Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Physical Activity
2.3. Statistical Analyses
2.3.1. Quantile Coarsening Analysis (QCA)
2.3.2. Cluster Analysis
2.3.3. Association Studies
3. Results
3.1. Physical Activity Clusters by Multivariate Finite Mixture Modeling
3.2. Activity Patterns and the Weekends
3.3. Physical Activity Clusters and Participant Characteristics
3.4. Accuracy of Approximation
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Garcia, M.C.; Bastian, B.; Rossen, L.M.; Anderson, R.; Minino, A.; Yoon, P.W.; Faul, M.; Massetti, G.; Thomas, C.C.; Hong, Y.; et al. Potentially Preventable Deaths among the Five Leading Causes of Death—United States, 2010 and 2014; Morbidity and Mortality Weekly Report (MMWR): Atlanta, GA, USA, 18 November 2016; Volume 65, pp. 1245–1255. [Google Scholar]
- Cheung, Y.K.; Moon, Y.P.; Kulick, E.R.; Sacco, R.L.; Elkind, M.S.V.; Willey, J.Z. Leisure-time physical activity and cardiovascular mortality in an elderly population in northern Manhattan: A prospective cohort study. J. Gen. Int. Med. 2017, 32, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Diaz, K.M.; Howard, V.J.; Hutto, B.; Colabianchi, N.; Vena, J.E.; Safford, M.M.; Blair, S.N.; Hooker, S.P. Patterns of sedentary behavior and mortality in U.S. middle-aged and older adults. Ann. Int. Med. 2017, 167, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W. Theoretical models for understanding physical activity behavior among children and adolescents—Social cognitive theory and self-determination theory. J. Teach. Phys. Edu. 2007, 26, 350–357. [Google Scholar] [CrossRef]
- Bravata, D.M.; Smith-Spangler, C.; Sundaram, V.; Gienger, A.L.; Lin, N.; Lewis, R.; Stave, C.D.; Olkin, I.; Sirard, J.R. Using pedometers to increase physical activity and improve health. JAMA 2007, 298, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Consolvo, S.; McDonald, D.W.; Toscos, T.; Chen, M.Y.; Froehlich, J.; Harrison, B.; Klasnja, P.; LaMarca, A.; LeGrand, L.; Libby, R.; et al. Activity sensing in the wild: A field trial of UbiFit Garden. In Proceedings of the the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; ACM Press: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Lin, J.J.; Mamykina, L.; Lindtner, S.; Delajoux, G.; Strub, H.B. Fish’n'Steps: Encouraging physical activity with an interactive computer game. In Proceedings of the 8th international conference on Ubiquitous Computing, Orange County, CA, USA, 17–19 September 2006; Dourish, P., Friday, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4206, pp. 261–278. [Google Scholar] [CrossRef]
- Miller, A.D.; Mynatt, E.D. A School-based Pervasive Social Fitness System for Everyday Adolescent Health. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM Press: New York, NY, USA, 2014; pp. 823–2832. [Google Scholar] [CrossRef]
- Munson, S.; Consolvo, S. Exploring goal-setting, rewards, self-monitoring, and sharing to motivate physical activity. In Proceedings of the 6th International. Conference on Pervasive Computing Technologies for Healthcare, San Diego, CA, USA, 21–24 May 2012; pp. 25–32. [Google Scholar] [CrossRef]
- Pillay, J.D.; van der Ploeg, H.P.; Kolbe-Alexander, T.L.; Proper, K.I.; van Stralen, M.M.; Tomaz, S.A.; van Mechelen, W.; Lambert, E.V. The association between daily steps and health, and the mediating role of body composition: A pedometer-based, cross-sectional study in an employed South African population. BMC Publ. Health 2005, 15, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evenson, K.R.; Wen, F.; Furberg, R.D. Assessing Validity of the Fitbit Indicators for U.S. Public Health Surveillance. Am. J. Prev. Med. 2017, 53, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Cadmus-Bertram, L.A.; Natarajan, L.; White, M.M.; Madanat, H.; Nichols, J.F.; Ayala, G.X.; Pierce, J.P. Wearable Sensor/Device (Fitbit One) and SMS Text-Messaging Prompts to Increase Physical Activity in Overweight and Obese Adults: A Randomized Controlled Trial. Telemed. E-Health 2015, 21, 782–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, F.; Tollmar, K.; Stephenson, P.; Levy, L.; Jones, B.; Robertson, S.; Price, E.; Catrambone, R.; Wilson, J. Health Mashups: Presenting Statistical Patterns between Wellbeing Data and Context in Natural Language to Promote Behavior Change. ACM Trans. Comput. Hum. Interact. 2013, 20, 1–27. [Google Scholar] [CrossRef]
