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Abstract: In this study, a portable electronic nose (E-nose) prototype is developed using metal
oxide semiconductor (MOS) sensors to detect odors of different wines. Odor detection facilitates
the distinction of wines with different properties, including areas of production, vintage years,
fermentation processes, and varietals. Four popular machine learning algorithms—extreme gradient
boosting (XGBoost), random forest (RF), support vector machine (SVM), and backpropagation
neural network (BPNN)—were used to build identification models for different classification tasks.
Experimental results show that BPNN achieved the best performance, with accuracies of 94%
and 92.5% in identifying production areas and varietals, respectively; and SVM achieved the best
performance in identifying vintages and fermentation processes, with accuracies of 67.3% and 60.5%,
respectively. Results demonstrate the effectiveness of the developed E-nose, which could be used to
distinguish different wines based on their properties following selection of an optimal algorithm.

Keywords: portable electronic nose; wine; machine learning; support vector machine

1. Introduction

Wine is one of the most popular drinks in the world and plays a relatively important role around
the table and socially. Approximately 24.3 billion liters of wine were consumed in 2017 (International
Organisation of Vine and Wine), with the United States named the world's largest consumer at
3.26 billion liters; China ranked fifth at 1.79 billion liters. Facing a vast consumer market, wine
identification or classification has gained increasing popularity as a means of detecting mislabeling
given the wide variability of wine sale prices depending on vintage year, fermentation processes, age,
varietal, or geographical origin [1].

To assess the quality of wine in a timely manner with regard to the production process, aroma is
an important indicator that cannot be ignored. Aroma is composed of hundreds of volatile chemical
compounds with different concentrations that are closely related to wine attributes [2]. Typically,
distinguishing wines is challenging due to the complexity and heterogeneity of its headspace [3].
However, wine classification is essential in preserving the high economic value of wine products,
protecting wine quality, preventing illegal labeling, guaranteeing wine quality in the import–export
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market, and controlling beverage processing [4]. Although gas chromatography, mass spectrometry,
and other methods are acceptable substitutes for volatile analysis of wine, they are time-consuming
and labor-intensive [5].

The electronic nose (E-nose), an apparatus designed to mimic human olfactory perception, has
recently become a powerful tool in the food industry [6–10] and other fields [11–13]. Regarding wine
quality detection, Wei et al. [14] reported an E-nose application to distinguish between wines aged in
oak barrels and others. Lozano et al. [15] developed an in-situ, on-line E-nose system for monitoring
wine preservation and evolution in tanks in real time. Most relevant reports have focused on single
properties of wine, whereas systematic analysis using an E-nose is lacking.

In this study, an E-nose prototype was developed to identify wines with different areas of
production, vintage years, fermentation processes, and varietals. The device was mainly composed
of a sensor array and a STM32F4 series-based microcontroller unit (MCU).Support vector machine
(SVM) [16], random forest (RF) [17], extreme gradient boosting (XGBoost) [18], and backpropagation
neural network (BPNN) algorithms were employed for pattern recognition to analyze volatile odorants
in wines. The aim of this study was to classify wines with different attributes using the developed
E-nose system. The remainder of this paper is organized as follows. First, we outline the development
of a portable E-nose system based on a metal oxide semiconductor (MOS)-based sensor array and
STM32F4 MCU; then, we present an analytical method for wine evaluation according to wine properties
using the embedded E-nose system.

2. Materials and Methods

2.1. Independently Developed E-Nose Prototype

2.1.1. Sensor Array

In this work, a sensor array used in the E-nose was composed of six different metal oxide
semiconductor (MOS) sensors, which were assembled in an acrylic box. The selected sensors were
manufactured by Figaro Engineering Inc., Osaka, Japan. Each MOS sensor selectively adsorbed
different volatile molecules during the process, resulting in conductivity changes. Therefore, a unique
set of response curves from the sensor array could be obtained for each distinct object substance. The
nomenclature and characteristics of the sensors are listed in Table 1. Photos of the printed circuit board
(PCB), which was designed by us and produced by an original equipment manufacturer (J&C CO.,
LTD, Shenzhen, China), are presented in Figure 1, and it was used for data acquisition.

