For the convenience of developing the FDI algorithm, we calculated the residuals of the wheel angular
speed, steering wheel angle, and normal force of each wheel. To estimate and generate the roll angle
residual, we used the polynomial error method and verified the algorithm.

In Section 3, we estimate and simulate the wheel speed and steering wheel angle output of sensors
in the vehicle to calculate the residual. However, estimates without a sensor, such as normal force and
roll angle, are also addressed by the FDI algorithm, so the overall estimate was validated using Carsim
(a vehicle dynamics simulator). This study assumes a single fault. Thus, it was assumed that robust
estimation of longitudinal speed is possible by using other speed and acceleration sensors [25,26].
It was also assumed that the car was traveling on a level surface without bank angle and grade,
the most common road type.
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3.1. Wheel Angular Speed Residual

v̂ f l = vx −
.
ψ

(
ltw
2

− l f
vy

vx

)
(10)

v̂ f r = vx +
.
ψ

(
ltw
2

+ l f
vy

vx

)
(11)

v̂rl = vx −
.
ψltw

2
(12)

v̂rr = vx +

.
ψltw

2
(13)

Figure 5 shows vehicle wheel with the mass center of the vehicle. Equations (10) and (11) are
equations for the front left and right wheel speeds, where vx is the longitudinal speed of the vehicle,
.
ψ is the yaw rate, ltw is the track width, l f is the length of the wheel base, vy is the lateral speed of the
vehicle, v f l is the longitudinal speed of the front left wheel, v f r is the longitudinal speed of the front
right wheel, vrl is the longitudinal speed of the rear left wheel, and vrr is the longitudinal speed of the
rear right wheel [27,28].
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Figure 5. Vehicle wheel scheme.

Equations (12) and (13) are equations for the rear left and right wheel speeds. To validate the
dynamic equation, the simulation scenario in Figure 6 was used [29,30]. Results of the simulation in
Figure 7 show that minor errors exist as the vehicle speed increases. In other words, we can see that
there is a model uncertainty that occurs when a vehicle accelerates.
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Lateral velocity
(
vy
)

can be calculated using the lateral acceleration
(
ay
)

and the yaw rate (
.
ψ)

signal as shown in Equation (14) [31,32]. There is no lateral velocity sensor, but we used the equation
to help understand the vehicle dynamics model used in residuals. For this reason, vy is also estimated
using a dynamic model:

vy =
∫ t

t0

(
ay −

.
ψvx

)
dt (14)

and vy estimation simulation is also conducted as in Figure 8, where ay is the lateral acceleration of
the vehicle.

Sensors 2018, 18, x 8 of 38 

 

 
(d) 

Figure 7. Estimation simulation result for wheel angular speed. (a) Wheel angular speed—fl (front 
left); (b) wheel angular speed—fr (front right); (c) wheel angular speed—rl (rear left); (d) wheel 
angular speed—rr (rear right). 

Lateral velocity (𝑣௬) can be calculated using the lateral acceleration (𝑎௬) and the yaw rate (�̇�) 
signal as shown in Equation (14) [31,32]. There is no lateral velocity sensor, but we used the equation 
to help understand the vehicle dynamics model used in residuals. For this reason, 𝑣௬  is also 
estimated using a dynamic model: 

𝑣௬ = න ൫𝑎௬ − �̇�𝑣௫൯
௧

௧బ

𝑑𝑡 (14)

and 𝑣௬ estimation simulation is also conducted as in Figure 8, where 𝑎௬ is the lateral acceleration 
of the vehicle. 

 
Figure 8. Estimation simulation result for lateral velocity. 

The lateral velocity required for the calculation is calculated by Equation (14). Therefore, the 
residual equations for the fault diagnosis system are constructed by Equations (15) to (18). 

𝑟ଵ: 𝜔 −
𝑣ො

𝑟
= 𝜔 − 𝑐ଵ(�̇�, 𝑎௬) (15)

𝑟ଶ: 𝜔 −
𝑣ො

𝑟
= 𝜔 − 𝑐ଶ(�̇�, 𝑎௬) (16)

𝑟ଷ: 𝜔 −
𝑣ො

𝑟
= 𝜔 − 𝑐ଷ(�̇�) (17)

Figure 8. Estimation simulation result for lateral velocity.

