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Abstract: For long-term missions in complex seas, the onboard energy resources of autonomous
underwater vehicles (AUVs) are limited. Thus, energy consumption reduction is an important
aspect of the study of AUVs. This paper addresses energy consumption reduction using model
predictive control (MPC) based on the state space model of AUVs for trajectory tracking control.
Unlike the previous approaches, which use a cost function that consists of quadratic deviations of
the predicted controlled output from the reference trajectory and quadratic input changes, a term
of quadratic energy (i.e., quadratic input) is introduced into the cost function in this paper. Then,
the MPC control law with the new cost function is constructed, and an analysis on the effect of
the quadratic energy term on the stability is given. Finally, simulation results for depth tracking
control are given to demonstrate the feasibility and effectiveness of the improved MPC on energy
consumption optimization for AUVs.

Keywords: autonomous underwater vehicles; model predictive control; trajectory tracking;
energy consumption optimization; cost function

1. Introduction

Autonomous underwater vehicles (AUVs) are a unique solution for underwater missions,
including resource exploration, target search, submarine pipeline tracking, environmental monitoring,
and submerged floating operations [1–3]. AUVs’ motion control is a significant part that helps
them to complete their tasks and confront many difficulties, such as model uncertainties [4], limited
resources [5], and constraints [6]. The limited onboard energy resource is one of the key factors
affecting long-term AUV detection, cruise, operation, and other missions in the complex marine
environment [5,7]. One of the most perceivable trends for marine robotics is the development of energy
efficiency [8]. Therefore, energy consumption optimization is an important part of AUVs’ ability to
complete their tasks [9,10].

An energy consumption reduction for underwater vehicles can be achieved by a variable
buoyancy system (VBS) and improvement of the control method. A VBS is one effective approach
to reduce the energy consumption that is widespread in the gliders of AUVs that need a large depth
change [5]. However, it cannot be implemented in AUVs without a VBS. Unlike the depth control
for VBS-equipped AUVs in which the buoyancy can be adjusted, researchers can achieve the goal
of an energy consumption reduction by optimizing the rudder or thruster control inputs calculated
by an improved control method, e.g., model predictive control (MPC), which can reduce the energy
consumption by tuning the matrices of the cost function to optimize the predictive inputs.
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Nowadays, many control methods have achieved high tracking accuracy, such as sliding mode
control [11,12], neural network control [13,14], and fuzzy control [15,16]. In addition, some published
articles, such as [17–20], pay attention to the energy consumption optimization of AUVs by improving
the control method. In [17,18], an energy suboptimizer block based on the Euler–Lagrange equation
is introduced into the cost function to address the issue of energy optimization. The simulation
results illustrate that the energy suboptimizer block saves a substantial amount of energy at the
cost of sacrificing accuracy within an acceptable bound. A reward function is proposed to reduce
energy consumption and sudden variations of the control signals when a reinforcement learning
neural networks method is used for AUV control in [19]. The reward function consists of a square
tracking error, an input, and input changes. The square tracking error term is used to penalize
deviations of the actual trajectory from the desired trajectory, and the input and input changes terms
are used to minimize the thruster use to optimize energy consumption. An improved linear quadratic
regulator (LQR) is developed in [20], which chooses a cost function composed of a square tracking
error and a square input. Energy consumption is reduced by optimizing the weight matrices with the
genetic algorithm.

For its advantages of receding horizon optimization and handling constraints explicitly, MPC has
become a mature technology in industries today [21], and many researchers implement MPC in
the control of AUVs [22]. With respect to the efficient usage of resources, in [23,24], an event-based
generalized predictive control (GPC) solution is developed to deal with the actuator deadband, with the
core idea of tuning the control signal only when significant modification is needed to reduce frequent
changes in the actuators, to reduce the resources’ utilization. In [25], an innovative hybrid agent-based
MPC control method is developed, with a cost function that depends on the fuel cost, the exergy
destruction cost, and the primary exergy destruction cost, to reduce energy consumption for room
air temperature maintenance. A novel cost function for energy consumption, with the addition of a
controlled heating/cooling power term, is defined in [26], and the efficiency of the cost function for
energy consumption is illustrated by test cases. However, as far as we know, there are no results on
the energy consumption optimization of AUVs with the MPC method.

