Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time
Abstract
:1. Introduction
2. LIDAR System Design with Optical Coded Pulses
3. Construction of the Prototype LIDAR System
4. Performance Assessment
4.1. Operating Modes and Conditions
4.2. Pulse Emission Time Interval and Measured Distance
4.3. Maximum Distance
4.4. Accuracy and Precision Evaluation
4.5. Sample Object Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Rob. Auton. Syst. 2017, 88, 71–78. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, R.; Xu, S. Recognizing Street Lighting Poles From Mobile LiDAR Data. IEEE Trans. Geosci. Remote 2017, 55, 407–420. [Google Scholar] [CrossRef]
- Kumar, P.; McElhinney, C.P.; Lewis, P.; McCarthy, T. An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 85, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Singh, A.K.; Lohani, B. Computation of road geometry parameters using mobile LiDAR system. Remote Sens. Appl. Soc. Environ. 2018, 10, 18–23. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Park, Y. An investigation of interpolation techniques to generate 2D intensity image from LIDAR data. IEEE Access 2017, 5, 8250–8260. [Google Scholar] [CrossRef]
- Asvadi, A.; Garrote, L.; Premebida, C.; Peixoto, P.; Nunes, U.J. Multimodal vehicle detection: Fusing 3D–LIDAR and color camera data. Pattern Recognit. Lett. 2017. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Zou, Z.; Xu, S.; He, X.; Chen, S. Automatic building extraction from LiDAR data fusion of point and grid-based features. ISPRS J. Photogramm. Remote Sens. 2017, 130, 294–307. [Google Scholar] [CrossRef]
- Li, M.; Sun, C. Refinement of LiDAR point clouds using a super voxel based approach. ISPRS J. Photogramm. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Su, Y.T.; Bethel, J.; Hu, S. Octree-based segmentation for terrestrial LiDAR point cloud data in industrial applications. ISPRS J. Photogramm. Remote Sens. 2016, 113, 59–74. [Google Scholar] [CrossRef]
- Xia, S.; Wang, R. A fast edge extraction method for mobile LiDAR point clouds. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1288–1292. [Google Scholar] [CrossRef]
- Young, J.W. Advantages of High Resolution LIDAR. LiDAR News Mag. 2014, 4, 28–31. [Google Scholar]
- Amann, M.C.; Bosch, T.; Lescure, M.; Myllyla, R.; Rioux, M. Laser Ranging: A Critical Review of Usual Techniques for Distance Measurement. Opt. Eng. 2001, 40, 10–19. [Google Scholar]
- Hancock, J. Laser Intensity–Based Obstacle Detection and Tracking. Ph.D. Thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 1999. [Google Scholar]
- McManamon, P.F. Review of LADAR: A Historic, Yet Emerging, Sensor Technology with Rich Phenomenology. Opt. Eng. 2012, 51, 060901. [Google Scholar] [CrossRef]
- McManamon, P.F. Field Guide to Lidar; SPIE: Washington, DC, USA, 2015; Volume FG36. [Google Scholar]
- Richmond, R.D.; Cain, S.C. Direct–Detection LADAR Systems; Tutorial Texts in Optical Engineering; SPIE: Washington, DC, USA, 2010; Volume TT85. [Google Scholar]
- Süss, A.; Rochus, V.; Rosmeulen, M.; Rottenberg, X. Benchmarking Time–of–Flight Based Depth Measurement Techniques. Proc. SPIE 2016, 9751, 975118. [Google Scholar]
- SICK, AG. Operating Instructions for Laser Measurement Sensors of the LMS5xx Product Family; SICK AG: Waldkirch, Germany, 2015. [Google Scholar]
