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Abstract: Water level (WL) measurements denote surface conditions that are useful for monitoring
hydrological extremes, such as droughts and floods, which both affect agricultural productivity
and regional development. Due to spatially sparse in situ hydrological stations, remote sensing
measurements that capture localized instantaneous responses have recently been demonstrated to be
a viable alternative to WL monitoring. Despite a relatively good correlation with WL, a traditional
passive remote sensing derived WL is reconstructed from nearby remotely sensed surface conditions
that do not consider the remotely sensed hydrological variables of a whole river basin. This method’s
accuracy is also limited. Therefore, a method based on basin-averaged, remotely sensed precipitation
from the Tropical Rainfall Measuring Mission (TRMM) and gravimetrically derived terrestrial water
storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) is proposed for WL
reconstruction in the Yangtze and Mekong River basins in this study. This study examines the
WL reconstruction performance from these two remotely sensed hydrological variables and their
corresponding drought indices (i.e., TRMM Standardized Precipitation Index (TRMM-SPI) and
GRACE Drought Severity Index (GRACE-DSI)) on a monthly temporal scale. A weighting procedure
is also developed to explore a further potential improvement in the WL reconstruction. We found
that the reconstructed WL derived from the hydrological variables compares well to the observed
WL. The derived drought indices perform even better than those of their corresponding hydrological
variables. The indices’ performance rate is owed to their ability to bypass the influence of El
Niño Southern Oscillation (ENSO) events in a standardized form and their basin-wide integrated
information. In general, all performance indicators (i.e., the Pearson Correlation Coefficient (PCC),
Root-mean-squares error (RMSE), and Nash–Sutcliffe model efficiency coefficient (NSE)) reveal
that the remotely sensed hydrological variables (and their corresponding drought indices) are better
alternatives compared with traditional remote sensing indices (e.g., Normalized Difference Vegetation
Index (NDVI)), despite different geographical regions. In addition, almost all results are substantially
improved by the weighted averaging procedure. The most accurate WL reconstruction is derived
from a weighted TRMM-SPI for the Mekong (and Yangtze River basins) and displays a PCC of 0.98
(and 0.95), a RMSE of 0.19 m (and 0.85 m), and a NSE of 0.95 (and 0.89); by comparison, the remote
sensing variables showed less accurate results (PCC of 0.88 (and 0.82), RMSE of 0.41 m (and 1.48 m),
and NSE of 0.78 (and 0.67)) for its inferred WL. Additionally, regardless of weighting, GRACE-DSI
displays a comparable performance. An external assessment also shows similar results. This finding
indicates that the combined usage of remotely sensed hydrological variables in a standardized form
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and the weighted averaging procedure could lead to an improvement in WL reconstructions for river
basins affected by ENSO events and hydrological extremes.

Keywords: water level; TRMM; GRACE Drought Severity Index (DSI); TRMM-based Standardized
Precipitation Index (SPI); Mekong River Basin; Yangtze River Basin

1. Introduction

Measuring the spatio-temporal water level (WL) in rivers, lakes, wetlands and reservoirs is of the
utmost importance for increasing water usage efficiency, monitoring floods or droughts, and, hence,
reducing agricultural and economic losses within a catchment [1,2]. In addition, other important
hydrological variables, such as discharge, can also be obtained using a WL based on a stage-discharge
rating curve (e.g., [3–5]). Therefore, a continuous WL time series is essential for enriching hydrological
data and monitoring hydrological extremes within a river basin [6].

Traditionally, the WL has been measured by in situ hydrological stations, which are distributed
unevenly and sparsely around the world and are dependent on the economy, politics, and geography of
each nation [7]. Consequently, an alternative yielding continuous direct or indirect WL measurements
must be sought. Satellite remote sensing has been demonstrated as a promising alternative for globally
continuous monitoring of WL data, both directly and indirectly [8]. While altimetry satellites can
directly measure the WL in large rivers (e.g., [9–12]), inland radar altimetry footprint signals are
inevitably contaminated by lands around rivers that reduce the quality of altimetry measurements [13].
Traditional indirect WL monitoring is generally based on an empirical rating curve between the WL
and an inundated area using high-resolution satellite images (e.g., [14,15]). A linear relationship
between the WL and the surface area changes of a surface reservoir has also been applied (e.g., [16]).
However, the relationship varies across different segments of the river, and it also changes over time
in the same place due to natural factors, such as erosion and sedimentation [17,18]. The instability
of the relationship thus reduces the accuracy of the WL reconstruction. Other localized remote
sensing measurements, such as the Normalized Difference Vegetation Index (NDVI) [19] and Land
Surface Temperature (LST) [20], have also been utilized during the past several decades. However,
these instantaneous responses only represent the localized phenomena within a hydrological cycle,
which contains combined signals with several sources of uncertainty [21]. For instance, Omute et al. [22]
found that the NDVI is more sensitive to drought than to the WL, although it can capture the WL
one-month in advance.

To achieve higher accuracy, remotely sensed data representing causal phenomena of hydrological
cycle components (i.e., precipitation, evaporation or evapotranspiration, and terrestrial water storage
(TWS)) in a river system can be adopted for the WL reconstruction. These data can potentially be
better predictors of WL variations. For instance, the Tropical Rainfall Measuring Mission (TRMM)
satellite has been demonstrated to be a reliable resource for monthly precipitation data in recent
decades (e.g., [23–25]), but most of studies that have used it are limited to drought monitoring
(e.g., [26,27]) and TRMM products evaluation (e.g., [28–30]). Gravity Recovery and Climate Experiment
(GRACE) satellite data has been widely used to obtain TWS variations (e.g., [31,32]) and their successful
assimilation into hydrological models (e.g., [33,34]) for various river basins. Therefore, remotely sensed
precipitation and TWS data can be excellent choices for the WL reconstructions.