The lateral velocity required for the calculation is calculated by Equation (14). Therefore,
the residual equations for the fault diagnosis system are constructed by Equations (15) to (18).

r1 : ω f l −
v̂ f l

r
= ω f l − c1(

.
ψ, ay) (15)

r2 : ω f r −
v̂ f r

r
= ω f r − c2(

.
ψ, ay) (16)

r3 : ωrl −
v̂rl
r

= ωrl − c3(
.
ψ) (17)

r4 : ωrr −
v̂rr

r
= ωrr − c4(

.
ψ) (18)
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For convenience of explanation, wheel speed v f l, f r, rl, rr is converted as wheel angular speed
ω f l, f r, rl, rr using tire radius r. The parameters semi-correlation table analysis was performed to analyze
the relationship between the generated residual and the sensor signals. Table 1 shows the result of the
parameters semi-correlation table analysis visualized as an X representation of the association between
the sensors and the residual.

Table 1. Parameters semi-correlation table of wheel angular speed residuals.

.
ψ ay wfl wfr wrl wrr

r1 X X X
r2 X X X
r3 X X
r4 X X

Through analysis, residual 1 can easily be influenced by the yaw rate signal, the lateral acceleration
signal, and the angular speed signal of the front left wheel. Likewise, residual 4 can be influenced by
the yaw rate signal and the wheel angular speed of the rear right wheel. In other words, it is possible
to analyze that residuals 1–4 are affected by different signals.

3.2. Steering Wheel Angle Residual

The steering angle has the constraint of Equation (19) and so constitutes Equation (20).

δ̂swa,1 =
irl
vx

(
1 +

v2
x

v2
ch

)
ω f r − ω f l

ltw
(19)

δ̂swa,2 =
irl
vx

(
1 +

v2
x

v2
ch

)
ωrr − ωrl

ltw
(20)

r5 : δswa − δ̂swa,1 = δswa − c5

(
ω f l , ω f r

)
(21)

r6 : δswa − δ̂swa,2 = δswa − c6(ωrl , ωrr) (22)

Residuals 5 and 6, which were generated using Equations (19) and (20), are given in
Equations (21) and (22) where δswa is the steering wheel angle, ir is the steering ratio, and vch is
the characteristic velocity of the vehicle [33,34]. For steering wheel angle estimation validation,
we used scenario 2, shown in Figure 9. Figure 10 shows the validation simulation result of the sensor
value with estimation values.
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Figure 10. Estimation simulation result for the steering wheel angle.

Table 2 shows the parameters semi-correlation table matrix result of residuals 5 and 6. Similar to
Table 1, the signals used have a different influence on residuals 5 and 6.

Table 2. Parameters semi-correlation table of steering wheel angle residuals.

wfl wfr wrl wrr ffiswa

r5 X X X
r6 X X X

3.3. Suspension Velocity Residual

To diagnose the failure of the vertical acceleration sensor installed in the vehicle, a normal force
is calculated using the acceleration sensor signal. However, the normal force cannot be measured
by sensors. Thus, to calculate the polynomial error method residual, the normal force was also
calculated by considering the weight shift of the vehicle using the longitudinal and lateral acceleration
sensor signals.

Figure 11a shows the vertical forces of the vehicle on the road from the side view. Figure 11b
shows the vertical forces of the vehicle from the front view. The vertical force acting on each wheel can
be calculated from Equations (23) to (26) by considering the weight shift according to the behavior
of the vehicle when the longitudinal acceleration and lateral acceleration are known [35], where
fz,i(i = f l, f r, rl, rr) is the normal force, Ms is the vehicle mass, g is the gravitational acceleration,
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lr is the length of the rear wheel base, hs is the height from the ground to the mass center, and ax is the
longitudinal acceleration of the vehicle.