- Velodyne. HDL–64E S3 Users’s Manual and Programming Guide; Velodyne LiDAR: San Jose, CA, USA, 2013. [Google Scholar]
- Behroozpour, B.; Sandborn, P.A.; Wu, M.C.; Boser, B.E. LIDAR System Architectures and Circuits. IEEE Commun. Mag. 2017, 55, 135–142. [Google Scholar] [CrossRef]
- Hiskett, P.A.; Parry, C.S.; McCarthy, A.; Buller, G.S. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates. Opt. Express 2008, 16, 13685–13698. [Google Scholar] [CrossRef] [PubMed]
- Krichel, N.J.; McCarthy, A.; Buller, G.S. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances. Opt. Express 2010, 18, 9192–9206. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, J.; Ren, M.; Feng, B.; Chen, X.; Wu, E.; Wu, G.; Zeng, H. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity. Opt. Express 2014, 22, 4662–4670. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Eom, J.; Park, Y. A Hybrid 3D LIDAR Imager based on Pixel-by-Pixel Scanning and DS–OCDMA. Proc. SPIE 2016, 9751, 975119. [Google Scholar]
- Kim, G.; Park, Y. LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express 2016, 24, 23810–23828. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Eom, J.; Park, Y. Design and implementation of 3D LIDAR based on pixel-by-pixel scanning and DS-OCDMA. Proc. SPIE 2017, 10107, 1010710. [Google Scholar]
- Koopman, P.; Chakravarty, T. Cyclic Redundancy Code (CRC) Polynomial Selection for Embedded Networks. In Proceedings of the IEEE International Conference on Dependable Systems and Networks 2004, Florence, Italy, 28 June–1 July 2004; pp. 145–154. [Google Scholar]
- Ghafouri-Shiraz, H.; Karbassian, M.M. Optical CDMA Networks: Principles, Analysis and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kwong, W.C.; Yang, G.C. Optical Coding Theory with Prime; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Pickholtz, R.; Schilling, D.; Milstein, L. Theory of spread-spectrum communications–A tutorial. IEEE Trans. Commun. 1982, 30, 855–884. [Google Scholar] [CrossRef]
- Rao, R.M.; Dianat, S.A. Basics of Code Division Multiple Access (CDMA); SPIE: Washington, DC, USA, 2005. [Google Scholar]
- Sklar, B. Digital Communications, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Yang, G.C.; Kwong, W.C. Prime Codes with Applications to CDMA Optical and Wireless Networks; Artech House: Norwood, MA, USA, 2002. [Google Scholar]
- Edwards, R.T.; Cauwenberghs, G.; Pineda, F.J. Optimizing correlation algorithms for hardware-based transient classification. Adv. Neural Inf. Process. Syst. 1998, 11, 678–684. [Google Scholar]
- Karabulut, G.Z.; Kurt, T.; Yongaçoglu, A. Optical CDMA detection by basis selection. J. Lightwave Technol. 2005, 23, 3708–3715. [Google Scholar] [CrossRef]
- Motahari, A.S.; Nasiri-Kenari, M. Multiuser detections for optical CDMA networks based on expectation-maximization algorithm. IEEE Trans. Commun. 2004, 52, 652–660. [Google Scholar] [CrossRef]
- Wang, X.; Poor, H.V. Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Commun. 1999, 47, 1046–1061. [Google Scholar] [CrossRef] [Green Version]
- Zvonar, Z. Combined multiuser detection and diversity reception for wireless CDMA systems. IEEE Trans. Veh. Technol. 1996, 45, 205–211. [Google Scholar] [CrossRef]
- Jacovitti, G.; Scarano, G. Discrete time techniques for time delay estimation. IEEE Trans. Signal Process. 1993, 41, 525–533. [Google Scholar] [CrossRef]