In fact, different empirical relationships between WL and precipitation based on ground
observations and remote sensing data have been established in recent years [35–37]. For instance,
significant correlations between the WL and the precipitation were found no matter in the upper,
middle and lower Chalk of southern England [35]. Jiang et al. [36] found that a higher summer
precipitation increased the summer runoff rate in the lower Yangtze River Basin between 1961 and
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2000. Awange et al. [37] found that 80% of the WL falling in Lake Victoria was directly related to
precipitation levels.

Several researchers qualitatively inferred that WL variations were linked to the TWS (e.g., [38]),
but few studies quantitatively yielded an empirical or analytical formula for such a relationship,
let alone a prediction. Frappart et al. [39] measured the water storage fluctuations from an
altimetric-derived WL combined with Synthetic Aperture Radar (SAR) images in the Negro River
Basin. Zhang et al. [40] established a rating curve to monitor the seasonal and annual water storage
fluctuations of Dongting Lake by correlating the altimetric-derived WL with the observed water
storage. In summary, the relationships between the WL and both precipitation and water storage
have been scientifically investigated, but a practical usage of the abovementioned relationships is
rarely explored, let alone the influence of climatic events, such as ENSO and monsoons, on WL
reconstructions and predictions.

Drought indices, such as the Standardized Precipitation Index (SPI), are derived through the
standardization process to depict the drought conditions [41] whether using remotely sensed or
ground-based observed precipitation. Similarly, the GRACE Drought Severity Index (GRACE-DSI),
newly developed by Zhao et al. [42], can also capture the spatio-temporal evolution of drought
events. However, their usages for WL reconstructions and estimations have not been explored to
date. Therefore, a standardized procedure focusing on reducing the influences of abnormal anomalies
(e.g., climatic events) was employed to convert the TRMM precipitation and GRACE TWS into their
corresponding drought indices (i.e., TRMM-SPI and GRACE-DSI)) followed by estimating the WL in
the Mekong and Yangtze River basins.

This study aims to reconstruct the WL based on precipitation, TWS, and their related drought
indices (i.e., TRMM-SPI and GRACE-DSI) for the Mekong and Yangtze River basins. Both hydrological
regimes are mainly influenced by monsoons and ENSO events, making them suitable geographic
regions for our study. In addition, a weighting factor is introduced to further improve the performance
of WL reconstruction. Finally, three kinds of performance metrics, the Pearson Correlation Coefficient
(PCC), Root-mean-squares error (RMSE), and Nash–Sutcliffe model efficiency coefficient (NSE) are
used to evaluate all the WL estimations. The remotely sensed NDVI and LST serve as vehicles for a
comparative analysis with the proposed WL reconstruction method, which is based on remote-sensed
hydrological variables and their corresponding drought indices.

2. Geographical Setting of the Mekong River Basin (MRB) and the Yangtze River Basin (YRB)

Both the Mekong and Yangtze rivers originate from the three-rivers region (TRR) headwater
source located at the southeastern Qinghai-Tibet Plateau. Both rivers exhibit apparent differences in
terms of their geographical locations, as well as those of their monsoonal climate and its impact on the
WL and the discharge volume. Their abovementioned characteristics make them the two ideal regions
for our study.

The Mekong River, having a total length of 4909 km, is the 12th-longest river in the world [43].
This river’s extensive basin covers six southeast Asian countries with an area of 795,000 km2 (Figure 1).
From the headwater source, the water flows from subtropical (i.e., TRR) to tropical regions (i.e., South
China Sea (SCS)) through China, Burma, the Lao People’s Democratic Republic (Lao PDR), Thailand,
Cambodia and Vietnam [44].

The Mekong River Basin (MRB) shows a typical monsoon climate, especially in the lower MRB
located in the intersection zones of three types of monsoons (i.e., Indian Summer Monsoon (ISM),
Western North Pacific Summer Monsoon (WNPSM), and East Asian Summer Monsoon (EASM)) [45],
which are defined as the Asian-Pacific monsoon system by Wang and Lin [46]. Given the influence of
monsoons, the middle and lower MRB have distinct rainy and dry seasons. The southwest monsoon
from the ocean initiates the rainy season in May, reaches its peak in September and ends in October each
year [47]. During that time, it contributes to 85% of the basin’s annual rainfall [47]. Less precipitation
is observed during the dry seasons that occur from November to March of the following year [48].
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The runoff recharge of the Mekong River in dry seasons is mainly driven by the water melting from
the TRR.

The Yangtze River, the longest river in China and the third-longest river in the world, originates
from the Tibetan Plateau and flows approximately 6300 km eastwards into the East China Sea [49,50]
(Figure 1). The whole Yangtze River Basin (YRB), with an area of around 1,800,000 km2 [51], can be
divided into three parts: The upper reach (between the headwater and Yichang), the middle reach
(between Yichang and Hukou), and the lower reach (below the Hukou) [52,53]. The YRB is in the
mid-latitudinal region of approximately 32◦N, where the climate is subtropical and temperate [54].

The Asian-Pacific monsoon system also maintains a substantial influence over the entire YRB [55].
The ISM and the EASM in the Asian-Pacific system affect the precipitation in the upper and
middle-lower YRB, respectively [50,56]. Thus, the mean annual precipitation varies from 270–500 mm
in the upper YRB to 1600–1900 mm in the middle and lower YRB [57]. Under the monsoonal climate,
the rainy season ranges from April to September, generating tremendous precipitation in the YRB,
especially during mid-June to July (i.e., the plum rain season) [54].

In summary, the two basins are under the control of the Asian-Pacific monsoon system.
The intensities of ISM, WNPSM and EASM are demonstrably affected by El Niño–Southern Oscillation
(ENSO) events [58]. For example, the ISM, WNPSM and EASM are weakened during El Niño events
(the warm phase of ENSO), leading to less precipitation in some regions [59,60]. Therefore, ENSO
events have an important influence on the hydrological conditions in both the MRB and YRB.

