Imaging Time Series for the Classification of EMI Discharge Sources
Abstract
:1. Introduction
Related Work
2. The Proposed Solution
3. EMI Measurement Technique
4. Machine Learning Algorithms
4.1. Gramian Angular Field (GAF)
4.2. Local Phase Quantisation (LPQ)
4.3. Local Binary Pattern (LBP)
4.4. Random Forest (RF)
- At an initial node, randomly choose p feature instances from the overall classifier input q, such that p is much smaller than q.
- Compute the best split point using Information Gain as
- Based on the best split point, split the main node into child nodes and reduce feature instances dimension along the nodes.
- Repeat Steps 1–3 until a maximum depth is reached.
- Repeat Steps 1–4 for trees of the model. It was found that a larger number of trees yield a higher performance [41].
5. Application to EMI data
- Divide each time series signal into segments of 2000 samples for ease of GAF computation.
- Map each time series segment to an image using GASF and GADF algorithms.
- Resize the images to for ease of feature extraction computation.
- Calculate LPQ and LBP histograms from each image to extract the important features and non-redundant information.
- Implement the feature histograms with associated labels in the RF classifier.
- Randomly shuffle the dataset.
- Split the dataset into 10 groups, in that each group contains samples from each of the 9 classes. For each individual group:
- Leave the group for testing and use the remaining ones for training.
- Train and test the model and obtain the classification accuracy.
- Discard the model, save the accuracy for this fold, and repeat Steps 3–5.
- Calculate the average accuracy across the saved accuracy ( in Figure 7) from each fold.
6. Results and Discussion
Advantages and Limitations of the Proposed Algorithms
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Timperley, J.E.; Vallejo, J.M. Condition assessment of electrical apparatus with EMI diagnostics. IEEE Trans. Ind. Appl. 2017, 53, 693–699. [Google Scholar] [CrossRef]
- Song, H.; Wu, Q.; Dong, H. Emi-based diagnosis to grounding grids by combining ensemble empirical mode decomposition and ICA. In Proceedings of the 8th International Conference on Computer Modeling and Simulation, Canberra, Australia, 20–23 January 2017; pp. 196–200. [Google Scholar]
- Song, L.-P.; Pasion, L.R.; Oldenburg, D.W. Space-time MUSIC imaging of emi sensing data and a subspace partition study. J. Electromagnet. Wave 2017, 31, 1520–1540. [Google Scholar] [CrossRef]
- Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-Narborough, M.; Stewart, B.G.; Boreham, P. Classification of partial discharge signals by combining adaptive local iterative filtering and entropy features. Sensors 2018, 18, 406. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 3939–3945. [Google Scholar]
- Huang, D.; Shan, C.; Ardabilian, M.; Wang, Y.; Chen, L. Local binary patterns and Its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2011, 41, 765–781. [Google Scholar] [CrossRef]
- Vătămanu, O.A.; Jivulescu, M. Image classification using local binary pattern operators for static images. In Proceedings of the IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 23–25 May 2013; pp. 173–178. [Google Scholar]
- Pan, Z.; Fan, H.; Zhang, L. Texture classification using local pattern based on vector quantization. IEEE Trans. Image Process. 2015, 24, 5379–5388. [Google Scholar] [CrossRef] [PubMed]
- Nannia, L.; Brahnamb, S.; Lumini, A. Local phase quantization descriptor for improving shape retrieval. Pattern Recognit. Lett. 2012, 33, 2254–2260. [Google Scholar] [CrossRef]
- Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Proceedings of the 3rd international conference on Image and Signal Processing, Cherbourg-Octeville, France, 1–3 July 2008; pp. 236–243. [Google Scholar]
- Baek, W.; Baek, S.; Kim, D.Y. Characterization of system status signals for multivariate time series discretization based on frequency and amplitude variation. Sensors 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Albarracín, R.; Robles, G.; Martínez-Tarifa, J.M.; Ardila-Rey, J. Separation of sources in radiofrequency measurements of partial discharges using time-power ratios maps. ISA Trans. 2015, 58, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M. Separation of radio-frequency sources and localization of partial discharges in noisy environments. Sensors 2015, 5, 9882–9898. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, F.; Garnacho, F.; Khamlichi, F.; Ortego, J. Classification of partial discharge sources by the characterization of the pulses waveform. In Proceedings of the IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; pp. 514–519. [Google Scholar]
