An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microarray Fabrication
- (a)
- Chemical process. The A-MA substrates were chemically processed with the following steps: (a) cleaning (to remove organic contamination) and activation process (to increase the Hydroxyl group (-OH) density at SiO2 surface) by plasma O2 treatment was performed by Sentech plasma generator (300 s, 100 W); (b) vapor phase silanization with GOPS (glycidoxysilane) was carried out in under vacuum Oven with the follow conditions: 4 h, 0.1 Atm, and 125 °C; (c) spotting of capture probes by a Perkin Elmer piezo spotter dispensing drops of 300 pL of solution of oligonucleotides (10 µM) in Na2HPO4 buffer (150 mM, pH = 9); (d) probe anchoring step by incubating the spotted substrate for 4 h at 30 °C and 90% humidity relative in a climatic cell; (e) passivation step by deposition of BSA protein layer, dipping the substrates in BSA 1%aqueous solution, SSC 2X, SDS 0.1%, for 15 h at 55 °C. The substrates were then rinsed in deionized water and dried by a nitrogen flow. Each process step was characterized by XPS analysis (see below Section 3.2.1).
- (b)
- Microarray for optical characterization. 6 × 14 microarray layout (spot size 100 µm, pitch 250 µm) was prepared by a Non-Contact PiezoArray (PERKIN ELMER) in a clean room. The spotting plate for this study was composed of two main DNA oligo solutions made by a mixture of Cy5-labeled oligo P1 and not-labeled oligo P1 at different concentration ratios to maintain the total concentration of DNA oligo ([Cy5-labeled oligo P1] + [not-labeled oligo P1] ) equal to 10 µM in 150 mM of phosphate printing buffer. Figure 1a reports the scheme of the layout used for this study.
- (c)
- Microarray for probe density characterization. Microarray layout of size 6 × 21 (spot size 100 µm, pitch 250 µm) was prepared by a Non-Contact PiezoArray (PERKIN ELMER) in clean room. The spotting solutions were composed of two main DNA oligo solutions made by a mixture of Cy5-labeled oligo P1 and not-labeled oligo P1 at different concentrations to maintain the total concentration of DNA oligo ([Cy5-labeled oligo P1] + [not-labeled oligo P1] ) equal to 10 µM in 150 mM of phosphate printing buffer. The final concentrations of P1 Cy5-labeled probes were in the range of 5000–10 F/µm2. Figure 1b reports the scheme of the layout used for this study.
- (d)
- Microarray for analytical performances characterization. Microarray layouts of size 6 × 18 spots (spot size 100 µm, pitch 250 µm) were printed by a Non-Contact PiezoArray (PERKIN ELMER) in clean room according to previously described procedures [28].
2.3. Hybridization Protocol
2.4. SiO2 Thickness and Optical Measurements
3. Results and Discussion
3.1. Substrate Optical Characterization
3.1.1. Reflectance Measurements
3.1.2. Fluorescence Signal Characterization
3.2. Surface Grafting Characterization
3.2.1. Chemical Process and Grafting Characterization
3.2.2. Capture Probe Density Evaluation
3.3. Analytical Performances Characterization
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Brown, P.O.; Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 1997, 21, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Downward, J. Navigating gene expression using microarrays—A technology review. Nat. Cell Biol. 2001, 3, E190–E195. [Google Scholar] [CrossRef] [PubMed]
- Foglieni, B.; Brisci, A.; San Biagio, F.; Di Pietro, P.; Petralia, S.; Conoci, S.; Ferrari, M.; Cremonesi, L. Integrated PCR amplification and detection processes on a Lab-on-Chip platform: a new advanced solution for molecular diagnostics. Clin. Chem. Lab. Med. 2010, 48, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Magee, D.M.; Gaster, R.S.; LaBaer, J.; Wang, S.X. Emerging protein array technologies for proteomics. Expert Rev. Proteom. 2013, 10, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petralia, S.; Ventimiglia, G.; Ceschia, S.; Gasparin, M.; Verardo, R. A Novel Silver Coating for Antigen-Microarray Preparation Suitable for Application on Antibody Recognition. BioNanoScience 2017, 7, 449–455. [Google Scholar] [CrossRef]
- Chevelot, Y. Carbohydrate Microarray; Humana Press: New York, NY, USA, 2012. [Google Scholar]
- Yamamura, S.; Kishi, H.; Tokimitsu, Y.; Kondo, S.; Honda, R.; Rao, S.R.; Omori, M.; Tamiya, E.; Muraguchi, A. Single-Cell Microarray for Analyzing Cellular Response. Anal. Chem. 2005, 77, 8050–8056. [Google Scholar]
- Heller, M.J. DNA Microarray Technology: Devices, Systems, and Applications. Annu. Rev. Biomed. Eng. 2002, 4, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Petralia, S.; Ventimiglia, G. Recent Advances in DNA Microarray Technology: An Overview on Production Strategies and Detection Methods. BioNanoScience 2013, 3, 428–450. [Google Scholar]