Table 1. Standard sensor array in E-nose system.

Number Sensor Object Substances for Sensing Cross-Sensitive Object

MOS1 TGS826 Ammonia Isobutane, ethanol, etc.
MOS2 TGS832 Halocarbon gas Ethanol, R134a refrigerant, etc.
MOS3 TGS2600 Air pollutants (hydrogen, ethanol, etc.) Isobutane, carbon monoxide, etc.
MOS4 TGS2602 Air pollutants (VOCs, ammonia, H2S, etc.) Ammonia, hydrogen sulfide, toluene, etc.
MOS5 TGS2611 Methane Hydrogen
MOS6 TGS2620 Alcohol, Solvent vapors Carbon monoxide, hydrogen, etc.
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included in the design, wherein sensor-required information was converted into a digital signal 

directly by the ADC according to the control signal from the MCU via the serial peripheral interface. 

Then, the digital signal after being processed was transmitted to the upper computer by an RS485 

standard serial port for model training and testing. 

Considering the auxiliary heating requirements of MOS sensors, we designed a high-powered 

supply circuit and isolated the power supply used for auxiliary heating from the other one used for 

chips to enhance system stability. The other reserved interfaces or modules (e.g., debugger interface) 

on the PCB are not discussed in detail. The MOS-based E-nose prototype is depicted in Figure 2. 
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Greatwall Wine Co., Ltd. (in Qinhuangdao, Hebei, China) were divided into four groups to analyze 

Figure 1. Printed circuit board (PCB) for data acquisition based on metal oxide semiconductor (MOS)
sensor array. (a) front view; (b) back view.

2.1.2. Microprocessor and Peripheral Modules

In the proposed E-nose device, an STM32F407 microcontroller was used for the system and
algorithm. The embedded software had two main functions: (1) acquiring sensors’ response; and (2)
processing data and communicating with the computer.

Each of the sensors in the array responded to different sets of volatile organic compounds in tested
substances. For subsequent computer analysis and identification, sensor responses were digitized for
relevant feature extraction. A multiplexer Analog-to-Digital Converter (ADC) was thus included in
the design, wherein sensor-required information was converted into a digital signal directly by the
ADC according to the control signal from the MCU via the serial peripheral interface. Then, the digital
signal after being processed was transmitted to the upper computer by an RS485 standard serial port
for model training and testing.

Considering the auxiliary heating requirements of MOS sensors, we designed a high-powered
supply circuit and isolated the power supply used for auxiliary heating from the other one used for
chips to enhance system stability. The other reserved interfaces or modules (e.g., debugger interface)
on the PCB are not discussed in detail. The MOS-based E-nose prototype is depicted in Figure 2.
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2.2. Wine Samples

As presented in Tables 2–5, 14 wine samples (15 bottles per type) provided by COFCO Huaxia
Greatwall Wine Co., Ltd. (in Qinhuangdao, Hebei, China) were divided into four groups to analyze
their different properties (producing area, varietal, vintage, and fermentation processes). For each kind
of wine, samples were taken from three different manufacturer lots. Furthermore, two of the three lots
of wine were used for model training; the remaining lot was used for testing.

Table 2. Details of wine samples with different producing area.

Label No. Producing Area Varietal Vintage Fermentation Processes (Yeast ID,
Fermentation Container, Storage Container)

1 Huaxia Cabernet
sauvignon 2016 *

2 Renxuan Cabernet
sauvignon 2016 *

3 Zuimei Cabernet
sauvignon 2016 *

Table 3. Details of wine samples with different varietal.

Label No. Producing Area Varietal Vintage Fermentation Processes (Yeast ID,
Fermentation Container, Storage Container)

4 Huaxia Cabernet
sauvignon 2017 *

5 Huaxia Marselan 2017 *
6 Huaxia Long Zibao 2017 *
7 Huaxia Merlot 2017 *

Table 4. Details of wine samples with different vintage.