- Bartels, M.; Wei, H.; Mason, D.C. DTM generation from LIDAR data using skewness balancing. In Proceedings of the 18th IEEE International Conference on Pattern Recognition, ICPR 2006, Hong Kong, China, 20–24 August 2006; Volume 1, pp. 566–569. [Google Scholar]
- Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Optical Pulse Machines. Application Note OPM-LD-D1-C: Digital E/O Converter Modules; Optical Pulse Machines: Rehovot, Israel, 2015. [Google Scholar]
- Holmström, S.T.; Baran, U.; Urey, H. MEMS Laser Scanners: A Review. J. Microelectromech. S. 2014, 23, 259–275. [Google Scholar] [CrossRef]
- Mirrorcle Technologies, Inc. Mirrocle Technologies MEMS Mirrors—Technical Overview; Mirrorcle Technologies, Inc.: Richmond, CA, USA, 2016. [Google Scholar]
- International Electrotechnical Commission. Safety of Laser Products–Part 1: Equipment Classification and Requirements; Technical Report, IEC-60825-1; International Electrotechnical Commission: Geneva, Switzerland, 2014. [Google Scholar]
- Electro-Optics Technology, Inc. >9 GHz Amplified Photodetectors; Electro-Optics Technology, Inc.: Traverse City, MI, USA, 2015. [Google Scholar]
- Electro-Optics Technology, Inc. EOT Amplified High Speed Fiber Photodetector User’s Guide; Electro-Optics Technology, Inc.: Traverse City, MI, USA, 2015. [Google Scholar]
- Texas Instruments Inc. ADC12J4000 12-Bit 4 GSPS ADC with Integrated DDC (Rev. C); Texas Instruments Inc.: Dallas, TX, USA, 2015. [Google Scholar]
- Texas Instruments Inc. 66AK2L06 JESD204B Attach to ADC12J4000/DAC38J84 Getting Started Guide (Rev. B); Texas Instruments Inc.: Dallas, TX, USA, 2016. [Google Scholar]
- Texas Instruments Inc. 66AK2L06 Multicore DSP+ARM Keystone II System-on-Chip (SoC); Texas Instruments Inc.: Dallas, TX, USA, 2015. [Google Scholar]
- Texas Instruments Inc. 66AK2L06 DSP+ARM Processor JESD204B Attach to Wideband ADCs and DACs Design Guide; Texas Instruments Inc.: Dallas, TX, USA, 2015. [Google Scholar]
- Grum, F.; Wightman, T. Absolute Reflectance of Eastman White Reflectance Standard. Appl. Optics 1977, 16, 2775–2776. [Google Scholar] [CrossRef] [PubMed]
- Knight, F.K.; Klick, D.I.; Ryan-Howard, D.P.; Theriault, J.R., Jr. Visible Laser Radar: Range Tomography and Angle–Angle–Range Detection. Opt. Eng. 1991, 30, 55–65. [Google Scholar] [CrossRef]
- Springsteen, A. Standards for the Measurement of Diffuse Reflectance–An Overview of Available Materials and Measurement Laboratories. Anal. Chim. Acta 1999, 380, 379–390. [Google Scholar] [CrossRef]
- Tominaga, S.; Wandell, B.A. Standard Surface–Reflectance Model and Illuminant Estimation. J. Opt. Soc. Am. A 1989, 6, 576–584. [Google Scholar] [CrossRef]
- Ogilvy, J. Model for predicting ultrasonic pulse-echo probability of detection. NDT E. Int. 1993, 26, 19–29. [Google Scholar] [CrossRef]
- RCA. Electro-Optics Handbook; RCA: New York, NY, USA, 1974. [Google Scholar]
- Burns, H.N.; Christodoulou, C.G.; Boreman, G.D. System design of a pulsed laser rangefinder. Opt. Eng. 1991, 30, 323–329. [Google Scholar] [CrossRef]
- Sabatini, R.; Richardson, M.A. Airborne Laser Systems Testing and Analysis; NATO Science and Technology Organization: Brussels, Belgium, 2010. [Google Scholar]