- Yoon, S.; Schwartz, J.E.; Burg, M.M.; Kronish, I.M.; Alcantara, C.; Julian, J.; Parsons, F.; Davidson, K.W.; Diaz, K.M. Using Behavioral Analytics to Increase Exercise: A Randomized N-of-1 Study. Am. J. Prev. Med. 2018, 54, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Cadmus-Bertram, L.A.; Marcus, B.H.; Patterson, R.E.; Parker, B.A.; Morey, B.L. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am. J. Prev. Med. 2015, 49, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffray, C.; Balling, R.; Barroso, I.; Bencze, L.; Benson, M.; Bergeron, J.; Bernal-Delgado, E.; Blomberg, N.; Bock, C.; Conesa, A. Making sense of big data in health research: Towards an EU action plan. Genome Med. 2016, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, Y.; Hsueh, P.; Qian, M.; Yoon, S.; Meli, L.; Diaz, K.M.; Schwartz, J.E.; Kronish, I.M.; Davidson, K.W. Are nomothetic or ideographic approaches superior in predicting daily exercise behaviors? Analyzing N-of-1 mHealth data. Methods Inf. Med. 2017, 56, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, M.; Hsueh, P.; Ramakrishnan, S. Personalized adherence activity recognition via model-driven sensor data assessment. Stud. Health Technol. Inf. 2012, 180, 1050–1054. [Google Scholar]
- Kim, Y.; Welk, G.J.; Braun, S.I.; Kang, M. Extracting Objective Estimates of Sedentary Behavior from Accelerometer Data: Measurement Considerations for Surveillance and Research Applications. PLoS ONE 2015, 10, e0118078. [Google Scholar] [CrossRef] [PubMed]
- Swan, M. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery. Big Data 2013, 1, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Dijkhuis, T.B.; Blaauw, F.J.; van Ittersum, M.W.; Velthuijsen, H.; Aiello, M. Personalized Physical Activity Coaching: A Machine Learning Approach. Sensors 2018, 18, 623. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Venkatakrishnan, A.; Youngblood, G.M.; Ram, A.; Pirolli, P. A Group-Based Mobile Application to Increase Adherence in Exercise and Nutrition Programs: A Factorial Design Feasibility Study. JMIR MHealth UHealth 2016, 4, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burg, M.M.; Schwartz, J.E.; Kronish, I.M.; Diaz, K.M.; Alcantara, C.; Duer-Hefele, J.; Davidson, K.W. Does Stress Result in You Exercising Less? Or Does Exercising Result in You Being Less Stressed? Or Is It Both? Testing the Bi-directional Stress-Exercise Association at the Group and Person (N of 1) Level. Ann. Behav. Med. 2017, 51, 799–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, S.J.; Nelson, S.H.; Weiner, L.S. Patterns of Fitbit Use and Activity Levels Throughout a Physical Activity Intervention: Exploratory Analysis from a Randomized Controlled Trial. JMIR MHealth UHealth 2018, 6, e29. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, G.; Peel, D. Finite Mixture Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.K.; Yu, G.; Wall, M.M.; Sacco, R.L.; Elkind, M.S.V.; Willey, J.Z. Patterns of leisure-time physical activity using multivariate finite mixture modeling and cardiovascular risk factors in the Northern Manhattan Study. Ann. Epidemiol. 2015, 25, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, M.; Katoh, N.; Imai, H. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering. In Proceedings of the 10th ACM Symposium on Computational Geometry, Stony Brook, NY, USA, 6–9 June 1994; pp. 332–339. [Google Scholar] [CrossRef]
- Fan, J.; Yao, Q. Nonlinear Time Series: Nonparametric and Parametric Methods; Springer: Berlin, Germany, 2003. [Google Scholar]
- Fryzlewicz, P.; Oh, H.S. Thick pen transformation for time series. J. R. Stat. Soc. Ser. B 2011, 73, 499–529. [Google Scholar] [CrossRef] [Green Version]
- Tsay, R.S. Some methods for analyzing big dependent data. J. Bus. Econ. Stat. 2016, 34, 673–688. [Google Scholar] [CrossRef]
- Lim, Y.; Oh, H.S.; Cheung, Y.K. Functional clustering of accelerometer data via transformed input variables. Unpublished manuscript.