Sensors 2018, 18, x 4 of 28 

 

(Figure 1). The whole Yangtze River Basin (YRB), with an area of around 1,800,000 km2 [51], can be 
divided into three parts: The upper reach (between the headwater and Yichang), the middle reach 
(between Yichang and Hukou), and the lower reach (below the Hukou) [52,53]. The YRB is in the 
mid-latitudinal region of approximately 32°N, where the climate is subtropical and temperate [54]. 

The Asian-Pacific monsoon system also maintains a substantial influence over the entire YRB 
[55]. The ISM and the EASM in the Asian-Pacific system affect the precipitation in the upper and 
middle-lower YRB, respectively [50,56]. Thus, the mean annual precipitation varies from 270–500 mm 
in the upper YRB to 1600–1900 mm in the middle and lower YRB [57]. Under the monsoonal climate, 
the rainy season ranges from April to September, generating tremendous precipitation in the YRB, 
especially during mid-June to July (i.e., the plum rain season) [54]. 

In summary, the two basins are under the control of the Asian-Pacific monsoon system. The 
intensities of ISM, WNPSM and EASM are demonstrably affected by El Niño–Southern Oscillation 
(ENSO) events [58]. For example, the ISM, WNPSM and EASM are weakened during El Niño events 
(the warm phase of ENSO), leading to less precipitation in some regions [59,60]. Therefore, ENSO 
events have an important influence on the hydrological conditions in both the MRB and YRB. 

 
Figure 1. Map of the Yangtze River Basin (green region) and the Mekong River basin (yellow region) 
with selected stations in red dots located near the river estuary in this study. 

3. Data Description 

3.1. Ground-Based Observation Data 

Since basin-averaged TRMM precipitation and TWS were applied to reconstruct the whole basin 
WL, an in situ WL time series of the Vam Kenh and Dinh An stations located near the estuary mouth 
of the MRB were selected to reconstruct and validate the WL, respectively, in this study (Figure 1). 
These time series, with data spanning from 1 January 1992 to 31 December 2006, are available on 
request at the website of Mekong River Commission (http://www.mrcmekong.org). Figure 2a shows 
that the WL time series in both stations display a strong seasonality and are similar to each other 
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3. Data Description

3.1. Ground-Based Observation Data

Since basin-averaged TRMM precipitation and TWS were applied to reconstruct the whole basin
WL, an in situ WL time series of the Vam Kenh and Dinh An stations located near the estuary mouth
of the MRB were selected to reconstruct and validate the WL, respectively, in this study (Figure 1).
These time series, with data spanning from 1 January 1992 to 31 December 2006, are available on
request at the website of Mekong River Commission (http://www.mrcmekong.org). Figure 2a shows
that the WL time series in both stations display a strong seasonality and are similar to each other
despite differences in amplitudes. The annual maximum WL usually occurs in September resulting
from the southwest monsoon, whereas the minimum WL happens in April in accordance with the
general description in Section 2.
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station in the Yangtze River Basin (YRB).
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Since no station exists in the estuary mouth of the YRB because of oceanic tidal effects, the closest
(Datong station) and next-closest stations (Hukou station) to the estuary mouth were chosen to
reconstruct and validate the reconstructed WL, respectively. The WL time series of the two stations,
with a time span between January 2000 and December 2013, have been obtained from the Changjiang
Water Resources Commission, Ministry of Water Resources (http://www.cjh.com.cn). Figure 2b shows
that the WL variations in the Datong and Hukou stations share the same pattern. The highest and
lowest WLs usually occur in July and February, respectively, which are different from that of the MRB.

3.2. Spaceborne Data and Their Corresponding Derived Drought Indices

3.2.1. TRMM Precipitation and Its Corresponding Drought Index (TRMM-SPI)

The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite enabled us to monitor the
spatio-temporal precipitation variations in the tropical and the subtropical regions [61]. Monthly 3B43
V7 precipitation products, with a spatial resolution of 0.25◦ and a coverage of latitude 50◦ N to 50◦ S
validated by the TRMM Multi-satellite Precipitation Analysis (TMPA) [62], were used to either directly
correlate with the observed WL or to derive the SPI followed by correlating it with the observed WL
in this study. These data can be obtained from the NASA’s Goddard Earth Sciences and Data and
Information Service Center (GES DISC) (https://disc.gsfc.nasa.gov/TRMM).

The SPI, developed by McKee et al. [41], was used to quantify the precipitation deficit on multiple
time scales. It indicates the departure degree of the accumulative precipitation of a certain period
related to a selected time scale with respect to normal conditions [63]. Compared to other widely used
drought indices (e.g., PDSI) that consider various localized hydrological and meteorological inputs,
SPI can be simply calculated by precipitation only, making it an effective index for monitoring the
drought conditions in regions where climatic and hydrological information is scarce [64].

According to the initial definition of SPI by McKee et al. [41], it can be regarded as the standardized
form of precipitation.

SPIi,j =
Pi,j − 〈Pj〉

σj
(1)

where Pi,j, 〈Pj〉, and σj are the precipitation in year i and month j, the mean precipitation in month j,
and the standard deviation of precipitation for month j, respectively. The standardized form, displayed
in Equation (1), should have a normal distribution. The log-normal and in particular the gamma
distributions are the two commonly employed distributions in this case [63].

Lloyd-Hughes and Saunders [64] introduced a detailed calculation of SPI based on the log-normal
and the gamma distributions. Taking a logarithm of precipitation for Equation (1), the SPI based on
the log-normal distribution becomes,

SPIi,j =
ln(Pi,j)− 〈ln

(
Pj
)
〉

σ̂j
(2)

where the σ̂j represents the sampled standard deviation of log-transformed precipitation.
Alternatively, the SPI based on gamma distribution can be obtained through the standardization

of cumulative probability distribution. The cumulative probability distribution H(P) is derived as

H(P) = q + (1− q)G(P) (3)

where q is the probability of zero precipitation. The gamma probability density function (G(P)) is
calculated as

G(P) =
1

βατ(α)

P∫
0

Pα−1e−P/βdP f or P > 0 (4)

http://www.cjh.com.cn
https://disc.gsfc.nasa.gov/TRMM
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where α > 0 is a shape parameter, β > 0 is a scale parameter, and P represents the precipitation
accumulated in the selected time scale. τ(α) is the gamma function.