- Abdullah, Q.; Maune, D.; Smith, D.C.; Heidemann, H.K. New Standard for New Era: Overview of the 2015 ASPRS Positional Accuracy Standards for Digital Geospatial Data. Programm. Eng. Remote Sens. 2015, 81, 173–176. [Google Scholar]
- American Society for Photogrammetry and Remote Sensing. ASPRS Positional Accuracy Standards for Digital Geospatial Data. Programm. Eng. Remote Sens. 2015, 81, A1–A26. [Google Scholar] [CrossRef]
Product | SICK LMS511 | Velodyne HDL-64E | ||||
---|---|---|---|---|---|---|
Bearing mechanism | Deflection of the light using a mirror | Rotation of the light source | ||||
Horizontal FoV | 190° | 360° | ||||
Vertical FoV | 0° | 26.8° | ||||
Horizontal angular resolution | 0.25° | 0.5° | 1° | 0.0864° | 0.1728° | 0.3456° |
Revolutions per second | 25 | 50 | 100 | 5 | 10 | 20 |
Measurements per revolution | 761 | 381 | 191 | 266,666 | 133,333 | 66,666 |
Measurements per second | 19,025 | 19,050 | 19,100 | 1,333,330 | 1,333,330 | 1,333,320 |
Mode | Legacy | OCDMA | |
---|---|---|---|
TX | Number of emitted pulses | 1 | 45 |
Pulse width () | 5 ns | 5 ns | |
Emitted energy per pulse | 20 | ||
Emitted energy per measurement | 20 | 351 | |
Number of binary chips | 1 | 225 | |
Chip emission duration | 5 ns | 1125 ns | |
RX | Signal processing method | Equations (4), (6) and (10) | Equations (4)–(12) |
Number of received pulses | 1 | 45 | |
Maximum desired distance () | 150 | 150 | |
Range gate (RG) | 1 μs | 1 μs | |
Probability of false alarm () | 0.001 | 0.5 | |
False alarm rate (FAR) | 1000/ | / | |
Threshold-to-noise ratio (TNR) | dB | dB |
Mode | Legacy | OCDMA | ||
---|---|---|---|---|
Black matte paper wall | Maximum distance () | 28 | 29 | |
Intensity | 1 m | 69,844 | 1,298,513 | |
10 | 704 | 12,965 | ||
30 | 78 | 1444 | ||
90 | 9 | 160 | ||
SNR (dB) | 1 | 42.5754 | 38.9163 | |
10 | 22.6099 | 18.9144 | ||
30 | 13.0551 | 9.3719 | ||
90 | 3.6766 | 0.2074 | ||
White paper wall | Maximum distance () | 86 | 89 | |
Intensity | 1 m | 629,636 | 11,688,489 | |
10 | 6331 | 116,857 | ||
30 | 702 | 12,558 | ||
90 | 78 | 1446 | ||
SNR (dB) | 1 | 52.1250 | 48.4545 | |
10 | 32.1489 | 28.4584 | ||
30 | 22.5975 | 18.9144 | ||
90 | 13.0551 | 9.3719 |
Mode | Legacy | OCDMA | |
---|---|---|---|
Distance () | Minimum | 9.984 | 10.0122 |
Maximum | 10.1258 | 10.0967 | |
Accuracy | 0.045779 | 0.028981 | |
Precision | 0.018903 | 0.0028846 | |
Intensity | Minimum | 6275 | 112,460 |
Maximum | 6896 | 116,640 |
Mode | Legacy | OCDMA | |
---|---|---|---|
Distance () | Minimum | 0.94389 | 0.96274 |
Maximum | 1.5639 | 1.5309 | |
Intensity | Minimum | 31,238 | 555,860 |
Maximum | 840,556 | 14,242,574 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Park, Y. Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time. Sensors 2018, 18, 2943. https://doi.org/10.3390/s18092943
Kim G, Park Y. Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time. Sensors. 2018; 18(9):2943. https://doi.org/10.3390/s18092943
Chicago/Turabian StyleKim, Gunzung, and Yongwan Park. 2018. "Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time" Sensors 18, no. 9: 2943. https://doi.org/10.3390/s18092943
APA StyleKim, G., & Park, Y. (2018). Independent Biaxial Scanning Light Detection and Ranging System Based on Coded Laser Pulses without Idle Listening Time. Sensors, 18(9), 2943. https://doi.org/10.3390/s18092943