EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks
Abstract
:1. Introduction
- First, we design a flowlet switching based load balancing scheme for WSNs, called EasyLB, by adding one selection method for group table defined in OpenFlow [26]. We show that, by setting timeout according to the theorem, EasyLB achieves approximately optimal load balancing in WSNs and re-balances traffic quickly after link failures.
- Second, the flowlet switching process is modeled by a stationary Markov chain, with the assumption that all flows occur as the Poisson process. Based on this model, we derive a theorem that specifies the sufficient condition on timeout that ensures the system can converge to an ideal load balancing effect.
- Third, we further study the timeout setting problem when it comes to non-equal probability path selection and multiple parallel paths in flowlet switching. We conclude more generally when non-equal probability path selection is adopted in flowlet switching based load balancing scheme. Then, we give an algorithm for solving timeout setting problem in multiple parallel load balancing paths.
2. EasyLB Design and Implementation
Algorithm 1 The group table selection algorithm. |
|
3. Timeout Setting in EasyLB
3.1. Markov Chain Model
3.2. Formalization of Timeout Setting Problem
3.3. Timeout Setting in Non-Equal Probability Path Selection
3.4. Timeout Setting in Multiple Parallel Load Balancing Paths
Algorithm 2 An iterative algorithm for solving timeout setting problem with multiple parallel paths. |
Input:
The maximum value of , ;
|
4. Performance Evaluation
4.1. Asymmetric Topology with Random Path Selection
4.2. Symmetric Topology with Random Path Selection
4.3. Non-Equal Probability Path Selection
4.4. Multiple Parallel Paths
4.5. React to Link Failure
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A The Derivation Process of Theorem 1
References
- Radi, M.; Dezfouli, B.; Bakar, K.A.; Lee, M.J.S. Multipath routing in wireless sensor networks: Survey and research challenges. Sensors 2012, 12, 650–685. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, D.; Govindan, R.; Shenker, S.; Estrin, D. Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 11–25. [Google Scholar] [CrossRef]
- Pham, Q.V.; Hwang, W.J. Network utility maximization in multipath lossy wireless networks. Int. J. Commun. Syst. 2017, 30, 1–18. [Google Scholar] [CrossRef]
- Pham, Q.-V.; Hwang, W.J. Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Commun. Surv. Tutor. 2017, 19, 1173–1200. [Google Scholar] [CrossRef]
- Liu, X.; Xie, X.; Zhao, X.; Li, K.; Liu, A.X.; Guo, S.; Wu, J. Fast identification of blocked rfid tags. IEEE Trans. Mob. Comput. 2018, 17, 2041–2054. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, B.; Li, K.; Liu, A.X.; Wu, J.; Xie, X.; Qi, H. RFID estimation with blocker tags. IEEE/ACM Trans. Netw. 2017, 25, 224–237. [Google Scholar] [CrossRef]
- Liu, X.; Xie, X.; Li, K.; Xiao, B.; Wu, J.; Qi, H.; Lu, D. Fast tracking the population of key tags in large-scale anonymous rfid systems. IEEE/ACM Trans. Netw. 2017, 25, 278–291. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Guo, S.; Liu, A.X.; Li, P.; Wang, K.; Wu, J.; Liu, X.; Li, K.; Guo, S. Top-k queries for categorized rfid systems. IEEE/ACM Trans. Networking 2017, 25, 2587–2600. [Google Scholar] [CrossRef]
- He, J.; Tervo, V.; Zhou, X.; He, X.; Qian, S.; Cheng, M.; Juntti, M.; Matsumoto, T. A tutorial on lossy forwarding cooperative relaying. IEEE Commun. Surv. Tutor. 2018. [Google Scholar] [CrossRef]
- Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.; Wischik, D.; Handley, M. Improving datacenter performance and robustness with multipath tcp. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 266–277. [Google Scholar] [CrossRef]
- Cao, J.; Xia, R.; Yang, P.; Guo, C.; Lu, G.; Yuan, L.; Zheng, Y.; Wu, H.; Xiong, Y.; Maltz, D. Per-packet load-balanced, low-latency routing for clos-based data center networks. In Proceedings of the ninth ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA, 9–12 December 2013; pp. 49–60. [Google Scholar]
- Perry, J.; Ousterhout, A.; Balakrishnan, H.; Shah, D.; Fugal, H. Fastpass: A centralized zero-queue datacenter network. ACM SIGCOMM Comput. Commun. Rev. 2015, 44, 307–318. [Google Scholar] [CrossRef]
- Zats, D.; Das, T.; Mohan, P.; Borthakur, D.; Katz, R. DeTail: Reducing the flow completion time tail in datacenter networks. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, Finland, 13–17 August 2012; pp. 139–150. [Google Scholar]
- Hopps, C. Analysis of An Equal-Cost Multi-Path Algorithm. Rfc 2000, 109, S265. [Google Scholar]
- Zhou, J.; Tewari, M.; Zhu, M.; Kabbani, A.; Poutievski, L.; Singh, A.; Vahdat, A. WCMP: Weighted cost multipathing for improved fairness in data centers. In Proceedings of the Ninth European Conference on Computer Systems, Amsterdam, The Netherlands, 14–16 April 2014. [Google Scholar]
- Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic flow scheduling for data center networks. In Proceedings of the NSDI’10 Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, USA, 28–30 April 2010. [Google Scholar]
- Benson, T.; Anand, A.; Akella, A.; Zhang, M. MicroTE: Fine grained traffic engineering for data centers. In Proceedings of the Seventh Conference on Emerging Networking Experiments and Technologies, Tokyo, Japan, 6–9 December 2011. [Google Scholar]
- Kandula, S.; Katabi, D.; Sinha, S.; Berger, A. Dynamic load balancing without packet reordering. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 51–62. [Google Scholar] [CrossRef]
- He, K.; Rozner, E.; Agarwal, K.; Felter, W.; Carter, J.; Akella, A. Presto: Edge-based load balancing for fast datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 465–478. [Google Scholar] [CrossRef]
- Alizadeh, M.; Edsall, T.; Dharmapurikar, S.; Vaidyanathan, R.; Chu, K.; Fingerhut, A.; Matus, F.; Pan, R.; Yadav, N.; Varghese, G. CONGA: Distributed congestion-aware load balancing for datacenters. In Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, IN, USA, 17–22 August 2014. [Google Scholar]
- Vanini, E.; Pan, R.; Alizadeh, M.; Taheri, P.; Edsall, T. Let It Flow: Resilient asymmetric load balancing with flowlet switching. In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, Boston, MA, USA, 27–29 March 2017; pp. 407–420. [Google Scholar]
- Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 63–74. [Google Scholar] [CrossRef]
- Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Patel, P.; Sengupta, S. VL2: A scalable and flexible data center network. In Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, Barcelona, Spain, 16–21 August 2009; pp. 51–62. [Google Scholar]
- Katta, N.; Hira, M.; Kim, C.; Sivaraman, A.; Rexford, J. Hula: Scalable load balancing using programmable data planes. In Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, 14–15 March 2016. [Google Scholar]
- Sinha, S.; Kandula, S.; Katabi, D. Harnessing tcp’s burstiness with flowlet switching. In Proceedings of the Third Workshop on Hot Topics in Networks HotNets-III, San Diego, CA, USA, 15–16 November 2004. [Google Scholar]
- OpenFlow Switch Specification Version 1.3.1. Available online: https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf (accessed on 9 September 2018).
- Fundation, O. Software-defined networking: The new norm for networks. ONF White Pap. 2012, 2, 2–6. [Google Scholar]
- Production Quality, Multilayer Open Virtual Switch. Available online: http://www.openvswitch.org (accessed on 9 September 2018).
- Chandrasekaran, S.S. Understanding Traffic Characteristics in a Server to Server Data Center Network. Master’s Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2017. [Google Scholar]
- Bai, W.; Chen, K.; Wang, H.; Chen, L.; Han, D.; Tian, C. Information-agnostic flow scheduling for commodity data centers. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation, Oakland, CA, USA, 4–6 May 2015; pp. 455–468. [Google Scholar]
- Alizadeh, M.; Yang, S.; Sharif, M.; Katti, S.; McKeown, N.; Prabhakar, B.; Shenker, S. Pfabric: Minimal near-optimal datacenter transport. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 435–446. [Google Scholar] [CrossRef]
- Han, Y.; Yoo, J.-H.; Hong, J.W.-K. Poisson shot-noise process based flow-level traffic matrix generation for data center networks. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 450–457. [Google Scholar]
- Galluccio, L.; Milardo, S.; Morabito, G.; Palazzo, S. SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for wireless sensor networks. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 513–521. [Google Scholar]
- OMNeT++. Available online: https://www.omnetpp.org (accessed on 25 June 2018).
- Shreedhar, M.; Varghese, G. Efficient fair queueing using deficit round robin. IEEE/ACM Trans. Netw. 1996, 4, 375–385. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, X.; Li, K.; Hu, Q.; Sangaiah, A.K.; Chen, N. Community-aware data propagation with small world feature for internet of vehicles. IEEE Commun. Mag. 2018, 56, 86–91. [Google Scholar] [CrossRef]
- Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How can heterogeneous internet of things build our future: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2011–2027. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Dong, X.; Chen, S.; Zhou, X.; Li, K. EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks. Sensors 2018, 18, 3060. https://doi.org/10.3390/s18093060
Guo Z, Dong X, Chen S, Zhou X, Li K. EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks. Sensors. 2018; 18(9):3060. https://doi.org/10.3390/s18093060
Chicago/Turabian StyleGuo, Zhiqiang, Xiaodong Dong, Sheng Chen, Xiaobo Zhou, and Keqiu Li. 2018. "EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks" Sensors 18, no. 9: 3060. https://doi.org/10.3390/s18093060
APA StyleGuo, Z., Dong, X., Chen, S., Zhou, X., & Li, K. (2018). EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks. Sensors, 18(9), 3060. https://doi.org/10.3390/s18093060