Multiple time-scaled SPI is a useful drought index that quantifies different types of drought events.
For instance, the SPI on scales of 2–6 months can best capture the river discharge; the ground WL can
be illustrated well by a 5–24 months time-scaled SPI; and the information of agricultural drought can
be best described by the SPI with time scales of 2–3 months [65,66]. Owing to its applicability, the SPI
based on gamma distribution was adopted and calculated using the TRMM monthly precipitation
data product. Note that TRMM data time spans between 2000 and 2013 were used, while a 30-year
continuous precipitation time series is desirable for a long-period signal.

3.2.2. GRACE Terrestrial Water Storage (TWS) and Its Corresponding Drought Index (GRACE-DSI)

The launch of the Gravity Recovery and Climate Experiment (GRACE) enabled us to compute a
global monthly Equivalent Water Height (EWH) (i.e., TWS) with a spatial resolution of 3◦ from the
time-variable gravity observations (e.g., [67,68]). The degree-60 GRACE Level-2 Release 05 (RL05)
monthly gravity data products, in the form of spherical harmonic coefficients (SHC), allow us to
compute the EWH at a regular grid. These data can be obtained from GeoForschungsZentrum
(GFZ) (ftp://rz-vm152.gfz-potsdam.de/grace/). The choice of GFZ L2 products is made because the
calibrated uncertainties of the spherical harmonics coefficients (SHCs) are available [69]. The time
span of the SHCs covered January 2003 to December 2013, with missing SHCs for January 2004,
January 2011, June 2011, May 2012, October 2012. According to the result from Swenson et al. [70],
the degree-one coefficients were added to account for the geocenter motion, whereas the C20 term
was replaced in the GRACE data by the Satellite Laser Ranging (SLR) results [71] before deriving
EWH. To lower uncertainties of EWH at a higher degree resulting from spatially correlated errors [72],
a destriping process [73] and Gaussian filtering with a radius of 350 km were applied [74]. After these
pre-processing procedures, monthly EWHs were used to either directly correlate with the ground-based
observed WL or to derive the corresponding drought index (called GRACE Drought Severity Index
(GRACE-DSI)) followed by correlating with the observed WL in this study.

GRACE-DSI is a newly proposed standardized drought severity index based on the
GRACE-derived TWS, which can be classified into an 11-level of drought magnitude [42]. It exhibits
favorable agreement with the PDSI, U.S. Drought Monitor (USDM) and NDVI. GRACE-DSI should
capture deeper water storage changes when compared to the aforementioned traditional drought
indices. To resist abnormal TWS anomalies that creates biases, this study uses the median of monthly
TWS anomalies, in contrast to that of the mean of TWS anomalies proposed by Zhao et al. [42].
In addition, the median was used due to its robustness for extreme values while computing the
monthly normal value [16]. Therefore, the GRACE-DSI is modified as

IG
i,j =

Si,j −med
(
Sj
)

sj
(5)

where IG
i,j. and Si,j represents the GRACE-DSI and TWS in year i and month j, respectively. The med

(
Sj
)

and sj components are the median and the sampled standard deviation of TWS for month j, separately.

4. Methodology and Assessment Scheme

4.1. Methodology

Because the observed WL near the estuary in this study represents the total input from the
accumulated precipitation (TWS) of the whole river basin, the time series for the whole MRB and YRB
are averaged or weight-averaged. This process is then followed by a linear regression analysis for
establishing a correlative relationship between the observed WL and the two hydrological variables
(i.e., precipitation and GRACE TWS) as well as their corresponding derived indices (i.e., TRMM-SPI

ftp://rz-vm152.gfz-potsdam.de/grace/
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and GRACE-DSI). The overlapping period for the two hydrological variables and their corresponding
derived indices was from January 2000 to December 2006 (precipitation fitting with the WL in MRB),
from January 2000 to December 2013 (precipitation fitting with the WL in YRB), from January 2003 to
December 2006 (TWS fitting with the WL in MRB), and from January 2000 to December 2013 (TWS
fitting with the WL in YRB), respectively.

These indices are normally obtained through standardization. Therefore, the observed WL of
two basins was standardized to be consistent with the standardized forms of precipitation and TWS
(i.e., TRMM-SPI and GRACE-DSI) before establishing their correlative relationship. The standardized
procedure can be achieved by subtracting the monthly averaged WL from the median values of the
corresponding month (i.e., the WL anomaly) for the entire overlapping time span divided by the
standard deviation of the corresponding month, which can be formulated as

hs
i,j =

hi,j −med
(
hj
)

sj
(6)

where hs
i,j and hi,j represents the standardized water level (SWL) and observed WL in year i and month

j, respectively. The med
(
hj
)

and sj components are the median and the sampled standard deviation of
WL for month j separately. After correlative relationship was established, the reverse procedure for
reconstructing the WL time series can be achieved as

hD
i,j = Ii,j × sj + med

(
hj
)