fz, f l,1 =
Msglr

2l
− Msaxhs

2l
−

Msayhslr
ltwl

(23)

fz, f r,1 =
Msglr

2l
− Msaxhs

2l
+

Msayhslr
ltwl

(24)

fz,rl,1 =
Msgl f

2l
+

Msaxhs

2l
−

Msayhsl f

ltwl
(25)

fz,rr,1 =
Msgl f

2l
+

Msaxhs

2l
+

Msayhsl f

ltwl
(26)
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To calculate the other normal force estimation, the quarter car model in Figure 12 was used [36,37].

ms
(..
zs − g

)
+ ks(zs − zu) + bs

( .
zs −

.
zu
)
= 0 (27)

ms
(..
zs − g

)
+ ks(zs − zu) + bs

( .
zs −

.
zu
)
+ kt(zu − q) = 0 (28)

fz + kt(q − zu) = 0 (29)
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In the quarter car model, the normal force of each wheel has the relation of Equations (27) to (29),
where ms is the sprung mass of the quarter car model, mu is the un-sprung mass of the quarter car
model, ks is the suspension spring coefficient, bs is the suspension damper coefficient, kt is the tire
spring coefficient,

..
zs is the vertical acceleration of sprung mass,

.
zs −

.
zu is the suspension velocity,

zs − zu is the suspension deflection, zu is the un-sprung mass height, q is the road profile, and fz is the
normal force effect on the tire.

In this paper, assuming that the tire stiffness is ignored, the vertical force of each wheel is
summarized by Equation (30).

fz,i,2 = (ms,i + mu,i)g − ms,i
..
zs,i − mu,i

..
zu,i(i = f l, f r, rl, rr) (30)

Therefore, residuals 7 to 10 for fault detection can be calculated by Equations (31) to (34).

r7 : f̂z, f l,1 − f̂z, f l,2 = c7

(
ax, ay,

..
zs, f l ,

..
zu, f l

)
(31)

r8 : f̂z, f r,1 − f̂z, f r,2 = c8

(
ax, ay,

..
zs, f r,

..
zu, f r

)
(32)

r9 : f̂z,rl,1 − f̂z,rl,2 = c9
(
ax, ay,

..
zs,rl ,

..
zu,rl

)
(33)

r10 : f̂z,rr,1 − f̂z,rr,2 = c10
(
ax, ay,

..
zs,rr,

..
zu,rr

)
(34)

The simulation results in Figure 13 show that there are few errors, but the tendency of the
estimation is the same. Since this error is due to the model uncertainty, it can be judged that it does not
have a great influence on the failure judgment.
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However, the rear left, right wheel vertical acceleration (
..
zu,rl ,

..
zu,rr), and rear left body acceleration

(
..
zs,rl) in Equations (31) to (34) are values calculated with existing vertical acceleration sensors as shown

in Equations (35) to (36). In the sensitivity analysis, therefore, residuals 7 to 10 must be reconsidered as
Equations (37) to (40).

.
zs, f l(t) =

∫ t
t0

..
zs, f l(t)dt

.
zs, f r(t) =

∫ t
t0

..
zs, f r(t)dt

.
zs,rl(t) =

∫ t
t0

..
zs, f l(t)dt −

∫ t
t0

..
zs, f r(t)dt +

∫ t
t0

..
zs,rr(t)dt

.
zs,rr(t) =

∫ t
t0

..
zs,rr(t)dt

(35)

.
zu, f l(t) =

∫ t
t0

..
zu, f l(t)dt

.
zu, f r(t) =

∫ t
t0

..
zu, f r(t)dt

.
zu,rl(t) =

.
zu, f l(t + l/vx)

.
zu,rr(t) =

.
zu, f r(t + l/vx)

(36)

The vertical body velocity is calculated by Equation (35), with the vertical wheel velocity calculated
by Equation (36).

r7 : f̂z, f l,1 − f̂z, f l,2 = c7

(
ax, ay,

..
zs, f l ,

..
zu, f l

)
(37)

r8 : f̂z, f r,1 − f̂z, f r,2 = c8

(
ax, ay,

..
zs, f r,

..
zu, f r

)
(38)
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r9 : f̂z,rl,1 − f̂z,rl,2 = c9

(
ax, ay,

..
zs, f l ,

..
zs, f r,

..
zs,rr,

..
zu, f l

)
(39)

r10 : f̂z,rr,1 − f̂z,rr,2 = c10

(
ax, ay,

..
zs,rr,

..
zu, f r

)
(40)