The control law of MPC is constructed by minimizing the cost function. The terms of the cost
function are linked to the minimization of some control objectives. Generally, these are the deviations of
the predicted outputs from the reference trajectory and the predicted changes of the input vector [27–29].
For its attractive features of the receding horizon control principle and the ability to handle constraints
explicitly [30], MPC has been implemented in the control of AUVs and remotely operated vehicles
(ROVs). A simulation in [31–33] confirms the feasibility of MPC. Experiments with an MPC controller
for AUVs or ROVs have been carried out, and the experimental results provide clear evidence to show
that MPC can achieve a high control accuracy [34–36]. However, there is no term that optimizes the
energy consumption in the cost function of MPC.

In our previous work, we have applied MPC to the depth control of AUVs together with a
predictive model of a state-space model [37]. The advantage of high accuracy during trajectory
tracking control makes it possible to reduce the energy consumption at the cost of compromising
accuracy within an acceptable boundary. It is worthy of study for AUVs with limited energy resources.

This paper focuses on energy consumption optimization using MPC based on the state space
model of AUVs. A quadratic energy term is added into the cost function of MPC to reduce the energy
consumption while minimizing the deviations of the predicted outputs from the reference trajectory
and the predicted changes of the input. Furthermore, a simulation with the UVIC-I AUV model [37,38]
is carried out to validate the effectiveness of the proposed MPC methods.

This paper is organized as follows. Section 2 describes MPC based on an AUV’s state-space model,
and an analysis of the shortcoming of energy consumption for the cost function of MPC is given.
A quadratic energy term is introduced into the cost function, and the MPC control law is reconstructed
in Section 3. The effectiveness of the proposed approaches is verified by simulations in Section 4.
Finally, we conclude the paper in Section 5.
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2. Problem Formulation

In this section, the conventional MPC controller is designed based on the predictive model of the
discrete-time state space model of AUVs’ depth. Then, the analysis of the weakness of the control law
with respect to energy consumption optimization is given.

2.1. MPC Control Law of AUVs’ Depth Control

According to the dynamic equation of AUVs in reference [39], the discrete-time state space model
can be written as shown in Equations (1) and (2).

x(k + 1) =

[
z(k + 1)
vz(k + 1)

]
= A

[
z(k)
vz(k)

]
+ Bu(k) (1)

y(k) = C

[
z(k)
vz(k)

]
(2)

where x(k), u(k), and y(k) are the discrete-time state, input, and output vectors, respectively, z(k) is the
depth of the AUV, vz(k) is the linear velocity in depth with coordinates in the body-fixed frame in the
discrete-time domain, and k is the time in the discrete-time domain. A is the state matrix, B is the
input-to-state matrix, and C is the state-to-output matrix. The specific calculation methods of A, B,
and C are given in reference [37].

Embedding an integrator into the model to ensure zero steady-state errors, we take a difference
operation on both sides of Equations (1) and (2) [28,29]. Then, Equations (1) and (2) can be expressed
as Equations (3) and (4):

∆x(k + 1) = A∆x(k) + B∆u(k) (3)

y(k) = C∆x(k) + y(k− 1) (4)

where ∆x(k) = x(k) − x(k − 1) is the difference of the state, and ∆u(k) = u(k) − u(k − 1) is the difference
of the input.

In most of the existing studies on predictive control, the cost function J1 has the form of
Equation (5) [27–29,34–37].