(7)

where hD
i,j and Ii,j represent the reconstructed WL and the drought index (i.e., SPI and GRACE-DSI) in

year i and month j, respectively.
The TRMM precipitation, GRACE TWS, and their corresponding drought indices all represent

the corresponding accumulations of the entire river basin; however, the spatial distributions of TRMM
precipitation and GRACE TWS are not even. Therefore, a weighting factor is introduced to quantify the
contribution of TRMM precipitation (or GRACE TWS) at each grid of the basin to the WL in the estuary,
so that an optimal WL reconstruction is attained. The weighting factor can be obtained by the Pearson
correlation coefficient (PCC) between the WL in the estuary and the two hydrological variables in
each grid for the whole basin. The larger the PCC of the grid is, the stronger the relationship between
the precipitation (TWS) at the grid and the observed WL is. In turn, this corresponds to a strong
relationship between the precipitation (TWS) at this grid to the observed WL in the estuary. Hence,
the basin weight-averaged precipitation and TWS are calculated as

Pw
i,j,k =

Pi,j,k × ρP
k

∑ ρP
k

(8)

Sw
i,j,k =

Si,j,k × ρS
k

∑ ρS
k

(9)

where Pw
i,j,k (Sw

i,j,k) are the weighted precipitation (TWS) at gridded location k in year i and month j,

and Pi,j,k (Si,j,k) represent precipitation (TWS) at gridded location k in year i and month j. ρP
k (ρS

k ) is the
PCC between the WL in the estuary and precipitation (TWS) at gridded location k. After the weighting
of TRMM precipitation and GRACE TWS, the WL reconstruction procedure (containing replacements
of the TRMM precipitation and GRACE TWS in their weighted form) was applied in both the MRB
and YRB.

4.2. Assessment Schemes

Because the observed WL near the estuary represents the total input from the accumulated
precipitation (TWS) of the entire river basin, the time series for the MRB and YRB are averaged or
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weight-averaged. To evaluate the performance of the reconstructed WL based on TRMM precipitation
and GRACE TWS and their corresponding indices (i.e., TRMM-SPI and GRACE-DSI), the Pearson
correlation coefficient (PCC), the root-mean-square error (RMSE), and the Nash–Sutcliffe model
efficiency (NSE) coefficient were used. PCC is used to quantify the linear relationship between two
variables, which can be calculated as

PCC =
∑N

i=1
(
Xi

o − Xo
)(

Xi
m − Xm

)√
∑N

i=1
(
Xi

o − Xo
)2
√

∑N
i=1
(
Xi

m − Xm
)2

(10)

and RMSE represents the accuracy indicator for the estimate, which is defined as

RMSE =

√
∑N

i=1
(
Xi

m − Xi
o
)2

N
(11)

The NSE, proposed by Nash and Sutcliffe [75], is designed to assess the hydrological models. It is
given by

NSE = 1− ∑N
i=1
(
Xi

m − Xi
o
)2

∑N
i=1
(
Xi

o − Xo
)2 (12)

where Xo and Xo represent the observation and its mean, and Xm is the estimate. The NSE value
ranges from −∞ to 1. The closer the NSE is to one, the more reliable the estimate is.

5. Results and Discussion

In this section, the WL reconstruction based on two hydrological variables (i.e., precipitation and
GRACE TWS) and their corresponding derived indices (i.e., TRMM-SPI and GRACE-DSI) are presented.
The impact of ENSO on the WL reconstruction is explained. The applied weighting procedure is also
examined for whether a substantial improvement can be made to the WL reconstruction. Both internal
and external assessments are conducted for accuracy comparisons among the aforementioned variables
and indices. The internal assessment refers to the usage of three criteria (i.e., PCC, RMSE and NSE)
described in Section 4.2 to evaluate the performance of the WL reconstruction based on hydrological
variables and indices, whereas the external assessment refers to the usage of external data (i.e., another
station time series; Dinh An in the MRB and Hukou in the YRB) to validate the applicability for WL
prediction performance.

Note that a temporal lag between precipitation (TWS) and WL for some basins may exist,
which is dependent upon the climate [76], the topography [77] and the hydrogeology [78] of the basin.
A two-month time lag between TRMM precipitation and the WL was found (Figure 3), while no time
lag between GRACE TWS and the WL was found in the MRB. In contrast, both TRMM precipitation
and GRACE TWS are synchronous with the WL in the YRB on a monthly scale. This can be explained
by the obvious differences in climate and hydrogeological conditions for the two basins. Therefore,
the two-month time shift of the WL in MRB was applied before establishing the correlative relationship.
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To assess the correlation of the internal assessment, the correlative relationships between the
observed monthly WL and the two hydrological variables were obtained by linear regression
(i.e., fitting with an offset plus slope). The regression would then be used to predict the WL in
the two separate basins (Figures 4 and 5). Both TRMM precipitation and GRACE TWS reconstructed
WLs are in agreement with the observed WL. However, for the MRB, almost all WL peaks between the
TRMM precipitation reconstructed WL and the observed WL displayed large discrepancies, except for
the years 2003 and 2007 (Figure 4a). The GRACE TWS reconstructed WL shares both similar results
with that of its precipitation counterpart. In addition, a time delay shorter than one month between the
GRACE TWS reconstructed WL and observed WL is displayed (Figure 5a). For the YRB, the TRMM
precipitation reconstructed WL has obvious underestimations occurring in the years of 2002, 2003,
2010 and 2012 (Figure 4b), whereas the GRACE TWS-derived WL is underestimated in the years of
2003, 2010, 2011 and 2012 (Figure 5b).

Given the above result, the apparent differences occur in the years 2000–2003 and 2004–2006
for the MRB and in the years 2002–2003 and 2010–2012 for the YRB, respectively. The discrepancies
of these years may be attributable to the ENSO events (including El Niño and La Niña events) that
occurred in 1998–2001 (very strong La Niña event), 2002–2003 (medium El Niño event), 2007–2008
(medium La Niña event), 2009–2010 (medium El Niño event) and 2010–2012 (medium La Niña event)
based on the Sea Surface Temperature (SST) in the Niño 3.4 region (see Figure 3 from [79]). The El Niño
(La Niña) events may reduce (increase) the precipitation and discharge in MRB but increase (reduce)
the water in YRB [58,80,81].