The normal force residual calculated with the existing sensors can be summarized by
Equations (37) to (40). Therefore, the parameters semi-correlation table is expressed as in Table 3.
However, unlike the previous parameters semi-correlation tables depicted in Tables 1 and 2,
the parameters semi-correlation table shows that the first and second columns tend to be the same,
and that the third and sixth columns tend to be the same. This means that if the longitudinal
acceleration sensor has a fault, residuals 7 to 10 make flags, but this cannot be distinguished from a
lateral acceleration fault. Therefore, an additional residual using a signal described in Section 3.4 is
essential for fault isolation.

Table 3. Parameters semi-correlation table of normal force residuals.

ax ay
..
zs,fl

..
zs,fr

..
zs,rr

..
zu,fl

..
zu,fr

r7 X X X X
r8 X X X X
r9 X X X X X X
r10 X X X X

3.4. Roll Angle Residual

Unlike the previously calculated residuals 1 to 6, residuals 7 to 10 are calculated by the polynomial
error method instead of the output error method. This is because the estimated value used as a
constraint is not known from the vehicle sensors. Similarly, since the roll angle of a car is not measured
with a sensor, the roll-relevant residual is calculated in a polynomial error method using vehicle
dynamics estimation.

The roll angle can be calculated from Equations (41) and (42), where kroll is the roll coefficient of
the vehicle [38–40].

φ̂1 =
∆z f l − ∆z f r + ∆zrl − ∆zrr

2ltw
(41)

φ̂2 = −(
Mshs

kroll
)ay (42)

∆zi = zs,i − zu,i (i = f l, f r, rl, rr) (43)

Figure 14 shows the roll angle scheme where ∆zi (i = f l, f r, rl, rr) is presented as in Equation
(43). Assuming a flat road surface, we can consider the suspension deflection as shown in Equation
(43), substituting it into Equation (44).

∆zi = zs,i (i = f l, f r, rl, rr) (44)

Moreover, Equation (42) presents another equation of the roll angle using the lateral acceleration
signal. However, roll angle estimation formulas use only lateral acceleration signal and suspension
deflection. This problem creates difficulty in a sensitivity analysis using partial derivatives. Therefore,
the residual of estimation of the derivative of the roll rate was added as a constraint as in Equations (45)
and (46). Figure 15 shows the result of the estimation simulations of the roll angle and the derivatives
of the roll rate. Figure 15a,b both can confirmed that there is very little error.

..
φ̂1 =

..
zs, f l −

..
zs, f r +

..
zs,rl −

..
zs,rr

2ltw
=

..
zs, f l −

..
zs, f r

2ltw
(45)
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..
φ̂2 = −(

Mshs

kroll
)

..
ay (46)

r11 :
.

φ̂1 −
.

φ̂2 = c11

(
ay,

..
zs, f l ,

..
zs, f r

)
(47)

r12 :
..

φ̂1 −
..

φ̂1 = c12

(
ay,

..
zs, f l ,

..
zs, f r

)
(48)
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The parameters semi-correlation table of residuals 11 and 12 in Equations (47) and (48) is presented
in Table 4. As shown in the parameters semi-correlation table, residual 11 is related to lateral
acceleration, body vertical acceleration front left, and body vertical acceleration front right. However,
for convenient sensitivity calculation, the sensitivity analysis of the residuals would be as shown in
Table 5.

Table 4. Parameters semi-correlation table of roll residuals.

ay
..
zs,fl

..
zs,fr

r11 X - -
r12 - X X

Table 5. Parameters semi-correlation table of all residuals.

.
ψ ax ay wfl wfr wrl wrr ffiswa

..
zs,fl

..
zs,fr

..
zs,rr

..
zu,fl

..
zu,fr

r1 X X X
r2 X X X
r3 X X
r4 X X
r5 X X X
r6 X X X
r7 X X X X
r8 X X X X
r9 X X X X X X
r10 X X X X
r11 X - -
r12 - X X

4. Residual Sensitivity Analysis

To develop the proposed FDI algorithms considering the residual sensitivity, a sensitivity analysis
was conducted via the partial derivative. Each residual was partially differentiated by fault signals.