Label No. Producing Area Varietal Vintage Fermentation Processes (Yeast ID,
Fermentation Container, Storage Container)

8 Renxuan Marselan 2017 *
9 Renxuan Marselan 2016 *

10 Renxuan Marselan 2014 *

Table 5. Details of wine samples with different fermentation processes.

Label No. Producing Area Varietal Vintage Fermentation Processes (Yeast ID,
Fermentation Container, Storage Container)

11 Huaxia Cabernet
sauvignon 2017 CC17, Stainless steel tank, Stainless steel tank

12 Huaxia Cabernet
sauvignon 2017 SC5, Stainless steel tank, Stainless steel tank

13 Huaxia Cabernet
sauvignon 2017 CC17, Stainless steel tank, Oak barrel

14 Huaxia Cabernet
sauvignon 2017 SC5, Stainless steel tank, Oak barrel

In the last column of Tables 2–4, “*” indicates that the processes for given samples were the
same, manufacturer-announced, and details were not made public, respectively. All experiments were
performed in the authors’ laboratory at a temperature of 25 ± 1 ◦C and a relative humidity of 50 ± 2%.

For each sample, as shown in Figure 3, 50 mL wine was put into a vial (100 ml) and was allowed
to equilibrate with the air in the vial for 15 minutes. The workflow of the E-nose prototype is divided
into the capturing process and the cleaning process. In the capturing process, the headspace gas of the
sample is drawn into the E-nose by the flow-control unit in which they interact with the sensor array.
They are adsorbed by the MOS sensors, which leads to conductivity increase and a stabilization to
constant value because of the saturation of the sensor surface. During the cleaning process, air washed
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by carbon adsorbent is drawn into the E-nose homogeneously by the flow-control unit and analytes
are removed from the sensor surface, which leads to conductivity decrease and stabilization to another
constant value because of the complete removal of the analytes. Both capturing and cleaning last for
90 s.
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2.3. Pattern Recognition Methods

2.3.1. Back-Propagation Neural Network (BPNN)

BPNN is usually considered a multi-layered feedforward artificial neural network in which the
backpropagation learning method is used to calculate a gradient required for calculation of the weights
to be used in the network. The backpropagation process involves two stages: a feedforward stage
in which exterior input information on the input nodes is propagated forward to compute output
information indicators at the output unit; and a backward phase in which the connection weights
are adjusted based on differences between the computed and actual indications at output units [19].
Through repeated iterations, the network’s response best matches the desired response.

2.3.2. Support Vector Machines (SVMs)

SVMs are supervised learning models with associated learning algorithms that analyze data used
for classification and regression analysis [16]. The SVM algorithm operates by finding the hyperplane
that gives the largest margin to the training samples. Therefore, the optimal separating hyperplane
maximizes the margin of the training data. For nonlinear separable classification problems, SVM
applies a kernel function to transform the original space into a higher-dimensional space, and a
hyperplane is constructed in the higher-dimensional space to solve problems of nonlinear separable
classification in the original low-dimensional space. The four best-known kernels are linear, polynomial,
radial basis function (RBF), and sigmoid [20].

2.3.3. Random Forest (RF)

Random forests, or random decision forests, comprise an ensemble learning method for
classification, regression, and other tasks, which operate by constructing multiple decision trees
at different training times and outputting the class representing the mode of classes (classification) or
mean prediction (regression) of individual trees [17]. First, for a given training set, some bootstrap
samples (the amount depending on the number of classification and regression trees) were obtained
by bootstrapping. Second, the RF algorithm incorporated growing classification and regression trees
(CARTs). Each CART was built using random vectors. The general approach used to insert random
vectors in tree formation is to choose the number of features (NF) in the random subset at each node,
as NF attributes input to be split at each node in the CART to be formed; NF can be defined using the
empirical formula NF =

√
M, where M denotes the total number of features. Finally, an RF classifier

was built by growing CARTs under supervised training to determine the final classification results
based on CART voting (majority rule).