The very strong 1998-2001 La Niña event is responsible for the TRMM precipitation reconstructed
WL underestimation in the MRB during the period of 2000–2002. Both TRMM precipitation and
GRACE TWS WL estimations of the YRB in the years 2003 and 2010–2012 are affected by the medium
El Niño events in 2002–2003 and 2009–2010, respectively. Neither El Niño nor La Niña events are
observed during the period of 2004–2006. Hence, the GRACE TWS reconstructed WL underestimation
during this period may be caused by factors other than the climate.
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Figure 5. Water level reconstruction from GRACE TWS at Vam Kenh station of the MRB (a) and at
Datong station of the YRB (b).

The TRMM-SPI shares the same tendency with the SWL in both the MRB and the YRB despite
some minor differences (Figure 6a,b). The TRMM-SPI reconstructed WL for the two basins shows
almost perfect agreement with their corresponding observed WL, except for several slight discrepancies
of WL peaks (Figure 6c,d). Note that the best time scales of TRMM-SPI to reconstruct WL are five
months for the MRB and four months for the YRB. This result shows a consistency with the findings
from previous studies as described in Section 3.1. Contrary to the subjective choice for the best time
scales of TRMM-SPI, no time scale is needed from GRACE-DSI, as it is simply calculated from the
standardization formulae (i.e., Equation (5)). A similar performance of GRACE-DSI is achieved when
compared to TRMM-SPI (Figure 7c,d).



Sensors 2018, 18, 3076 13 of 28Sensors 2018, 18, x 13 of 28 

 

 

 
Figure 6. Cont.



Sensors 2018, 18, 3076 14 of 28
Sensors 2018, 18, x 14 of 28 

 

 

 
Figure 6. Time series of TRMM-SPI values against the standardized water level in the MRB (a) and 
the YRB (b); TRMM-SPI reconstructed water level against the observed water level in the MRB (c) and 
the YRB (d). 

Figure 6. Time series of TRMM-SPI values against the standardized water level in the MRB (a) and the
YRB (b); TRMM-SPI reconstructed water level against the observed water level in the MRB (c) and the
YRB (d).



Sensors 2018, 18, 3076 15 of 28
Sensors 2018, 18, x 15 of 28 

 

 

 
Figure 7. Cont.



Sensors 2018, 18, 3076 16 of 28Sensors 2018, 18, x 16 of 28 

 

 

 

Figure 7. Time series of GRACE-DSI values against the standardized water level in MRB (a) and YRB 
(b); GRACE-DSI reconstructed water level against the observed water level in MRB (c) and YRB (d). 

The above results are all built on the basin-averaged time series of the two hydrological variables 
and their corresponding derived indices. However, the spatial distribution of the precipitation and 
the TWS for the entire basin is uneven. The mean annual precipitation in the middle and lower YRB 
(i.e., 1600–1900 mm) is much larger than that in the upper area (270–500 mm) [57]. For the MRB, the 
precipitation pattern of its downstream, which is different from its upstream, is under the influence 
of monsoons and is also affected by the tropical cyclones coming from the east [82]. Therefore, a 
weighting factor should be able to improve the WL reconstruction accuracy. The PCC between the 
precipitation (TWS) and the WL in the two basins was adopted as relative weighting measure to 
recalculate the total basin-averaged precipitation (TWS) accumulation (hereafter called weight-
averaged TRMM precipitation and weight-averaged GRACE TWS, respectively) (see Section 3.1). 

Figure 7. Time series of GRACE-DSI values against the standardized water level in MRB (a) and YRB
(b); GRACE-DSI reconstructed water level against the observed water level in MRB (c) and YRB (d).

Compared with the precipitation and TWS reconstructed WL in the MRB and the YRB
(Figures 4 and 5), the TRMM-SPI and GRACE-DSI reconstructed WL shows notable improvement
(Figures 6c,d and 7c,d). Almost all underestimations and overestimations of WL peaks diminished or
even vanished in the TRMM-SPI and GRACE-DSI reconstructed results. This finding reveals that the
WL reconstruction based on drought indices derived from hydrological variables can somehow bypass
the influence of ENSO events. We speculate that this may also be attributable to basin-wide integrated
information (i.e., Precipitation and TWS) and the standardization process in deriving the indices.
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The above results are all built on the basin-averaged time series of the two hydrological variables
and their corresponding derived indices. However, the spatial distribution of the precipitation
and the TWS for the entire basin is uneven. The mean annual precipitation in the middle and
lower YRB (i.e., 1600–1900 mm) is much larger than that in the upper area (270–500 mm) [57].
For the MRB, the precipitation pattern of its downstream, which is different from its upstream,
is under the influence of monsoons and is also affected by the tropical cyclones coming from the
east [82]. Therefore, a weighting factor should be able to improve the WL reconstruction accuracy.
The PCC between the precipitation (TWS) and the WL in the two basins was adopted as relative
weighting measure to recalculate the total basin-averaged precipitation (TWS) accumulation (hereafter
called weight-averaged TRMM precipitation and weight-averaged GRACE TWS, respectively)
(see Section 3.1).

Figure 8 displays the correlation between the TRMM precipitation and the observed WL, and the
correlation between the GRACE TWS and the observed WL in the MRB and the YRB. Note that due
to the two-month time shift between TRMM precipitation and the WL in the MRB has been applied.
Precipitation in every gridded location is highly correlated (i.e., all PCC values are close to 0.8) with
WL in MRB (Figure 8a). A similar pattern is observed for the TWS, except for the uppermost part of
the basin (Figure 8c).

Sensors 2018, 18, x 17 of 28 

 

Figure 8 displays the correlation between the TRMM precipitation and the observed WL, and 
the correlation between the GRACE TWS and the observed WL in the MRB and the YRB. Note that 
due to the two-month time shift between TRMM precipitation and the WL in the MRB has been 
applied. Precipitation in every gridded location is highly correlated (i.e., all PCC values are close to 
0.8) with WL in MRB (Figure 8a). A similar pattern is observed for the TWS, except for the uppermost 
part of the basin (Figure 8c). 