Table 6 presents the equations of residual sensitivity using the vehicle sensor signals. For the
visualization of sensitivity, the simulation was conducted using scenario 1, which was presented in
Section 3.1.

Table 6. The sensitivity of residuals with a fault signal.

Fault Signal Sensitivity (Partial Derivative)

.
ψ

∂r1

∂
.
ψ
= 1

r

(
ltw
2 − l f vy

vx
+

.
ψl f
∫

vxdt
vx

)
∂r2

∂
.
ψ
= − 1

r

(
ltw
2 − l f vy

vx
+

.
ψl f
∫

vxdt
vx

)
∂r3

∂
.
ψ
= ltw

2r

∂r4

∂
.
ψ
= − ltw

2r

ax

∂r7
∂ax

= − Mshs
2l

∂r8
∂ax

= − Mshs
2l

∂r9
∂ax

= Mshs
2l

∂r10
∂ax

= Mshs
2l
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Table 6. Cont.

Fault Signal Sensitivity (Partial Derivative)

ay

∂r1
∂ay

= −
.
ψl f t
rvx

∂r2
∂ay

=
.
ψl f t
rvx

∂r7
∂ay

= − Mshs lr
ltw l

∂r8
∂ay

= Mshs lr
ltw l

∂r9
∂ay

= −− Mshs l f
ltw l

∂r10
∂ay

=
Mshs l f

ltw l
∂r11
∂ay

= Mshs
kroll

ω f l

∂r1
∂ω f l

= 1

∂r5
∂ω f l

= lir
ltw

(
1 +

(
vx
vch

)2
)

ω f r

∂r2
∂ω f r

= 1

∂r5
∂ω f r

= − lir
ltw

(
1 +

(
vx
vch

)2
)

ωrl

∂r3
∂ωrl

= 1

∂r6
∂ωrl

= lir
ltw

(
1 +

(
vx
vch

)2
)

ωrr

∂r4
∂ωrr

= 1

∂r6
∂ωrr

= − lir
ltw

(
1 +

(
vx
vch

)2
)

δswa

∂r5
∂δswa

= 1
∂r6

∂δswa
= 1

..
zs, f l

∂r7
∂

..
zs, f l

= ms, f l

∂r9
∂

..
zs, f l

= ms, f l

∂r12
∂

..
zs, f l

= 1
2ltw

..
zs, f r

∂r8
∂

..
zs, f r

= ms, f r

∂r9
∂

..
zs, f r

= −ms, f r

∂r12
∂

..
zs, f r

= 1
2ltw

..
zs,rr

∂r9
∂

..
zs,rr

= ms,rr

∂r10
∂

..
zs,rr

= ms,rr

..
zu, f l

∂r7
∂

..
zu, f l

= mu, f l

∂r9
∂

..
zu, f l

= mu, f l

..
zu, f r

∂r8
∂

..
zu, f r

= mu, f r

∂r10
∂

..
zu, f r

= mu, f r
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Figure 16 shows the sensitivity of the residuals. In Figure 16a, residuals 1 to 4 are very sensitive to
the yaw rate signal. However, in Figure 16b,c, residuals 1 and 2 have zero sensitivity for no lateral
dynamic behavior. Also, the sensitivity of residual 1 to the yaw rate ( ∂r1

∂
.
ψ

) uses yaw as a rate signal.

Therefore, threshold using these sensitivities are not appropriate for use in the fault detection; if the
yaw rate sensor signal has a fault, the threshold for residual 1 also goes wrong. In the table of fault
detection and isolation (Table 7), these results should be applied for accurate fault isolation.
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Figure 16. Sensitivity simulation result. (a) The sensitivity of yaw rate (residuals 1–4); (b) sensitivity of
lateral acceleration (residuals 1, 2, 7, 8, 9, 10, 11); (c) sensitivity of lateral acceleration (residuals 1, 2, 11);
(d) sensitivity of wheel angular speed—fl (residuals 1, 5); (e) sensitivity of body vertical acceleration—
fl (residuals 1, 5).

Table 7. Fault detection and isolation table.