- Erickson, D.; O’ Dell, D.; Jiang, L.; Oncescu, V.; Gumus, A.; Lee, S.; Mancuso, M.; Mehta, S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 2014, 14, 3159–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petralia, S.; Conoci, S. PCR Technologies for Point of Care Testing: Progress and Perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Van Reenen, A.; de Jong, A.M.; den Toonder, J.M.J.; Prins, M.W.J. Integrated lab-on-chip biosensing systems based on magnetic particle actuation—A comprehensive review. Lab Chip 2014, 14, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Petralia, S.; Verardo, R.; Klaric, E.; Cavallaro, S.; Alessia, E.; Schneider, C. In-check system: A highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens. Actuators B Chem. 2013, 187, 99–105. [Google Scholar] [CrossRef]
- Petralia, S.; Sciuto, E.L.; Conoci, S. A Novel Miniaturized Biofilter based on Silicon Micropillars for Nucleic Acid Extraction. Analyst 2017, 142, 140–146. [Google Scholar] [CrossRef] [PubMed]
- García-Meca, C.; Lechago, S.; Brimont, A.; Griol, A.; Mas, S.; Sánchez, L.; Bellieres, L.; Losilla, N.S.; Martí, J. On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light Sci. Appl. 2017, 6, e17053. [Google Scholar] [CrossRef] [PubMed]
- Schema, M. DNA Microarray: A Pratical Approach; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Yang, G.; Gao, Y.; Lauren, K.W.; Georgiadis, R.M. Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 2006, 34, 3370–3377. [Google Scholar]
- Giamblanco, N.; Conoci, S.; Russo, D.; Marletta, G. Single-Step Label-Free Hepatitis B Virus Detection by Piezoelectric Biosensor. RSC Adv. 2015, 5, 38152–38158. [Google Scholar] [CrossRef]
- Peterson, A.W.; Heaton, R.J.; Georgiadis, R.M. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001, 24, 5163–5168. [Google Scholar] [CrossRef]
- Grigorenko, E.V. DNA Arrays: Technologies and Experimental Strategies; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Callari, F.L.; Petralia, S.; Conoci, S.; Sortino, S. Light-triggered DNA release by dynamic monolayer film. New J. Chem. 2008, 32, 1899–1903. [Google Scholar] [CrossRef]
- Petralia, S.; Sciuto, E.L.; Di Pietro, M.L.; Zimbone, M.; Grimaldi, M.G.; Conoci, S. Innovative Chemical Strategy for PCR-free Genetic Detection of Pathogens by an Integrated Electrochemical Biosensor. Analyst 2017, 142, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- Hien, L.T.; Quynh, L.K.; Huyen, V.T.; Tu, B.D.; Hien, N.T.; Phuong, D.M.; Nhung, P.H.; Giang, D.T.H.; Duc, N.H. DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7. [Google Scholar] [CrossRef]
- Sortino, S.; Petralia, S.; Condorelli, G.G.; Conoci, S.; Condorelli, G. Novel photoactive self-assembled monolayer for immobilization and cleavage of DNA. Langmuir 2003, 19, 536–539. [Google Scholar] [CrossRef]
- Guo, W.; Cui, Y.; Zhao, W.; Gu, C. Ultrasensitive Label-Free DNA Detection Using Cantilever of Atomic Force Microscope Amplified by Gold Nanoparticles. Sens. Lett. 2016, 14, 54–58. [Google Scholar]
- Conoci, S.; Mascali, A.; Pappalardo, F. Synthesis, DNA binding properties and electrochemistry to an electrode-bound DNA of an novel anthracene-viologen conjugate. RSC Adv. 2014, 4, 2845–2850. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Gaur, G.; Retterer, S.T.; Laibinis, P.E.; Weiss, S.M. Flow-through porous silicon membranes for real-time label-free biosensing. Anal. Chem. 2016, 88, 10940–10948. [Google Scholar] [CrossRef] [PubMed]
- Libertino, S.; Conoci, S.; Scandurra, A.; Spinella, C. Biosensor integration on Si-based devices: feasibility studies and examples. Sens. Actuators B 2013, 179, 240–251. [Google Scholar] [CrossRef]
Probe. | Fluorescence (a.u.) | Probe Densities (F/µm2) |
---|---|---|
Cy5-P1 | 32300 ± 1500 | 1815 ± 120 |
Cy5-P1 | 34620 ± 2100 | 2020 ± 150 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petralia, S.; Vicario, N.; Calabrese, G.; Parenti, R.; Conoci, S. An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection. Sensors 2018, 18, 3138. https://doi.org/10.3390/s18093138
Petralia S, Vicario N, Calabrese G, Parenti R, Conoci S. An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection. Sensors. 2018; 18(9):3138. https://doi.org/10.3390/s18093138
Chicago/Turabian StylePetralia, Salvatore, Nunzio Vicario, Giovanna Calabrese, Rosalba Parenti, and Sabrina Conoci. 2018. "An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection" Sensors 18, no. 9: 3138. https://doi.org/10.3390/s18093138
APA StylePetralia, S., Vicario, N., Calabrese, G., Parenti, R., & Conoci, S. (2018). An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection. Sensors, 18(9), 3138. https://doi.org/10.3390/s18093138