Sensors 2019, 19, 45 6 of 11

2.3.4. Extreme Gradient Boosting (XGBoost)

XGBoost is a scalable machine learning system for tree boosting that is a highly effective and
widely used machine learning method [18]. The algorithm is based on the idea of ‘boosting’, which
combines all predictions of a set of ‘weak’ learners to develop a ‘strong’ learner through additive
training strategies [21]. XGBoost aims to prevent overfitting while optimizing computation resources
by redefining the objective function and tree structure and optimizing the execution efficiency of
the algorithm.

3. Results and Discussion

3.1. Response Curves and Features

Before training and testing, sensors’ response data were analyzed and preprocessed to obtain a
good feed of input features in models. Figure 4 shows the typical response signals of the sensor array
to different batch samples during 90 s of measurement, respectively. Each response curve represents
the voltage variation of each sensor with time when the wines’ volatiles reached the measurement
chamber. The voltage value of each sensor increased rapidly and then flattened-off as the process
reached steady state.
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3.2. Principal Component Analysis (PCA) for Wine Volatiles

Principal component analysis (PCA) is widely used for feature extraction (otherwise known as
dimensionality reduction) in pattern recognition. PCA is mathematically defined as an orthogonal
linear transformation that transforms data to a new coordinate system such that the greatest
variance by some projection of the data comes to lie on the first coordinate (the first principal
component), the second greatest variance on the second coordinate, and so on [22]. In general, the
first few principal components whose cumulative variance contribution exceeds 95% are considered
dimensionality-reduced data and often contain nearly all information from the original data.
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According to the MOS-based sensor principle, the response curve of the sensor to affinity
substances quickly rises initially and then gradually flattens. Generally, several kinds of features
(e.g., stable value [SV], mean-differential coefficient value, and response area value [23,24]), extracted
from E-nose signals can be used in pattern recognition algorithms. In this work, we used simpler
feature parameters, namely the SV. Because detection lasted for 90 s per sample and the response
value of each sensor stabilized after approximately 70 s, as shown in Figure 4, the value after the 70th
second of each sensor was taken as the SV. In this study, the last 10 data points (from the 81st to 90th
seconds) were used as input features for model training and testing. Therefore, four datasets used for
four group experiments were formed, and datasets were expressed as a 450 × 6 matrix, 600 × 6 matrix,
450 × 6 matrix, or 600 × 6 matrix, respectively.

PCA results of four sets of experimental data are presented in Figure 5, reducing the dimension
from six variables to two principal components. The four subplots illustrate that clustering among the
various classes is present, but in many cases is highly overlapping. No sets of experimental samples
could be easily separated artificially in the new two-dimensional projections space based on PCA.
Therefore, we concluded that the odor of wine was strong and rich; in the four sets of experiments,
the sample within each group had only one different attribute, and the difference between them was
minimal. In PCA, principal components with a small contribution rate were neglected, but it may
reflect important differences among sample types. In particular, some useful information was lose
after data dimension reduction.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 11 

 

second greatest variance on the second coordinate, and so on [22]. In general, the first few  

principal components whose cumulative variance contribution exceeds 95% are considered  

dimensionality-reduced data and often contain nearly all information from the original data. 

According to the MOS-based sensor principle, the response curve of the sensor to affinity 

substances quickly rises initially and then gradually flattens. Generally, several kinds of features (e.g., 

stable value [SV], mean-differential coefficient value, and response area value [23–24]), extracted 

from E-nose signals can be used in pattern recognition algorithms. In this work, we used simpler 

feature parameters, namely the SV. Because detection lasted for 90 s per sample and the response 

value of each sensor stabilized after approximately 70 s, as shown in Figure 4, the value after the 70th 

second of each sensor was taken as the SV. In this study, the last 10 data points (from the 81st to 90th 

seconds) were used as input features for model training and testing. Therefore, four datasets used for 

four group experiments were formed, and datasets were expressed as a 450 × 6 matrix, 600 × 6 matrix, 

450 × 6 matrix, or 600 × 6 matrix, respectively. 