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Diaz, K. Ecological Link of Psychosocial Stress to Exercise: Personalized Pathways. Available online: https://osf.io/kmszn/ (accessed on 11 September 2018).
- Burg, M.M.; Schwartz, J.E.; Kronish, I.M.; Diaz, K.M.; Alcantara, C.; Duer-Hefele, J.; Davidson, K.W. Does stress result in you exercising less? Or does exercising result in you being less stressed? Or it is both? Testing the bi-directional stress-exercise association at the group and person (n of 1) level. Ann. Behav. Med. 2017, 51, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Fitbit Flex. Available online: http://www.fitbit.com (accessed on 11 September 2018).
- Diaz, K.; Krupka, D.J.; Chang, M.J.; Peacock, J.; Ma, Y.; Goldsmith, J.; Schwartz, J.E.; Davidson, K.W. Fitbit: An accurate and reliable device for wireless physical activity tracking. Int. J. Cardiol. 2015, 185, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; Hickey, A.; Mavilia, M.; Tedesco, J.; John, D.; Kozey Keadle, S.; Freedson, P.S. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. J. Phys. Act. Health 2015, 12, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wallen, M.P.; Gomersall, S.R.; Keating, S.E.; Wisloff, U.; Coombers, J.S. Accuracy of heart rate watches: Implications for weight management. PLoS ONE 2016, 11, e0154420. [Google Scholar] [CrossRef] [PubMed]
- Fitbit Flex. Available online: https://staticcs.fitbit.com/content/assets/help/manuals/manual_flex_en_US.pdf (accessed on 11 September 2018).
- Koenker, R. Quantile Regression (Econometric Society Monographs); Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Fraley, C.; Raftery, A.E. How many clusters? Which clustering method? Answers via model based cluster analysis. Comput. J. 1998, 41, 578–589. [Google Scholar] [CrossRef]
- Nang, E.E.K.; Khoo, E.Y.; Salim, A.; Tai, E.S.; Lee, J.; Van Dam, R.M. Patterns of physical activity in different domains and implications for intervention in a multi-ethnic Asian population: A cross-sectional study. BMC Public Health 2010, 10, 644. [Google Scholar]
- Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-centric computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 37–42. [Google Scholar] [CrossRef]
- Klasnja, P.; Hekler, E.B.; Shiffman, S.; Boruvka, A.; Almirall, D.; Tewari, A.; Murphy, S.A. Microrandomized trials: An experimental design for developing just-in-time adaptive interventions. Health Psychol. 2015, 34, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.C.; Cheung, K.; Schueller, S.M.; Brown, C.H.; Duan, N. Continuous evaluation of evolving behavioral intervention technologies. Am. J. Prev. Med. 2013, 45, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Ling, W.; Karr, C.J.; Weingardt, K.; Schueller, S.M.; Mohr, D.C. Evaluation of a recommender app for apps for the treatment of depression and anxiety: An analysis of longitudinal user engagement. J. Am. Med. Inf. Assoc. 2018, 25, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hsueh, P.S.; Qian, M.; Chen, C.-H.; Diaz, K.M.; Cheung, Y.K. A First Step Towards Behavioral Coaching for Managing Stress: A Case Study on Optimal Policy Estimation with Multi-stage Threshold Q-learning. AMIA Annu. Symp. Proc. 2017, 2017, 930–939. [Google Scholar]
- Marschollek, M. A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data—The ATLAS index. PLoS ONE 2013, 8, e63522. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Paras, C.; Tippey, K.; Brown, E.; Sasangohar, F.; Creech, S.; Kum, H.-C.; Lawley, M.; Benzer, J.K. Posttraumatic Stress Disorder and Mobile Health: App Investigation and Scoping Literature Review. JMIR MHealth UHealth 2017, 5, e156. [Google Scholar] [CrossRef] [PubMed]
- Kiral-Kornek, I.; Roy, S.; Nurse, E.; Mashford, B.; Karoly, P.; Carroll, T.; Payne, D.; Saha, S.; Baldassano, S.; O’Brien, T.; et al. Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine 2018, 27, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alamino, J.M.; Ward, A.M.; Alonso-Coello, P.; Perera, R.; Bankhead, C.; Fitzmaurice, D.; Heneghan, C.J. Self-monitoring and self-management of oral anticoagulation. Cochrane Database Syst. Rev. 2010, 7, CD003839. [Google Scholar] [CrossRef]
- Roditi, D.; Robinson, M.E. The role of psychological interventions in the management of patients with chronic pain. Psy. Res. Behav. Manag. 2011, 4, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, N.; Pasero, C.; McCaffery, M. Improving the Quality of Care Through Pain Assessment and Management. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Agency for Healthcare Research and Quality (US); NCBI: Bethesda, MD, USA, 2008. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21328759 (accessed on 6 September 2018).