For the YRB, the correlation between TRMM precipitation and the WL ranges from 0.3 in the 
lower to 0.8 in the upper basin (Figure 8b). The lower YRB is affected by the EASM, which has 
significant impact on rainfall [50,56] and may cause the changes of rainfall in terms of start time, 
duration and intensity. This finding may be responsible for the relatively low correlation between 
precipitation and the WL in the lower basin in addition to intensive human activities in the lower 
YRB. In general, the TWS is highly correlated with the WL for the entire YRB (Figure 8d). Therefore, 
we anticipate the relationship of precipitation (with its derived TRMM-SPI) or TWS (with its derived 
GRACE-DSI) with the WL is strengthened by the weighting factor based on correlations, and hence, 
the performance of WL reconstruction should be improved. 

 
Figure 8. Correlation between remotely sensed TRMM precipitation and the observed water level in 
the MRB (a) and the YRB (b); The correlation between GRACE TWS and the observed the water level 
in the MRB (c) and the YRB (d). Note that the left-top panel (a) represents that the precipitation time 
series shifts two months forward before correlating with the observed water level. 

After the weighting procedure was applied, the precipitation and TWS were weighted and later 
converted into weighted TRMM-SPI and weighted GRACE-DSI for reconstructing the WL in the 
MRB and the YRB based on the same procedure (Figures 9 and 10). However, the differences between 
the unweighted and weighted procedures are not apparent in the figures. Therefore, both assessment 
schemes were adopted to recognize these differences, including three criteria: PCC, RMSE and NSE. 

Table 1 shows the evaluation of two types of variables: traditional remote sensing variables (i.e., 
NDVI and LST), and remotely sensed hydrological variables (i.e., TRMM precipitation and GRACE 

Figure 8. Correlation between remotely sensed TRMM precipitation and the observed water level in
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in the MRB (c) and the YRB (d). Note that the left-top panel (a) represents that the precipitation time
series shifts two months forward before correlating with the observed water level.

For the YRB, the correlation between TRMM precipitation and the WL ranges from 0.3 in the lower
to 0.8 in the upper basin (Figure 8b). The lower YRB is affected by the EASM, which has significant
impact on rainfall [50,56] and may cause the changes of rainfall in terms of start time, duration and
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intensity. This finding may be responsible for the relatively low correlation between precipitation
and the WL in the lower basin in addition to intensive human activities in the lower YRB. In general,
the TWS is highly correlated with the WL for the entire YRB (Figure 8d). Therefore, we anticipate the
relationship of precipitation (with its derived TRMM-SPI) or TWS (with its derived GRACE-DSI) with
the WL is strengthened by the weighting factor based on correlations, and hence, the performance of
WL reconstruction should be improved.

After the weighting procedure was applied, the precipitation and TWS were weighted and later
converted into weighted TRMM-SPI and weighted GRACE-DSI for reconstructing the WL in the MRB
and the YRB based on the same procedure (Figures 9 and 10). However, the differences between the
unweighted and weighted procedures are not apparent in the figures. Therefore, both assessment
schemes were adopted to recognize these differences, including three criteria: PCC, RMSE and NSE.

Table 1 shows the evaluation of two types of variables: traditional remote sensing variables
(i.e., NDVI and LST), and remotely sensed hydrological variables (i.e., TRMM precipitation and
GRACE TWS related variables). In general, the performance of the TRMM precipitation and GRACE
TWS related variables are better than the traditional remote sensing variables in both the MRB and the
YRB. This reveals that water balance components (i.e., precipitation and TWS) are better predictors.
Furthermore, the reconstructed WL derived from precipitation related variables performs better
than TWS derived variables in the MRB, although it is reverse in the YRB. This result indicates that
precipitation (TWS) has a larger (smaller) contribution to WL in the MRB than the YRB. This finding
highlights the geographic differences between the MRB and the YRB in terms of monsoonal climate
(i.e., both tropics and subtropics) that govern precipitation; latitudinal (i.e., MRB) and longitudinal
(i.e., YRB) direction and topography that govern the pathway and the speed of flow; and underground
hydro-geologic properties that govern the storage-runoff relationship.

Compared with unweighted variables and indices, the performances of their weighted
counterparts are shown to have a substantial improvement, except for the weighted precipitation
inferred WL in the MRB. This minor degradation may be ascribed to the time lag between precipitation
and the WL since all other combinations without a time lag were improved by applying the weighting
procedure. This improvement varies from 0.2% (TRMM-SPI in Mekong) to 4.7% (precipitation
in Yangtze) for the increase in PCC, from 0.7% (GRACE-DSI in Yangtze) to 9.3% (precipitation in
Yangtze) for the decrease in RMSE, and from 6.2% (GRACE-DSI in Yangtze) to 9.7% (precipitation
in Yangtze) for the increase in NSE. In addition, the weighting procedure has the largest impact on
precipitation-inferred WL in the YRB, which probably results from its least accurate reconstruction
performance compared with other results. This indicates that the less accurate the performance is,
the more the improvement it yields after the weighting procedure. We posit that the weighting
procedure is a useful method for improving the accuracy of WL reconstructions.

We conclude that precipitation and TWS can compute the WL accurately as a result of
PCC values of more than 0.81, RMSE values of less than 1.53 m, and NSE values of over 0.65.
After standardization, the TRMM-SPI and GRACE-DSI perform better than that of direct precipitation
and TWS (i.e., PCC > 0.94, RMSE < 0.88 m, and NSE >0.88). Finally, all results are improved by the
weighting procedure. Overall, the best WL estimations in both the MRB and the YRB are derived from
a weighted TRMM-SPI, with PCCs of 0.98 and 0.95, RMSEs of 0.19 m and 0.85 m, and NSEs of 0.95 and
0.85 for the MRB and the YRB, respectively.