PCA results of four sets of experimental data are presented in Figure 5, reducing the dimension 

from six variables to two principal components. The four subplots illustrate that clustering among 

the various classes is present, but in many cases is highly overlapping. No sets of experimental 

samples could be easily separated artificially in the new two-dimensional projections space based on 

PCA. Therefore, we concluded that the odor of wine was strong and rich; in the four sets of 

experiments, the sample within each group had only one different attribute, and the difference 

between them was minimal. In PCA, principal components with a small contribution rate were 

neglected, but it may reflect important differences among sample types. In particular, some useful 

information was lose after data dimension reduction. 

In addition, the loadings plot of PCA is shown in Figure 6. All six variables (MOS1, …, MOS6) 

were represented in the subplots by a vector, respectively, and the direction and length of the vector 

indicate how each variable (sensor) contributes to the two principal components. In the first subplot, 

the first principal component had positive coefficients for the MOS2, MOS3, and MOS4, and the 

largest was the MOS4, which showed that MOS4 had the largest contribution to the first principal 

component in the process of dimension reduction. Similarly, as shown in Figure 6b–d, the sensor 

which had the largest contribution to the first principal component was MOS4, MOS5 and MOS5, 

respectively. It was worth noting that the contribution of the same sensor was different in different 

tasks. Actually, removing the sensors with low contribution did not improve the experimental 

performance in this work. 

 

Figure 5. Principal component analysis (PCA) plots of different wine samples measurements (each 

kind of sample from the training lots were presented). (a) the samples with different product areas; 

Figure 5. Principal component analysis (PCA) plots of different wine samples measurements (each
kind of sample from the training lots were presented). (a) the samples with different product areas;
(b) the samples with different varietals; (c) the samples with different vintages; (d) the samples with
different fermentation processes.

In addition, the loadings plot of PCA is shown in Figure 6. All six variables (MOS1, . . . , MOS6)
were represented in the subplots by a vector, respectively, and the direction and length of the vector
indicate how each variable (sensor) contributes to the two principal components. In the first subplot,
the first principal component had positive coefficients for the MOS2, MOS3, and MOS4, and the
largest was the MOS4, which showed that MOS4 had the largest contribution to the first principal
component in the process of dimension reduction. Similarly, as shown in Figure 6b–d, the sensor
which had the largest contribution to the first principal component was MOS4, MOS5 and MOS5,
respectively. It was worth noting that the contribution of the same sensor was different in different tasks.



Sensors 2019, 19, 45 8 of 11

Actually, removing the sensors with low contribution did not improve the experimental performance
in this work.
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3.3. Comparison of Properties Classification Based on Four Methods

In this work, four methods, namely BPNN, SVM, RF, and XGBoost, were used to classify
different properties of wines. The above methods were implemented via PC programming using
Python language and Tensorflow (an open source software library for high-performance numerical
computation). For ease of comparison, all experimental results (accuracy of the four models in different
experiments, respectively) are illustrated in Table 6, where “Original”, “4-D”, and “2-D” indicate the
input features used in models to be original features, 4-dimensional features reduced by PCA, and
2-dimensional features reduced by PCA, respectively.

Table 6. Comparisons of the four methods in the classification tasks.

Producing Area Varietal Vintage Fermentation Processes

Original 4-D 2-D Original 4-D 2-D Original 4-D 2-D Original 4-D 2-D

BPNN 94.0 33.3 33.3 92.5 50.0 46.0 52.7 32.7 30.7 52.0 38.5 50.0
RF 87.3 64.0 36.7 79.0 24.5 48.5 47.3 21.3 32.0 56.5 38.5 39.5

SVM 70.0 28.7 28.7 91.0 52.5 39.0 67.3 33.3 33.3 60.5 39.5 55.5
XGBoost 90.7 66.0 56.7 59.5 39.5 49.5 50.0 33.3 33.3 57.5 39.0 39.5

Bold values indicate the best results.