Cluster ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
N | 409 | 1302 | 2285 | 2751 | 7819 | 1678 | 2326 | 2823 |
Daily step counts | 961 | 6227 | 6855 | 8037 | 8999 | 9379 | 9396 | 10,038 |
Activity midday a | 11:30 a.m. | 1:00 p.m. | 2:00 p.m. | 3:30 p.m. | 2:00 p.m. | Noon | 3:00 p.m. | 5:00 p.m. |
PA minutes b | 7.3 | 42.3 | 45.6 | 52.8 | 59.9 | 65.9 | 65.1 | 72.7 |
Weekend c | 37% | 40% | 39% | 35% | 16% | 46% | 30% | 23% |
Cluster ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Age a | 0.99 | 0.96 *** | 0.99 | 0.98 * | 1.02 * | 1.01 | 1.00 | 1.01 |
Male (ref: Female) | 0.77 | 0.94 | 0.80 | 1.37 | 0.86 | 1.04 | 1.02 | 0.95 |
NHW b (ref: others) | 0.65 | 0.60 * | 0.80 | 0.85 | 1.35 * | 1.04 | 0.91 | 1.23 * |
Education c | 1.02 | 0.66 ** | 1.01 | 0.75 * | 1.15 | 1.17 | 0.91 | 1.11 |
Full-time (FT) (ref: Part-time, PT) | 1.17 | 0.44 * | 0.93 | 0.42 *** | 3.49 *** | 0.57 ** | 1.01 | 1.41 * |
Being single (ref: Partner/spouse) | 0.74 | 2.37 *** | 0.76* | 1.72 *** | 0.65 ** | 1.02 | 1.19 * | 0.85 |
K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
0 a | 563 | 3191 | 15,674 | 16,106 | 22,800 | 32,004 | 26,226 | 47,884 |
3 | 224 | 1690 | 5189 | 3926 | 13,473 | 8631 | 7356 | 15,360 |
9 | 59 | 609 | 880 | 908 | 2763 | 1519 | 2132 | 3084 |
19 | 29 | 255 | 253 | 342 | 676 | 506 | 626 | 826 |
39 | 19 | 131 | 98 | 135 | 181 | 188 | 211 | 237 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, Y.K.; Hsueh, P.-Y.S.; Ensari, I.; Willey, J.Z.; Diaz, K.M. Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study. Sensors 2018, 18, 3056. https://doi.org/10.3390/s18093056
Cheung YK, Hsueh P-YS, Ensari I, Willey JZ, Diaz KM. Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study. Sensors. 2018; 18(9):3056. https://doi.org/10.3390/s18093056
Chicago/Turabian StyleCheung, Ying Kuen, Pei-Yun Sabrina Hsueh, Ipek Ensari, Joshua Z. Willey, and Keith M. Diaz. 2018. "Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study" Sensors 18, no. 9: 3056. https://doi.org/10.3390/s18093056
APA StyleCheung, Y. K., Hsueh, P. -Y. S., Ensari, I., Willey, J. Z., & Diaz, K. M. (2018). Quantile Coarsening Analysis of High-Volume Wearable Activity Data in a Longitudinal Observational Study. Sensors, 18(9), 3056. https://doi.org/10.3390/s18093056