To externally assess the applicability of our method, a similar procedure was applied to predict
the WL at the Dinh An (Hukou) station in the MRB (YRB) based on the reconstructed relationships.
For the MRB, the results in both the Dinh An and Vam Kenh stations are close in terms of their PCC and
NSE values, but the results in Dinh An are slightly larger than that of Vam Kenh (Table 1). The external
assessment in the YRB also shows a similar performance. Overall, our result is still shown to have a
good performance (Table 1). Our approach can be useful to not only the WL reconstruction in gauged
stations, but also for reconstructing the WL of ungauged stations via the data of other gauged stations
in surrounding regions.
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observed water level in the MRB (a) and the YRB (b) and weight-averaged TRMM-SPI reconstructed
water level against the observed water level in the MRB (c) and the YRB (d).
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Figure 10. Water level reconstruction based on weight-averaged GRACE-derived TWS against the
observed water level in the MRB (a) and the YRB (b) and weight-averaged GRACE-DSI reconstructed
water level against the observed water level in the MRB (c) and the YRB (d).
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Table 1. Performance of the reconstructed water level from different indices at Vam Kenh (Datong)
station in the MRB (YRB) and the predicted water level at Dinh An (Hukou) station in the MRB (YRB),
respectively, against the observed water level. The predictions for Dinh An in the MRB and for Hukou
in the YRB serve as the external assessment. The Dinh An (Hukou) prediction means the WL of Dinh
An (Hukou) was predicted based on the reconstructed relationships between the WL from the Vam
Kenh (Datong) station and abovementioned variables.

Basin Data PCC RMSE (m) NSE

Mekong
(Vam Kenh)

NDVI 0.838 0.467 0.703
LST 0.881 0.405 0.776

P 0.909 0.355 0.827
Weighted P 0.909 0.356 0.826
TRMM-SPI 0.975 0.195 0.949

Weighted TRMM-SPI 0.976 0.193 0.950
TWS 0.874 0.381 0.764

Weighted TWS 0.879 0.374 0.772
GRACE-DSI 0.961 0.341 0.922

Weighted GRACE-DSI 0.964 0.210 0.928

Yangtze
(Datong)

NDVI 0.837 1.411 0.700
LST 0.819 1.479 0.671

P 0.805 1.528 0.648
Weighted P 0.843 1.385 0.711
TRMM-SPI 0.941 0.878 0.884

Weighted TRMM-SPI 0.945 0.850 0.891
TWS 0.905 1.110 0.819

Weighted TWS 0.914 1.057 0.836
GRACE-DSI 0.945 0.881 0.886

Weighted GRACE-DSI 0.946 0.875 0.887

Mekong
(Dinh An prediction)

NDVI 0.835 0.787 0.677
LST 0.900 0.645 0.783

P 0.907 0.582 0.823
Weighted P 0.909 0.576 0.826
TRMM-SPI 0.974 0.319 0.948

Weighted TRMM-SPI 0.976 0.307 0.952
TWS 0.880 0.578 0.774

Weighted TWS 0.882 0.572 0.779
GRACE-DSI 0.953 0.370 0.907

Weighted GRACE-DSI 0.959 0.347 0.919

Yangtze
(Hukou prediction)

NDVI 0.832 1.827 0.693
LST 0.821 1.882 0.674

P 0.816 1.903 0.667
Weighted P 0.850 1.737 0.722
TRMM-SPI 0.942 1.122 0.884

Weighted TRMM-SPI 0.944 1.099 0.889
TWS 0.900 1.455 0.810

Weighted TWS 0.911 1.379 0.829
GRACE-DSI 0.946 1.122 0.887

Weighted GRACE-DSI 0.947 1.117 0.888

6. Conclusions

Contrary to the traditional WL estimation based on remote sensing variables (i.e., NDVI and LST),
a method of reconstructing WL was investigated in the MRB and the YRB using the remotely sensed
precipitation, TWS and their corresponding drought indices (i.e., TRMM-SPI and GRACE-DSI) on a
monthly scale. We found that the total basin-averaged precipitation and TWS matched well with the
observed WL in both river basins. Their corresponding indices derived through standardization can
further improve the accuracy of WL estimations because the standardized procedure can bypass the
influence of ENSO on the precipitation and TWS of the two basins.
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For further improvement to our model, a weighting factor (i.e., PCC between precipitation
(TWS) and WL), was also introduced to calculate the weight-averaged precipitation (TWS) of the
total basin. The weighted TRMM-SPI obtained the best reconstructed WL with PCC values of 0.98
and 0.95, RMSE values of 0.19 m and 0.85 m, and NSE values of 0.95 and 0.85 for the MRB and the
YRB, respectively. The results in the two basins derived from the weighted GRACE-DSI also display
a good performance, with PCCs of 0.96 and 0.95, RMSEs of 0.21 m and 0.88 m, and NSEs of 0.93
and 0.89, respectively. Since the standardization and weighting procedures perform well for the two
hydrological variables and their corresponding indices in the two basins, it is likely to be applicable
for other variables (e.g., evapotranspiration) and indices (i.e., ENSO and monsoon indices) for more
accurate WL reconstructions in other large basins.

Note that different hydrological variables may have different performances in different river
basins, as the existence and length of the hysteretic relationship between hydrological variables and
WL depend on the hydro-climatic and hydrographic conditions, not to mention different conditions
for the up-, mid-, and down-stream segments of each basin. A comprehensive assessment for
different river basins is necessary to further validate the applicability of the presented method
in the near future. In addition to testing an improved temporal resolution of remotely sensed
hydrological variables, our proposed method can be further extended by analyzing the hysteresis
relationship that is affected by topography, climate and hydrogeology for different river basins while
considering different combinations of hydrological variables for improving the WL reconstruction and
estimation methodology.
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