In BPNN training, several neurons in the hidden layer were explored. During training, three-fold
cross-validation was applied to evaluate generalization performance of the BPNN model with final
evaluation on the testing set. Taking the first set of experiments as an example, the optimized
classification model is shown in Figure 7. The number of neurons in the hidden layer was determined
to be 12. During training, dropout refers to dropping out units (hidden and visible) in a neural
network, involving randomly setting the fraction rate of input units to zero at each update to help to
prevent overfitting.
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In addition, to verify the previous guess (i.e., the contribution of small components containing
important information), we compared the performance of original features and dimension-reduced
features based on the model we built in each set of experiments. Experimental results are shown in
Table 6. The accuracy of discrimination declined as the feature dimensions decreased. In identifying
wine production areas and varietals, BPNN achieved the best performance, with accuracies of 94% and
92.5%, respectively, using original features. Results indicate that BPNN possessed strong nonlinear
fitting capabilities in the two classification tasks. Note that, compared to the other methods, the
training of BPNN was the most time-consuming (BPNN consumed about three to six seconds, while
the others only took tens of milliseconds). Therefore, it seems futile to compare computing time when
the input was so small, and we will not discuss training time hereinafter.

For the RF-based classifier model, the main parameters were the number of decision trees and
number of features (NF) in the random subset at each node in the growing trees. During model
construction, the number of decision trees was optimized first, after which the NF was determined.
For the number of trees, a larger amount is better but takes longer to compute. Results stop improving
substantially beyond a critical number of trees, related to the NF considered when splitting a node.
A lower NF leads to a greater reduction in variance but larger increase in bias. Only 15 decision
trees were used in our experiments to build the classifier model; NF was defined using the empirical
formula mentioned earlier. The performance of RF is also reflected in the Table 6, revealing that the
performance of RF was mediocre in all experiments.

In the SVM-based model, an RBF was chosen as the kernel function. To optimize the penalty
parameter (C) and kernel parameter gamma (c) in the SVM model, a grid search method with
exponentially growing sequences of C and c was applied. Then, the optimal combination of parameters
was determined according to the distinguishability of the computed hyperplane. Finally, four
parameter combinations ([C, c]) used for the four tasks were determined to be [10, 0.15], [10, 0.15],
[20, 0.1], and [15, 0.1], respectively. According to the experimental results in the Table 6, SVM achieved
the best performance in identifying wine vintage and fermentation processes, with accuracies of 67.3%
and 60.5%, respectively.

XGBoost is an efficient implementation of the gradient boosting machine, a representative of
ensemble learning. Model parameters were highly similar to those of the RF model, thus, the
parameter selection process referenced that of the RF model. Moreover, the experimental results
of the XGBoost-based method are also depicted in the Table 6. It is showed that the XGBoost model
did not obtain ideal performance.
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4. Conclusions

In this study, an E-nose prototype was developed based on MOS sensors and STM32F4 MCU. As
an alternative detection method to traditional monitoring technologies, the device was employed to
identify different wines. Four popular machine learning algorithms (BPNN, RF, SVM, and XGBoost)
were used to build identification models for different classification tasks. Their performance was
compared based on the accuracy of testing samples. The following conclusions can be drawn.

(1) PCA is unnecessary to distinguish different wines in this work, resulting in details of wine
aromas being missed after the dimensions were reduced. Because the system included only six sensors,
6-dimensional features are insufficient for detailing the odor information. In particular, the accuracy of
experiments with dimension-reduced samples was bad for all tasks. Overall, the distinction of vintage
and fermentation processes is more difficult than producing area and varietal.

(2) Among the experimental results, BPNN and SVM performed better than RF and XGBoost; also,
SVM consumed less time than the BPNN. It was found that RF and XGBoost were not good choices
when dealing with low-dimensional samples, even though they performed well on many tasks. Due
to the practicality of SVM, an SVM-based algorithm can be easily migrated to our developed E-nose.

(3) Results were encouraging and demonstrated that the E-nose, as a non-destructive instrument,
can be used to differentiate wines when an optimal pattern recognition algorithm is selected. Although
the identification accuracy of wine vintages and fermentation processes was not high enough,
experiments demonstrated the effectiveness of the developed E-nose and algorithms. Insufficient
samples or sensors may have affected performance; we will explore this possibility further in the
next phase.

This study provides a critical outlook on the development of wine evaluation and process control,
which will assist manufacturers in standardizing operation processes and reducing costs while helping
to protect consumer rights.
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