J1 = ‖Γy
(
Yp(k + 1)−R(k + 1)

)
‖2

+ ‖Γu∆U(k)‖2 (5)

where Yp(k + 1) is the predicted output vector with a prediction horizon of p at sample time k and
Yp(k + 1) = [y(k + 1)T y(k + 2)T y(k + 3)T . . . y(k + p)T]T, where p is the prediction horizon,
and R(k + 1) is the given reference vector at sample time k and R(k + 1) = [r(k + 1)T r(k + 2)T r(k
+ 3)T . . . r(k + p)T]T, where T represents the transpose of the matrix. ∆U(k), the decision variable,
is the predictive input changes vector at sample time k and ∆U(k) = [∆u(k)T ∆u(k + 1)T ∆u(k + 2)T . . .
∆u(k + m − 1)T]T, where m is the control horizon. Γy and Γu are weight diagonal matrices for the
predictive deviation vector and the predictive input changes vector, respectively, which are usually
taken as constant matrices with compatible dimensions [29,31,34]. Setting Γy = Ip×p, where Ip×p is an
identity matrix with a dimension of p, we can adjust Γu according to the weights of penalizing the
deviations of the predicted output Yp(k + 1) from the given trajectory R(k + 1) and the predicted input
changes ∆U(k).

Equation (5) has an equal form as shown in Equation (6):

J′1 = ∆U(k)T
(

ST
u ΓT

y ΓySu + ΓT
u Γu

)
∆U(k)− 2∆U(k)TST

u ΓT
y Γy[R(k + 1)− Sx∆x(k)− Icy(k)] (6)

where
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Su =



CB 0 0 . . . 0
2
∑

i=1
CAi−1B CB 0 . . . 0

. . . . . . . . . . . . 0
m
∑

i=1
CAi−1B

m−1
∑

i=1
CAi−1B . . . . . . CB

. . . . . . . . . . . . . . .
p
∑

i=1
CAi−1B

p−1
∑

i=1
CAi−1B . . . . . .

p−m+1
∑

i=1
CAi−1B



Sx =



CA
2
∑

i=1
CAi

...
p
∑

i=1
CAi


, Ic =


1
1
...
1

.

To simplify the following expression, we denote:

Ep(k + 1) = R(k + 1)− Sx∆x(k)− Icy(k) (7)

E′ = 2
(

ST
u ΓT

y ΓySu + ΓT
u Γu

)
(8)

F′ = −2ST
u ΓT

y ΓyEp(k + 1). (9)

To minimize J1
′, a routine analysis gives the solution of the predicted input changes vector as

Equation (10):
∆U(k) = −E′−1F′. (10)

2.2. Energy Consumption Problem for the Cost Function of MPC

As can be seen in Equation (5), the first term of the cost function penalizes deviations of the
predicted outputs Yp(k + 1) from the reference trajectory R(k + 1) to minimize the track error. According
to [29,31,34,37], we set Γy = Ip×p, implying that the cost function penalizes every deviation point in
the prediction horizon. The second term of Equation (5) penalizes the predicted input changes ∆U(k)
to reduce the sensitivity to environmental disturbances and small fluctuations from the sensors.
According to [29,31,34], we set:

Γu = α · Im×m (11)

implying that the cost function penalizes every input change in the control horizon.
The cost function aims at the objective of minimizing its terms, such as deviations and input

changes, in Equation (5). It can be seen from the action of each term in Equation (5) that there is no
term for minimizing energy consumption in the cost function. For AUVs with limited onboard energy,
the input changes ∆U(k) (i.e., the control signal changes), calculated by minimizing the cost function
with the form of Equation (5), are not conducive to extending the working duration of AUVs. Thus,
it is necessary to add a term that represents energy consumption in the cost function of MPC.

3. MPC Method Considering Energy Consumption

This section addresses the construction of the control law and its stability after adding an energy
consumption term to the cost function of MPC. Different from the conventional cost function in the
form of Equation (5), a quadratic energy term is introduced into Equation (5) in this paper. The MPC
control law is reconstructed with the new form of the cost function, and then its stability is proved.
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3.1. The MPC Control Law Considering Energy Consumption

Consider the quadratic energy cost function [39] in Equation (12):

J2 = U(k)TΘU(k) (12)

where U(k) is the predictive input and U(k) = [u(k)T u(k + 1)T u(k + 2)T ··· u(k + m − 1)T]T, and Θ is the
weight matrix of quadratic energy. Same to Γy and Γu, Θ is a positive definite matrix, usually diagonal,
weighting the energy consumption. In this paper, Θ is expressed as Equation (13):

Θ = β · Im×m. (13)