.
ϕ ax ay wfl wfr wrl wrr ffiswa

..
zs,fl

..
zs,fr

..
zs,rr

..
zu,fl

..
zu,fr

r1 - - X
r2 - - X
r3 X X
r4 X X
r5 X X X
r6 X X X
r7 X X X X
r8 X X X X
r9 X X X X X X
r10 X X X X
r11 X - -
r12 - X X
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5. Fault Detection and Isolation Algorithm Test Result

The proposed sensitivity-based FDI algorithm was verified by generating a faulty signal in an
HILS-based simulation environment using RCP (rapid control prototyping) equipment implemented
with a fault diagnosis algorithm. Using scenarios 1 and 2 in Figures 6 and 9, each fault was injected,
and it was validated that the fault can be detected by the sensitivity-applied threshold. Injected faults
were also isolated as shown in Figures 17–32. In these experiments, IPG’s Xpack4 and CarMaker in
addition to dSPACE’s MicroAutoBox2 are used. Moreover, all signals used in the sensitivity-based FDI
algorithm received by the CAN (controller area network) were connected to an HILS device. In order
to ensure efficiency, only one experiment result was inserted for the same type of sensor fault result.
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Figure 17. FDI (fault detection and isolation) simulation result for yaw rate sensor (normal). (a) 
Residual 1 and threshold; (b) residual 2 and threshold; (c) residual 3 and threshold; (d) residual 4 and 
threshold. 
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Figure 18. FDI simulation result for yaw rate sensor fault (fault). (a) Residual 1 and threshold;  
(b) residual 2 and threshold; (c) residual 3 and threshold; (d) residual 4 and threshold. 

Figure 17 shows the experimental results in the normal situation with no fault and Figure 18 
shows the simulation results in the case where the yaw rate sensor failed. In Figure 18, residuals 3 
and 4 exceeded their thresholds, as designed by their sensitivities. On the other hand, as mentioned 
in Section 4, residuals 1 and 2 cannot detect a yaw rate sensor fault. This is because the threshold for 
residuals 1 and 2 use a faulty signal yaw rate signal (shown in Figures 18a,b). 

Figure 18. FDI simulation result for yaw rate sensor fault (fault). (a) Residual 1 and threshold;
(b) residual 2 and threshold; (c) residual 3 and threshold; (d) residual 4 and threshold.
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threshold; (b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold.
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Figure 20. FDI simulation result for longitudinal acceleration sensor (fault). (a) Residual 7 and 
threshold; (b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold. 
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Figure 21. FDI simulation result for lateral acceleration sensor (normal). (a) Residual 7 and threshold; 
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 
11 and threshold. 
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Figure 21. FDI simulation result for lateral acceleration sensor (normal). (a) Residual 7 and threshold;
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 11
and threshold.
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Figure 22. FDI simulation result for lateral acceleration sensor (fault). (a) Residual 7 and threshold;  
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 
11 and threshold. 

Figure 21 shows the experimental results in the normal situation with no fault and Figure 22 
shows the simulation results in the case where the lateral acceleration sensor failed. In Figure 22, 
residuals 7–11 exceeded their thresholds, as designed by their sensitivities. As derived from Table 7 
above, we reflected the failure sensitivity of the residual to the lateral acceleration sensor. In this 
process, residual 1 and 2 had a sensitivity of 0 when no steering occurred, as shown in Figure 16. For 
this reason, we decided not to use residuals 1 and 2 to detect lateral acceleration sensor faults. It was 
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Figure 22. FDI simulation result for lateral acceleration sensor (fault). (a) Residual 7 and threshold;
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 11
and threshold.
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(b) residual 5 and threshold.
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Figure 32. Simulation result for wheel vertical acceleration sensor—fl (fault). (a) Residual 7 and
threshold; (b) residual 9 and threshold.

Figure 17 shows the experimental results in the normal situation with no fault and Figure 18
shows the simulation results in the case where the yaw rate sensor failed. In Figure 18, residuals 3
and 4 exceeded their thresholds, as designed by their sensitivities. On the other hand, as mentioned
in Section 4, residuals 1 and 2 cannot detect a yaw rate sensor fault. This is because the threshold for
residuals 1 and 2 use a faulty signal yaw rate signal (shown in Figure 18a,b).