- Moore, P.J.; Portugues, I.E.; Glover, I.A. Radiometric location of partial discharge sources on energized high-voltage plant. IEEE Trans. Power Del. 2005, 20, 2264–2272. [Google Scholar] [CrossRef]
- Asiri, Y.; Vouk, A.; Renforth, L.; Clark, D.; NeuralWare, J.C. Neural network based classification of partial discharge in HV motors. In Proceedings of the Electrical Insulation Conference (EIC), Annapolis, MD, USA, 5–8 June 2011; pp. 333–339. [Google Scholar]
- Hazlee, I.; Gamil, A.; Norrima, M.; Hamzah, A. Classification of multiple partial discharge sources in dielectric insulation material using Cepstrum analysis–artificial neural network. IEEJ T. Electr. Electron. Eng. 2017, 12, 357–364. [Google Scholar]
- Dey, D.; Chatterjee, B.; Chakravorti, S.; Munshi, S. Cross-wavelet transform as a new paradigm for feature extraction from noisy partial discharge pulses. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 157–166. [Google Scholar] [CrossRef]
- Lalitha, E.M.; Satish, L. Wavelet analysis for classification of multi-source PD patterns. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 40–47. [Google Scholar] [CrossRef]
- Gu, F.-C.; Chang, H.-C.; Chen, F.-H.; Kuo, C.-C. Artial discharge pattern recognition of power cable joints using extension method with fractal feature enhancement. Expert. Syst. Appl. 2012, 39, 2804–2812. [Google Scholar] [CrossRef]
- Chen, H.-C.; Gu, F.-C. Pattern recognition with cerebellar model articulation controller and fractal features on partial discharges. Expert. Syst. Appl. 2012, 39, 6575–6584. [Google Scholar] [CrossRef]
- Chen, H. Fractal features-based pattern recognition of partial discharge in xlpe power cables using extension method. IET Gener. Transm. Dis. 2012, 6, 1096–1103. [Google Scholar] [CrossRef]
- Tang, J.; Tao, J.; Zhang, X.; Zhou, J. Investigation of Partial discharge on typical defects with uhf detection method for gis. Electrotech. Rev. 2012, 88, 351–355. [Google Scholar]
- Wong, J.K.R.; Hazlee, I.; Ab Halim, A.-B. Classification of partial discharge measured under different levels of noise contamination. PLoS ONE 2017, 12, 1–20. [Google Scholar]
- Janani, H.; Kordi, B.; Jozani, M.J. Classification of simultaneous multiple partial discharge sources based on probabilistic interpretation using a two-step logistic regression algorithm. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 54–65. [Google Scholar] [CrossRef]
- Mazroua, A.A.; Bartnikas, R.; Salama, M.M.A. Neural network system using the multi-layer perceptron technique for the recognition of PD pulse shapes due to cavities and electrical trees. IEEE Trans. Power Del. 1995, 10, 92–96. [Google Scholar] [CrossRef]
- Salama, M.M.A.; Bartnikas, R. Fuzzy logic applied to PD pattern classification. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 118–123. [Google Scholar] [CrossRef]
- Contin, A.; Cavallini, A.; Montanari, G.C.; Pasini, G.; Puletti, F. Digital detection and fuzzy classification of partial discharge signals. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 335–348. [Google Scholar] [CrossRef]
- Hunter, J.A.; Lewin, P.L.; Hao, L.; Walton, C.; Michel, M. Autonomous classification of pd sources within three-phase 11 kv pilc cables. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2117–2124. [Google Scholar] [CrossRef]
- Ambikairajah, R.; Phung, B.T.; Ravishankar, J.; Blackburn, T. Spectral features for the classification of partial discharge signals from selected insulation defect models. IET Sci. Meas. Technol. 2013, 7, 104–111. [Google Scholar] [CrossRef]
- Albarracín, R.; Ardila-Rey, J.A.; Masud, A.A. On the use of monopole antennas for determining the effect of the enclosure of a power transformer tank in partial discharges electromagnetic propagation. Sensors 2016, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods; CISPR-16-1-1; International Electronic Commission: Geneva, Switzerland, 2015; p. 302.