Taking Equation (13) as a subterm, the cost function considering energy consumption J’ can be
expressed as Equation (14):

J′ = J1 + J2 = ‖Γy
(
Yp(k + 1)−R(k + 1)

)
‖2

+ ‖Γu∆U(k)‖2 + U(k)TΘU(k). (14)

To find the optimal ∆U(k) by minimizing J′, it is necessary to express U(k) in the following form:

U(k) =


u(k)

u(k + 1)
...

u(k + m− 1)

 =


u(k− 1)
u(k− 1)

...
u(k− 1)

+


1 0 · · · · · · 0
1 1 0 · · · 0
...

...
...

...
...

1 1 · · · · · · 1

∆U(k). (15)

We denote
←
U =

[
u(k− 1) u(k− 1) · · · u(k− 1)

]T
(16)

I∆ =


1 0 · · · · · · 0
1 1 0 · · · 0
...

...
...

...
...

1 1 · · · · · · 1

 (17)

where
←
U is a vector of m × 1 dimension and I4 is a matrix of m × m dimension. Substituting

Equation (15) into Equation (12), J2 is obtained as:

J2 =

(←
U + I∆∆U(k)

)T
Θ

(←
U + I∆∆U(k)

)
=
←
U

T
Θ
←
U +

←
U

T
ΘI∆∆U(k) + ∆U(k)TI∆

TΘ
←
U + ∆U(k)TI∆

TΘI∆∆U(k)

(18)

Combining Equations (6), (8), (9), (14), and (18), and yielding to J, the equal form of J′ in
Equation (14) can be expressed as Equation (19):

J = 1
2 ∆U(k)TE′∆U(k) + ∆U(k)TF′ + 2∆U(k)TI∆

TΘ
←
U + ∆U(k)TI∆

TΘI∆∆U(k)
= 1

2 ∆U(k)T(E′ + 2I∆
TΘI∆

)
∆U(k) + ∆U(k)T(F′ + 2I∆

TΘ
) (19)

Like Equations (8) and (9), we denote:

E = E′ + 2I∆
TΘI∆ = 2

(
ST

u ΓT
y ΓySu + ΓT

u Γu + I∆
TΘI∆

)
(20)

F = F′ + 2I∆
TΘ
←
U = −2

(
ST

u ΓT
y ΓyEp(k + 1)− I∆

TΘ
←
U
)

. (21)
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Then, the solution of the predicted input changes vector of MPC considering energy consumption
is obtained as the first sub-vector of ∆U(k)

∆U(k) = −E−1F. (22)

With the receding horizon control principle of MPC, only the first subvector of ∆U(k) is
implemented in the plant, which can be calculated by Equation (23).

∆u(k) =
[

1 0 · · · 0
]
· ∆U(k) = KU→u · ∆U(k) = −KU→uE−1F (23)

where KU→u is a matrix of m × 1 dimension, and KU→u = [1 0 . . . 0]. Additionally, the actual control
signal applied to the plant is:

u(k) = u(k− 1) + ∆u(k). (24)

3.2. Stability Analysis

To discuss the stability of MPC with a cost function considering quadratic energy, we substitute
Equations (4), (7), (20), (21), and (22) into Equation (3), and yield to Equation:

∆x(k + 1) =

[
A− BKU→u

(
ST

u ΓT
y ΓySu + ΓT

u Γu + I∆
TΘI∆

)−1
ST

u ΓT
y Γy(Sx + IcC)

]
∆x(k)

+BKU→u

(
ST

u ΓT
y ΓySu + ΓT

u Γu + I∆
TΘI∆

)−1
ST

u ΓT
y Γy[R(k + 1)− IcCx(k− 1)]

−BKU→u

(
ST

u ΓT
y ΓySu + ΓT

u Γu + I∆
TΘI∆

)−1
I∆

TΘ
←
U

(25)

We denote the matrix K∆x by

K∆x =

[
A− BKU→u

(
ST

u ΓT
y ΓySu + ΓT

u Γu + I∆
TΘI∆

)−1
ST

u ΓT
y Γy(Sx + IcC)

]
. (26)

According to [40,41], if the amplitude of all eigenvalues of K∆x is less than or equal to 1, the system
is asymptotically stable. It can be seen from Equation (26) that the amplitude of eigenvalues of K∆x is
related to A, B, C, p, m, α, and β.