Figure 19 shows the experimental results in the normal situation with no fault and Figure 20
shows the simulation results in the case where the longitudinal acceleration sensor failed. In Figure 20,
residuals 7–10 exceeded their thresholds. This result is consistent with the expected results from the
Table 7.

Figure 21 shows the experimental results in the normal situation with no fault and Figure 22
shows the simulation results in the case where the lateral acceleration sensor failed. In Figure 22,
residuals 7–11 exceeded their thresholds, as designed by their sensitivities. As derived from Table 7
above, we reflected the failure sensitivity of the residual to the lateral acceleration sensor. In this
process, residual 1 and 2 had a sensitivity of 0 when no steering occurred, as shown in Figure 16.
For this reason, we decided not to use residuals 1 and 2 to detect lateral acceleration sensor faults.
It was also confirmed that residual 11 effectively separates the failure of the longitudinal acceleration
sensor and the failure of the lateral acceleration sensor.

Figure 23 shows the experimental results in the normal situation with no fault and Figure 24
shows the simulation results in the case where the wheel angular speed sensor at the front right failed.
In Figure 24, residuals 2 and 5 exceeded their thresholds, as designed by their sensitivities. These
results are consistent with the expected results from Table 7.

Figure 25 shows the experimental results in the normal situation with no fault and Figure 26
shows the simulation results in the case where the wheel angular speed sensor at the rear right failed.
In Figure 26, residuals 4 and 5 exceeded their thresholds, as designed by their sensitivities. These
results are consistent with the expected results from Table 7.

Figure 27 shows the experimental results in the normal situation with no fault and Figure 28
shows the simulation results in the case where the steering wheel angle sensor failed.

Figure 29 shows the experimental results in the normal situation with no fault and Figure 30
shows the simulation results in the case where the body vertical acceleration sensor at the front left
failed. In Figure 30, residuals 7, 9, and 12 exceed their thresholds. In Section 3, residual 12 was added
to separate the fault tendency of the body vertical acceleration front left from the fault tendency of
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wheel vertical acceleration front left. Figure 30 shows that residual 12 effectively detected the fault of
the body vertical acceleration sensor at the front left in the HIL simulation.

Figure 31 shows the experimental results in the normal situation with no fault and Figure 32
shows the simulation results in the case where the wheel vertical acceleration sensor of front left failed.
In this simulation result, it was confirmed that residuals 7 and 9 exceeded their threshold values, which
is different from the results shown in Figure 30. Based on this, it was possible to separate the fault
tendencies of the body vertical acceleration sensor at the front left from the wheel vertical acceleration
sensor at the front left. This also showed that residual 12 effectively isolated the fault of the body and
wheel vertical acceleration sensors at the front left in the HIL simulation.

6. Conclusions

In this paper, to diagnose the faults of road chassis vehicle sensors, sensitivity-based fault detection
and an isolation algorithm were developed. The proposed algorithm was constructed based on the
sensitivity of residuals and generated using the analytical method. To generate residuals, 12 vehicle
dynamics equations were designed and used.

Since a large number of failures were diagnosed simultaneously, the scope of each residual was
significantly different, causing difficulties in determining and separating the failures. To improve the
accuracy of fault judgment, the sensitivity of the residuals was analyzed analytically and applied to a
threshold. Moreover, to improve the accuracy of the fault isolation, the sensitivity of the residual was
applied to the previously analyzed parameters semi-correlation table to derive the fault isolation table.
The open-loop state observer and FDI algorithms used in this paper were validated through a vehicle
dynamic simulator and via HIL simulations.

As shown in the simulation results in Figures 17–32, the results of the fault detection conditions
using residual sensitivities are similar to those obtained by the adaptive threshold method introduced
in previous studies. However, the difference in this paper is that the sensitivity of each residual is
analyzed to take into account the uncertainty of the model. This study will help researchers who study
faults in sensor-equipped commercial vehicles as well as fault-tolerant controllers of autonomous
vehicles that control vehicles with sensor information. Further research will consider developing FDI
algorithms using a closed-loop based observer and its sensitivity.
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