- Timperley, J.E.; Vallejo, J.M.; Nesbitt, A. Trending of EMI data over years and overnight. In Proceedings of the IEEE Electrical Insulation Conference, Philadelphia, PA, USA, 8–11 June 2014; pp. 176–179. [Google Scholar]
- Dengwen, Z. An edge-directed bicubic interpolation algorithm. In Proceedings of the 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 1186–1189. [Google Scholar]
- Xiao, Y.; Cao, Z.; Wang, L.; Li, T. Local phase quantization plus: A principled method for embedding local phase quantization into fisher vector for blurred image recognition. Inf. Sci. 2017, 420, 77–95. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef] [Green Version]
- Costa, Y.M.G.; Oliveira, L.S.; Koerich, A.L.; Gouyon, F.; Martins, J.G. Music genre classification using lbp textural features. Sig. Proc. 2012, 92, 2723–2737. [Google Scholar] [CrossRef]
- Battaglino, D.; Lepauloux, L.; Pilati, L.; Evans, N. Acoustic context recognition using local binary pattern codebooks. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 18–21 October 2015; pp. 1–5. [Google Scholar]
- Topi, M.; Timo, O.; Matti, P.; Maricor, S. Robust texture classification by subsets of local binary patterns. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000; pp. 947–950. [Google Scholar]
- Rathie, P.; Da Silva, S. Shannon, levy, and tsallis: A note. Appl. Math. Sci. 2008, 2, 1359–1363. [Google Scholar]
- Criminisi, A.; Konukoglu, E.; Shotton, J. Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-supervised Learning; Microsoft Technical Report: Redmond, WA, USA, 2011; pp. 5–19. [Google Scholar]
- Zhang, Y.; Liu, Y.; Chao, H.-C.; Zhang, Z.; Zhang, Z. Classification of incomplete data based on evidence theory and an extreme learning machine in wireless sensor networks. Sensors 2018, 18, 1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, S.; Zhao, X.; Yang, Z. Research on construction workers’ activity recognition based on smartphone. Sensors 2018, 18, 2667. [Google Scholar] [CrossRef] [PubMed]
- Alippi, C.; Roveri, M. Virtual k-fold cross validation: An effective method for accuracy assessment. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Vanwinckelen, G.; Blockeel, H. On estimating model accuracy with repeated cross-validation. In Proceedings of the 21st Belgian-Dutch Conference on Machine Learning, Ghent, Belgium, 24–25 May 2012; pp. 39–44. [Google Scholar]
- Fang, Y.; Zhang, H.; Mao, Q.; Li, Z. Land cover classification with gf-3 polarimetric synthetic aperture radar data by random forest classifier and fast super-pixel segmentation. Sensors 2018, 18, 2014. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xu, X.; Wang, L.; Pu, F. Gaofen-3 polsar image classification via xgboost and polarimetric spatial information. Sensors 2018, 18, 611. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Yi, D.; Liu, C.; Guo, L.; Chen, W.-H. Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons. Sensors 2018, 18, 2726. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-I.; Kang, H.-B. Object detection and classification by decision-level fusion for intelligent vehicle systems. Sensors 2017, 17, 207. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Yang, Z.; Ren, J.; Jiang, M.; Ling, W.-K. Linear vs. nonlinear extreme learning machine for spectral-spatial classification of hyperspectral images. Sensors 2017, 17, 2603. [Google Scholar] [CrossRef] [PubMed]
- Bystrov, A.; Hoare, E.; Tran, T.-Y.; Clarke, N.; Gashinova, M.; Cherniakov, M. Automotive system for remote surface classification. Sensors 2017, 17, 745. [Google Scholar] [CrossRef] [PubMed]
Event | no. files | Duration | Asset | Total Training/Testing Samples |
---|---|---|---|---|
Arcing | 1 | 10 s | Boiler Feed Pump | 59 |
Corona | 1 | 10 s | Generator | 59 |
Data Modulation | 1 | 10 s | Boiler Feed Pump | 59 |
PD | 1 | 10 s | Boiler Feed Pump | 59 |
Process Noise | 1 | 10 s | Generator | 59 |
Random Noise | 5 | 1 s | Boiler Feed Pump | 59 |
1 | 5 s | Steam Turbine Generator | ||
Exciter | 1 | 10 s | Generator Step-Up | 59 |
mPD | 1 | 10 s | Generator | 59 |
mS | 2 | 1 s | Salt Water Pump | 59 |
1 | 8 s |
Feature Extraction Technique | Accuracy % | Variance | Precision | Recall | F-Measure |
---|---|---|---|---|---|
ALIF-Entropy | 73 | 0.002 | 0.66 | 0.73 | 0.69 |
GASF-LPQ and GADF-LPQ | 79 | 0.001 | 0.81 | 0.79 | 0.80 |
GASF-LBP and GADF-LBP | 84 | 0.001 | 0.84 | 0.84 | 0.84 |
Feature Extraction Technique | 1000 Samples | 2000 Samples | 4000 Samples |
---|---|---|---|
GASF-LPQ and GADF-LPQ | 71% CI{70.95,71.045} | 79% CI{78.97.,79.029} | 78% CI{77.96,78.037} |
GASF-LBP and GADF-LBP | 70% CI{69.97,70.027} | 84% CI{83.97,84.023} | 87% CI{86.98,87.018} |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-Narborough, M.; Stewart, B.G.; Boreham, P. Imaging Time Series for the Classification of EMI Discharge Sources. Sensors 2018, 18, 3098. https://doi.org/10.3390/s18093098
Mitiche I, Morison G, Nesbitt A, Hughes-Narborough M, Stewart BG, Boreham P. Imaging Time Series for the Classification of EMI Discharge Sources. Sensors. 2018; 18(9):3098. https://doi.org/10.3390/s18093098
Chicago/Turabian StyleMitiche, Imene, Gordon Morison, Alan Nesbitt, Michael Hughes-Narborough, Brian G. Stewart, and Philip Boreham. 2018. "Imaging Time Series for the Classification of EMI Discharge Sources" Sensors 18, no. 9: 3098. https://doi.org/10.3390/s18093098
APA StyleMitiche, I., Morison, G., Nesbitt, A., Hughes-Narborough, M., Stewart, B. G., & Boreham, P. (2018). Imaging Time Series for the Classification of EMI Discharge Sources. Sensors, 18(9), 3098. https://doi.org/10.3390/s18093098