In the simulation of this paper, the dynamic model of the AUV we selected is the same as the
model in [37,38], as shown in Equation (27):

135.0727
..
z +

(
214.9528− 41.8985

∣∣ .
z
∣∣) .

z = u. (27)

In the application in reference [37], the AUV is designed for autonomous operations with a very
low speed, working nearby vz = 0 m/s; thus, we linearized the plant at vz = 0 m/s. Additionally,
the experimental results in [37] illustrate that the selection of p and m is appropriate for the model
of Equation (27). For the selection of the same dynamic model and control method in reference [37],
the matrices A, B, and C and the control parameters p and m selected in our paper are given in Table 1.

Table 1. The Values of Some Matrices and Parameters Used in the Stability Analysis.

Matrices and Parameters A B C p m

Value
[

1 0.1464
0 0.7670

] [
0.0001
0.0011

] [
1 0

]
80 8

Figure 1 shows the amplitude of all eigenvalues of K∆x when α varies from 0.01 to 0.5 and β

varies from 0.00 to 0.05. From Figure 1, it can be seen that the amplitude of all the eigenvalues is less
than or equal to 1. It indicates that the system with a cost function considering energy consumption is
asymptotically stable if α belongs to interval [0.01, 0.5] and β belongs to interval [0, 0.05].
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4. Simulation Results and Discussion

In this section, simulation results are given to illustrate the effectiveness of the proposed method
(i.e., MPC using the cost function considering energy consumption), and the comparison method is
the conventional MPC (i.e., MPC using the cost function without considering energy consumption).
At the end of this section, different uncertainties in system dynamics are considered, and a simulation
of tracking the sinusoidal and triangular trajectory is added to demonstrate the effectiveness of the
proposed method in coping with model uncertainties.

The reference trajectories in this paper are the step trajectory, the sinusoidal trajectory, and the
triangular trajectory. We evaluate the simulation results with the settling time, the average of absolute
tracking error, and the quadratic energy consumption, when tracking the step trajectory. The maximum
of absolute tracking error, the average of absolute tracking error, and the quadratic energy consumption
are used to evaluate the simulation results, when tracking the sinusoidal trajectory and the triangular
trajectory. All of the values are calculated from the data in the simulation intervals.

According to [17,39], quadratic energy consumption is calculated using Equation (28):

Eu2 =

i= Tsim
Tc

∑
i=1

ui
T · ui (28)

and the percentage of energy consumption reduction is calculated with Equation (29):

per =

i= Tsim
Tc

∑
i=1

u′ i
T · u′ i −

i= Tsim
Tc

∑
i=1

ui
T · ui

i= Tsim
Tc

∑
i=1

u′ i
T · u′ i

× 100% (29)

where Tsim is the simulation interval, Tc is the control interval, ui is the input of MPC of this paper at
time i, and ui

′ is the input of conventional MPC at time i.
In the simulation, the input subjects to−16 N≤ u(k)≤ 16 N. The depth sensor we usually used for

the AUV has a Gauss noise with an intensity of about 20–28 dBW, which is caused by an output ripple
of the power depth sensor supply, circuit interference, or other reasons. Thus, in this paper, a Gauss
noise with an intensity of 28 dBW, in millimeters, is added to the output to simulate interference in
practice. It can be seen from Figure 1 that the amplitude of eigenvalues of K∆x increases as α and β

increase. The smaller α and β, the better the system stability becomes. Thus, we choose α in the interval
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of [0, 0.05] and β in the interval of [0, 0.005]. To obtain an acceptable trade-off between the tracking
error and energy consumption, finally we set α = 0.01 and β = 0.0001. To simulate the practice in [27]
as much as possible, the control interval Tc is set to 1/6 s and the simulation interval Tsim is set to 400 s.
The parameters for the simulation are summarized in Table 2.

Table 2. The parameters for the simulation.

Parameter p m α β Tc Tsim

Value 80 8 0.01 0.0001 1/6 s 400 s

4.1. Simulation of Tracking the Step Trajectory

In this simulation, the initial depth of the AUV is 0 m, and the initial speed is 0 m/s. The reference
depth trajectory in this paper is considered as:

zd(t) =

{
1.0 0 s ≤ t < 200 s
0.0 200 s ≤ t < 400 s

. (30)

The contrast simulation results of tracking the step trajectory with conventional MPC and MPC of
this paper are shown in Figure 2.
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ripple of the power depth sensor supply, circuit interference, or other reasons. Thus, in this paper, a 
Gauss noise with an intensity of 28 dBW, in millimeters, is added to the output to simulate 
interference in practice. It can be seen from Figure 1 that the amplitude of eigenvalues of K∆x 
increases as α and β increase. The smaller α and β, the better the system stability becomes. Thus, we 
choose α in the interval of [0, 0.05] and β in the interval of [0, 0.005]. To obtain an acceptable trade-off 
between the tracking error and energy consumption, finally we set α = 0.01 and β = 0.0001. To 
simulate the practice in [27] as much as possible, the control interval Tc is set to 1/6 s and the 
simulation interval Tsim is set to 400 s. The parameters for the simulation are summarized in Table 2. 

Table 2. The parameters for the simulation. 

Parameter p m α β Tc Tsim 
Value 80 8 0.01 0.0001 1/6 s 400 s 

4.1. Simulation of Tracking the Step Trajectory 

In this simulation, the initial depth of the AUV is 0 m, and the initial speed is 0 m/s. The 
reference depth trajectory in this paper is considered as: 

    
 

 

1.0    0 200
0.0    200 400d

s t s
z t

s t s
. (30) 

The contrast simulation results of tracking the step trajectory with conventional MPC and MPC 
of this paper are shown in Figure 2. 

It can be seen from Figure 2a,b that both the conventional MPC and MPC of this paper can track 
the reference trajectory precisely. The settling time with MPC of this paper is little longer than that 
with conventional MPC, changing from 12.67 s to 12.83 s. The depth simulation curves of the 
contrast methods are almost same in the steady stage. From Figure 2c, the input with MPC of this 
paper has less fluctuation than the input with conventional MPC, resulting in less  
energy consumption. 
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Figure 2. Contrast simulation results of tracking step trajectory with conventional model predictive
control (MPC) and MPC of this paper. (a) Depth data; (b) Error data; (c) Input data.

It can be seen from Figure 2a,b that both the conventional MPC and MPC of this paper can track
the reference trajectory precisely. The settling time with MPC of this paper is little longer than that
with conventional MPC, changing from 12.67 s to 12.83 s. The depth simulation curves of the contrast
methods are almost same in the steady stage. From Figure 2c, the input with MPC of this paper has
less fluctuation than the input with conventional MPC, resulting in less energy consumption.
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To give a quantitative analysis, the results of Figure 2 are summarized in Table 3. From Table 3,
it can be seen that the average of absolute error over the entire simulation changes from 0.05600
m to 0.05622 m and the average of absolute error over the steady stage changes from 0.02020 m to
0.02001 m, implying that the tracking accuracy with MPC of this paper is a little worse than that with
conventional MPC. However, the quadratic energy consumption reduces from 69,813 N2 to 46141 N2,
with a reduction percentage of 33.91%. The data in Table 3 shows that MPC of this paper can reduce
the energy consumption obviously when tracking the step trajectory.

Table 3. The Statistical Results of Figure 2.

Conventional MPC MPC in This Paper

Average of absolute tracking error 1 0.05600 m 0.05622 m
Average of absolute tracking error 2 0.02020 m 0.02001 m

Quadratic energy consumption 69,813 N2 46,141 N2

Percentage of energy consumption reduction 33.91%

Note: Average of absolute tracking error 1 is calculated with the data over the entire simulation. Average of absolute
tracking error 2 is calculated with the data in the intervals of 20 s to 200 s and 220 to 400 s (i.e., two periods in the
steady stage).

4.2. Simulation of Tracking the Sinusoidal Trajectory

In this simulation, the initial depth of the AUV is 0 m, and the initial speed is 0 m/s. The reference
depth trajectory in this paper is considered as:

zd(t) = sin(πt/100) + 1.0 0 s ≤ t < 400 s. (31)

The contrast simulation results of tracking the sinusoidal trajectory with conventional MPC and
MPC of this paper are shown in Figure 3.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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Figure 3. The contrast simulation results of tracking the sinusoidal trajectory with conventional MPC
and MPC of this paper. (a) Depth data; (b) Error data; (c) Input data.
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From Figure 3a, we can see that both the conventional MPC and MPC of this paper can track the
reference trajectory well, even if the initial deviation of the depth from the reference trajectory is large.
It can be seen from Figure 3b that the maximum of absolute tracking error with MPC of this paper
is a little larger than that with conventional MPC when the initial deviation is eliminated. Similar to
tracking the step trajectory, from Figure 3c, the input with MPC of this paper has less fluctuation than
the conventional MPC, leading to less energy consumption.

To give a quantitative analysis, we summarize the results of Figure 3 into Table 4. It can be
seen from Table 4 that the maximum of absolute tracking error changes from 0.12526 m to 0.13748 m
and the average of absolute error over the entire simulation changes from 0.03264 to 0.05479 m,
meaning that the tracking accuracy with MPC of this paper is a little worse than that with conventional
MPC. However, MPC of this paper cuts the quadratic energy consumption down from 113,380 N2 to
88,334 N2, with a reduction percentage of 22.09%. The data in Table 4 can illustrate that MPC of this
paper is feasible for energy consumption reduction when tracking the sinusoidal trajectory.

Table 4. The Statistical Results of Figure 3.

Conventional MPC MPC in This Paper

Maximum of absolute tracking error 0.12526 m 0.13748 m
Average of absolute tracking error 0.03264 m 0.05479 m

Quadratic energy consumption 113,380 N2 88,334 N2

Percentage of energy consumption reduction 22.09%

Note: The maximum and average of absolute tracking error are calculated with the data in the interval of 100 s to
400 s (i.e., a period in the stable tracking stage).

4.3. Simulation of Tracking the Triangular Trajectory

In this simulation, the initial depth of the AUV is 1 m, and the initial speed is 0 m/s. The reference
depth trajectory in this paper is considered as:

zd(t) =


0.02t 0 s ≤ t < 100 s
−0.02(t− 100) + 2.0 100 s ≤ t < 200 s
0.02(t− 200) 200 s ≤ t < 300 s
−0.02(t− 300) + 2.0 300 s ≤ t < 400 s

. (32)

The contrast simulation results of tracking the triangular trajectory with conventional MPC and
MPC of this paper are shown in Figure 4.

Similar to the simulation of tracking the sinusoidal trajectory, in Figure 4, both the conventional
MPC and MPC of this paper can track the reference trajectory well. The maximum of absolute tracking
error using MPC of this paper is a little larger when the initial deviation is eliminated. In Figure 4c,
the input with MPC of this paper, with less fluctuation, results in less energy consumption.

The results of Figure 4 are summarized into Table 5 for a quantitative analysis. It can be seen from
Table 5 that the maximum of absolute tracking error changes from 0.12219 m to 0.14056 m and the
average of absolute error over the entire simulation changes from 0.03073 to 0.05173 m. The tracking
accuracy with MPC of this paper is a little worse. The quadratic energy consumption reduces from
89,207 N2 to 65,113 N2, with a reduction percentage of 27.01%. The results illustrate that MPC of this
paper has the ability to reduce the energy consumption when tracking the triangular trajectory.
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Figure 4. The contrast simulation results of tracking the triangular trajectory with conventional MPC
and MPC of this paper. (a) Depth data; (b) Error data; (c) Input data.

Table 5. The Statistical Results of Figure 4.

Conventional MPC MPC in This Paper

Maximum of absolute tracking error 0.12219 m 0.14056 m
Average of absolute tracking error 0.03073 m 0.05173 m

Quadratic energy consumption 89,207 N2 65,113 N2

Percentage of energy consumption reduction 27.01%

Note: The maximum and average of absolute tracking error are calculated with the data in the interval of 100 s to
400 s (i.e., a period in the stable tracking stage).

4.4. Simulation with Model Uncertainties

Similar to [42,43], we use multiplicative uncertainty in this simulation, e.g., 10% uncertainty
means that the plant model is (1–10%) of the model used for control design in the continuous-time
domain. Three cases (10%, 30%, and 50%) of uncertainty in system dynamics are simulated, with the
same Gauss noise.

In this simulation, the initial depth of the AUV is 0 m, and the initial speed is 0 m/s when tracking
the sinusoidal trajectory. The reference depth trajectory is as shown in Equation (31). The initial depth
of the AUV is 1 m, and the initial speed is 0 m/s when tracking the triangular trajectory. The reference
depth trajectory is as shown in Equation (32). The results are shown in Figure 5, and the results of
Figure 5 are summarized into Tables 6 and 7.
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Figure 5. The contrast simulation results of tracking the sinusoidal and triangular trajectories with
10%, 30%, and 50% system dynamic uncertainty. (a) Depth data of tracking the sinusoidal trajectory;
(b) Error data of tracking the sinusoidal trajectory; (c) Input data of tracking the sinusoidal trajectory;
(d) Depth data of tracking the triangular trajectory; (e) Error data of tracking the triangular trajectory;
(f) Input data of tracking the triangular trajectory.
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Table 6. The Statistical Results of Figure 5a–c.

Conventional
MPC

0%
Uncertainty

10%
Uncertainty

30%
Uncertainty

50%
Uncertainty

Maximum of absolute error 0.13379 m 0.16651 m 0.16639 m 0.16602 m 0.16532 m
Average of absolute error 0.03227 m 0.05501 m 0.05502 m 0.05506 m 0.05510 m

Quadratic energy consumption 114,460 N2 88,881 N2 88,979 N2 89,263 N2 89,782 N2

Percentage of energy
consumption reduction – 22.35% 22.26% 22.01% 21.56%

Note: The maximum and average of absolute tracking error are calculated with the data in the interval of 100 s to
400 s (i.e., a period in the stable tracking stage).

Table 7. The Statistical Results of Figure 5d–f.

Conventional
MPC

0%
Uncertainty

10%
Uncertainty

30%
Uncertainty

50%
Uncertainty

Maximum of absolute error 0.13496 m 0.15562 m 0.15564 m 0.15549 m 0.15478 m
Average of absolute error 0.02998 m 0.05151 m 0.05155 m 0.05167 m 0.05190 m

Quadratic energy consumption 89,612 N2 64,614 N2 64,762 N2 65,204 N2 66,120 N2

Percentage of energy
consumption reduction – 27.90% 27.73% 27.24% 26.22%

Note: The maximum and average of absolute tracking error are calculated with the data in the interval of 100 s to
400 s (i.e., a period in the stable tracking stage).

It can be seen from Figure 5, Tables 6 and 7 that the system dynamics uncertainty has a tiny
effect on the maximum of absolute tracking error and the average of absolute tracking error, meaning
that the MPC method in this paper is insensitive to the uncertainty in system dynamics on tracking
accuracy. The percentage of energy consumption reduction decreases slightly with the increase
of model uncertainty, whereas the reduction percentage is still more than 20%, meaning that the
proposed method is feasible and effective for reducing energy consumption in AUVs even with great
model uncertainty.

5. Conclusions

The contribution in this paper is on energy consumption reduction based on the MPC method
for AUVs’ trajectory tracking control. A quadratic energy consumption term is introduced into
the cost function of MPC to improve MPC with respect to energy consumption. The simulation
results on an AUV provide clear evidence to show that the proposed MPC with a quadratic energy
consumption term added into the cost function is feasible and effective for energy consumption
reduction. The following work needs to be done in the future. Firstly, we need to investigate the rule
between energy consumption and control accuracy to reduce energy consumption without sacrificing
control accuracy. Secondly, a lake or sea test also needs to be conducted to validate the feasibility of
the new design.
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